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ABSTRACT
Sequence alignment is an ubiquitous task in genomics analysis
whose performance can be affected by the memory-wall on a
processor-centric architecture. Processing-in-Memory (PiM) ar-
chitectures provide a memory system with integrated computing
capabilities to alleviate this bottleneck. In this paper, we present a
long read optimized version of the Needleman and Wunsch (N&W)
algorithm based on PiM devices developed by the UPMEM com-
pany. Such memories add 128 computing units to a standard 16GB
DIMM. On a server equipped with 20 UPMEM PiMs, our N&W
implementation outperforms standard alignment tools by an or-
der of magnitude compared to a traditional multicore server. Code
available at https://github.com/upmem/usecase_dpu_alignment.

CCS CONCEPTS
• Theory of computation → Massively parallel algorithms;
Pattern matching; • Hardware→Memory and dense storage.
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1 INTRODUCTION
The alignment of protein or DNA sequences is a fundamental bioin-
formatics process. It finds applications in a wide variety of contexts,
including genome assembly[4], error read correction[1][29], or the
study of phylogeny between populations[12]. The advent of third-
generation sequencers has transformed the field by generating long
sequences (called reads) spanning from a thousand to millions of
base pairs (bp)[21]. Despite the advantages of these technologies,
such as addressing challenges related to structural variation and
resolving repetitive regions, they come with a higher error rate
compared to previous generations. Consequently, extensive effort
is required to ensure the production of high-quality sequences from
imprecise raw reads, to both assemble or polish the texts of the
genomes[27]. Furthermore, alignment plays an essential role in
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constructing phylogenetic trees using conserved DNA or RNA se-
quences from different species[2]. For instance, for bacteria, the
16S ribosomal RNA is often employed to establish phylogenetic
relationships. This involves conducting an all-against-all compari-
son between the bacteria studied, implying a quadratic number of
comparisons in relation to the number of bacteria. Once again, this
underscores the critical need for an efficient method for computing
alignments.

This paper focuses on global alignment, a type of alignment
that involves comparing entire sequences. Dynamic programming
(DP) algorithms, known for providing optimal solutions[28], are
frequently employed to address the approximate string matching
problem, that is sequence alignment. It is worth noting that, be-
ing an algorithm with quadratic complexity, it is inherently time-
consuming, particularly when confronted with long sequences. In
addition, conducting multiple alignments in parallel exacerbates
the situation by introducing a memory bottleneck[7]. Several dy-
namic programming (DP) algorithms exist, ranging from the classic
Needleman and Wunsch (N&W)[20] to the Smith and Waterman
algorithm[23], and more recently, the WFA algorithm[19]. Here, we
implement a variation on the N&W algorithm specifically designed
for comparing long DNA sequences.

In short, N&W consists in finding the minimal number of basic
edit operations to go from one sequence to another. Edit operations
can be substitution (one character is transformed into another one),
insertion (one character is added) and deletion (one character is
lost) as shown in figure 1.

Figure 1: Two sequences alignedwith, in order, onemismatch,
one insertion and one deletion.

N&W is based on DP and it is optimal as it always returns the
minimum number of edit operations needed to transform one se-
quence into the other. N&W computes a matrix and its complexity
is 𝑂 (𝑚 × 𝑛) in both time and space for sequences of respective
length𝑚 and 𝑛.

The N&W algorithm’s quadratic complexity is particularly pe-
nalizing when handling long sequences. Hence, multiple heuristics
have been proposed to avoid computing all the values of the DP
matrix while maintaining a good alignment accuracy [3][26][16].
Most of these heuristics improve the performance by exploiting the
following property: when two sequences are similar, the optimal
path from one to the other stays close to the diagonal of the matrix
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(the reciprocal is not true). Hence, when it is known in advance
that sequences are close to each other, it is sufficient to calculate a
band around the diagonal to find the optimal alignment.

This family of algorithms has been carefully optimized for the x86
architecture, as evidenced by various well-crafted implementations
[5][9][25]. A particularly efficient and widely used implementation
is found in the minimap2 software [16]. However, it is hard to
scale these implementations to obtain high sequences alignment
throughput: on the one hand, the semi-sequential nature of DP
limits the parallelism for a single alignment; on the other hand,
increasing the number of simultaneous alignments quickly leads to
a bottleneck in data movement.

Processing-in-Memory (PiM) architectures propose to alleviate
the memory bottleneck by bringing computing power closer to
the memory. By the past, previous instances of architectures with
a focus on sequence alignment have been proposed [14][11], but
their evaluations were limited to simulations. Here, we used a pro-
duction architecture developed by UPMEM [6]. Prior research has
demonstrated promising performance of DP on PiM using the UP-
MEM platform, albeit limited to handling only small sequences [7].
In this work, we developed the first DP implementation designed
specifically for the UPMEM PiM architecture, targeting long se-
quence alignment scenarios. We investigated the parallelization of
the N&W algorithm and we compared our implementation with
minimap2, one of the faster comparison sequence tool. To assess
our approach, we conducted experiments on synthetic and real
datasets. Using a PiM server with 20 DIMMs, we showed that a 9x
acceleration can be obtained compared to a 2 Intel Xeon Silver 4215
server.

The rest of the paper is structured as follows. In Section 2, the
UPMEM PiM server and its programming environment are pre-
sented. Section 3 describes the N&W algorithm, its affine version,
and the static and dynamic banded optimizations, while Section
4 details the parallelization of N&W on the PiM server. Section 5
presents the experimentation results and finally we provide our
conclusions in Section 6.

2 UPMEM PIM SYSTEM
2.1 Architecture
In a conventional computer, the central processing unit (CPU) and
thememory are two separate components. Thememory is packaged
as dual in-line memory modules (DIMM), where each side of a
module, called a memory rank, can be accessed independently.
A rank consists of multiple memory chips, each chip containing
several memory arrays (called banks).

The UPMEM company has developed a Processing-in-Memory
device that integrates a processing unit next to each memory bank.
This PiM device is a DIMMmodule with two ranks, each rank being
composed of 8 chips with 8 memory banks of 64MB. Attached to
each memory bank is a general-purpose data processing unit (DPU)
with direct access to the bank through a DMA engine. A DPU has
access only to the 64MB RAM of the bank to which it is attached
(called the DPU MRAM). The memory of other DPUs, including
those in the same rank or chip, cannot be accessed directly, i.e.,
the communication between DPUs happens via the host CPU. In

summary, the UPMEM PiM DIMM is an 8GB DIMM module with
two ranks of 64 DPUs, each DPU having access to 64MB of memory.

The PiM DIMMs are integrated into a x86 server with a host CPU
and standard DIMM modules. The host CPU can access the DPUs
MRAM directly through the DDR bus, which enables fast and direct
data transfers between the CPU and the DPUMRAMs. Additionally,
the CPU is responsible for the orchestration of the execution. It
transfers data from the standard RAM to the PiM modules, uploads
the program to the DPUs’ instruction RAM, launches the execution,
waits for the program termination, retrieves the results and so on.
When DPUs are executing, they have exclusive access to the MRAM
and the host cannot access the MRAM anymore. This exclusive
access to the memory bank is necessary to ensure the integrity and
coherence of computations within the PiM architecture, while re-
specting the DDR protocol. The granularity of access to DPUs is the
rank (64 DPUs), meaning that operations are generally performed
simultaneously on all DPUs of a rank (transfer, launch, etc) in order
to maximize the system’s performance.

Although it would be possible to load different programs into
different DPUs, the typical usage is to load a common program and
leverage data parallelism to speed up the execution of a memory-
bounded algorithm. Inside each DPU, several hardware threads are
also executing in parallel. These threads share the same instruction
memory (and hence execute the same program), but each of them
has its own context (registers, program counter) so that they can
execute different functions within the same program, or execute
independently the same function on different data. From the pro-
gramming point of view, an executing hardware thread with its
context is referred to as a tasklet.

Figure 2: Server with PiM DIMMs.

The DPU instruction pipeline is shared by the tasklets through
a simple round-robin mechanism. It is 14 cycles deep, with 11 con-
secutive steps of the pipeline imposing a blocking restriction on
tasklet’s reentry. In other words, a specific tasklet can only execute
one instruction every 11 cycles, and a minimum of 11 tasklets must
be running in order to attain the peak performance of 1 instruction
per cycle. This fine-grained multi-threading execution of tasklets
permits a relatively simple pipeline design by avoiding problems re-
lated to exceptions or branch prediction. This design choice, among
others, is motivated by the challenge of implementing a PiM core
inside a DRAM process (the DPU is on the same chip as the memory
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bank). On the other hand, it requires the programmer to expose a
good level of parallelism for efficient execution.

The DPU features a proprietary triadic instruction set architec-
ture (ISA) particularly good for branching. It is enriched with a
fused jump instruction mechanism, allowed by the pipeline’s reen-
try restriction. This design allows cycle-free jumps before or after
most instructions (e.g. jump when the result of an add is lower
than zero), improving execution time through fast branching. In-
teger arithmetic is efficiently supported through hardware, but no
floating point unit is present due to area and power efficiency con-
siderations. The execution is quite predictable, as each instruction
is taking the same number of cycles in the pipeline, with the ex-
ception of DMA load/store instructions which access the memory
bank.

The working memory of the DPU is a 64KB scratchpad (called
WRAM) directly accessible through load and store instructions.
These instructions take the same number of cycles as the other
instructions, and can be executed at a maximal rate of 1 instruction
per cycle. In other words, from the tasklet perspective, a load or
store to the WRAM is never a blocking operation and the tasklet’s
next instruction can be executed after 11 cycles. This is not the case
for access to the MRAM (the memory bank), which is performed
using a DMA engine transferring bytes from (or to) theMRAM to (or
from) the WRAM at a rate of 2B/cycle. During the execution of the
DMA transfer, a tasklet is waiting and cannot issue new instructions
into the pipeline. In order to mask the latency of MRAM accesses,
more than 11 tasklets (usually 16) are being executed in parallel.
Data transfers between the DPU’s MRAM and WRAM must be
explicitly managed by the programmer and be preferably of large
size (transfer size is between 8 and 2048 bytes) to maximize the
performance.

This hardware architecture holds significant implications when
developing parallel algorithms on it. Specifically, being able to
expose massive parallelism within the application and split it into
relatively independent tasks running across individual DPUs and
tasklets is necessary for achieving optimal performance.

A typical PiM system from UPMEM (figure 2) is composed of a
dual-socket x86 Intel server with 20 PIM DIMMs, totalizing 2560
DPUs. DPUs are running at a frequency between 350 and 450Mhz
and offer a cumulative memory bandwidth of 2TB/s.

2.2 Programming environment
Programming an application for the UPMEM-PiM server requires
the creation of two distinct programs, one for the CPU and one (at
least) for the DPUs.

The role of the host program encompasses several responsibili-
ties, including first allocating resources (ranks of DPUs), splitting
the program data and distributing it into the DPUs’ MRAM, and
loading the program. After this initialization phase, a typical work-
flow involves broadcasting requests to each DPU and launching
the execution, waiting for termination, getting the results from the
DPUs and consolidating them before the next such iteration. The
host program is developed using the x86 tool-chain and linking
with UPMEM’s SDK host library available in C, C++, Java or Python.
The host library provides all functionalities necessary to the DPU
program orchestration, as described above.

The DPU is programmed in C, with a subset of the C library
being ported. A dedicated compiler based on LLVM is provided
as well as simulation and debugging tools. The DPU library also
provides functionalities helping with tasklet synchronization (e.g.,
mutex, barrier), MRAM accesses, performance counters, etc.

3 DYNAMIC PROGRAMMING ALGORITHM
This section recalls the dynamic programming (DP) algorithm for
finding alignments between two sequences, and motivates the use
of the adaptive band approach for PiM implementation.

3.1 Needleman &Wunsch algorithm
In the pairwise sequence alignment problem, we consider as input a
pair of sequences𝐴 = 𝑎1, 𝑎2, ..., 𝑎𝑖 , ..., 𝑎𝑚 and 𝐵 = 𝑏1, 𝑏2, ..., 𝑏 𝑗 , ..., 𝑏𝑛
where 𝑎𝑖 and 𝑏 𝑗 are chosen from a finite alphabet, e.g. A,T,G,C. The
output is a sequence alignment and a score. The N&W algorithm
computes the optimal score 𝐻𝑚,𝑛 through the following recursion:

𝐻𝑖, 𝑗 =𝑚𝑎𝑥


𝐻𝑖−1, 𝑗−1 + 𝑠𝑢𝑏 (𝑎𝑖 , 𝑏 𝑗 )
𝐻𝑖−1, 𝑗 − 𝑔𝑎𝑝

𝐻𝑖, 𝑗−1 − 𝑔𝑎𝑝

(1)

Where 𝑖 ∈ {1;𝑚}, 𝑗 ∈ {1;𝑛}, and 𝐻𝑖, 𝑗 is the score of the alignment
between sub-sequences of 𝐴 and 𝐵 ending respectively at element 𝑖
and 𝑗 . The recursion ends when 𝑖 or 𝑗 is zero with a score obtained
as follows:

𝐻0, 𝑗 = 𝑗 × −𝑔𝑎𝑝
𝐻𝑖,0 = 𝑖 × −𝑔𝑎𝑝 (2)

In equations 1, 𝑠𝑢𝑏 (𝑎𝑖 , 𝑏 𝑗 ) is the cost associated to a substitution (i.e.,
when replacing an element of the sequence with another), and 𝑔𝑎𝑝
is a constant value representing the cost for an insertion or deletion
of an element. For DNA sequences, 𝑠𝑢𝑏 (𝑎𝑖 , 𝑏 𝑗 ) has a positive value
if 𝑎𝑖 = 𝑏 𝑗 (called a match) and a negative value otherwise (called a
mismatch or substitution). Equations 2 are derived from the fact
that an alignment with an empty sequence has a score equal to the
size of the non-empty sequence times the cost of deletion.

At the end of the recursion, the global alignment score between
the entire sequences 𝐴 and 𝐵 is given by 𝐻𝑚,𝑛 . To obtain this score,
the entire matrix𝐻 needs to be computed. The corresponding align-
ment (i.e., the set of substitutions, insertions and deletions on the
optimal path) can be constructed using a backtracking procedure
(a.k.a. traceback) starting at 𝐻𝑚,𝑛 and following the path in the
matrix that led to this score.

3.2 Affine gap extension
From a biological point of view, the insertion and deletion cost
model used in equations 1 and 2 is actually unsatisfactory. The
model is indeed too pessimistic for gaps, i.e., when successive in-
sertions or deletions of one element occur in a row. In this case,
the cost computed using a linear function based on the constant
𝑔𝑎𝑝 ends up too high. To solve this problem, Gotoh [10] proposed
a cost model based on an affine function which separates two costs,
the cost of opening a gap, and the cost of extending a gap. Since
the cost of opening a gap is higher, this model indeed avoids over-
penalizing the larger gaps. The recursion equations are however
more complex as three matrices of size𝑚 × 𝑛 need to be computed
instead of one matrix for the original N&W algorithm.
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𝐷𝑖, 𝑗 =


− inf if 𝑗 = 0
−𝑔𝑎𝑝𝑜𝑝𝑒𝑛 − 𝑗 × 𝑔𝑎𝑝𝑒𝑥𝑡 if 𝑖 = 0

max
{

𝐷𝑖, 𝑗−1 − 𝑔𝑎𝑝𝑒𝑥𝑡
𝐻𝑖, 𝑗−1 − 𝑔𝑎𝑝𝑜𝑝𝑒𝑛 − 𝑔𝑎𝑝𝑒𝑥𝑡

(3)

𝐼𝑖, 𝑗 =


− inf if 𝑖 = 0
−𝑔𝑎𝑝𝑜𝑝𝑒𝑛 − 𝑖 × 𝑔𝑎𝑝𝑒𝑥𝑡 if 𝑗 = 0

max
{

𝐼𝑖−1, 𝑗 − 𝑔𝑎𝑝𝑒𝑥𝑡
𝐻𝑖−1, 𝑗 − 𝑔𝑎𝑝𝑜𝑝𝑒𝑛 − 𝑔𝑎𝑝𝑒𝑥𝑡

(4)

𝐻𝑖, 𝑗 =



0 if 𝑖 = 0, 𝑗 = 0
𝐷0, 𝑗 if 𝑖 = 0
𝐼𝑖,0 if 𝑗 = 0

max


𝐻𝑖−1, 𝑗−1 + 𝑠𝑢𝑏 (𝑎𝑖 , 𝑏 𝑗 )
𝐷𝑖, 𝑗

𝐼𝑖, 𝑗

(5)

Matrices D and I keep the values of the current most inexpensive
gap, both for horizontal and vertical gap (deletion or insertion).
Then it is used to choose between extending the current gap or
opening a new one for the current position. The H matrix, the
score matrix, takes into account those two matrices to update its
score. The alignment can be constructed using a similar traceback
procedure, but information from the three matrices is required.

3.3 Banded DP algorithm
As mentioned in introduction, the complexity of the dynamic pro-
gramming algorithm described in 3.1 is quadratic. This follows
from the fact that all of the𝑚 × 𝑛 values of matrix 𝐻 need to be
computed. In practice, this means that the applicability of N&W is
limited to the alignment of short sequences of few hundred bp. For
long sequences, especially for DNA reads coming from the third
generation of sequencing machines, whose length ranges from 1k
bp to 100k bp, the execution time of N&W is becoming prohibitive.

On the other hand, when sequences to align are close to each
other, which is often the case in genomics applications, the useful
information for calculating the optimal score is located around
the diagonal of the matrix. In other words, it is not necessary to
compute the whole matrix to find the optimal alignment, but only
the values around the diagonal. The banded DP algorithm therefore
computes the values in a predefined band centered on the diagonal,
and ignores other values. This strategy greatly reduces the amount
of computation to be done as the algorithm’s complexity becomes
𝑂 (𝑤×(𝑚+𝑛)) with𝑤 the size of the band. Practically, the band’s size
can be set to a few hundreds of values, leading to a significant gain in
execution time and memory space on long sequence alignment. The
downside of the banded DP algorithm is that it is not guaranteed to
find the optimal alignment as it does not evaluate all possibilities.
Setting the size of the band appropriately is therefore important to
ensure a good quality of results, and it requires knowledge on the
typical amount of differences between the sequences to align (e.g.,
the maximum size of a gap).

Regarding the implementation of N&W on the UPMEM PiM
architecture, using the banded DP strategy is essential. Each pro-
cessing unit (DPU) has access to only one memory bank of 64MB

which is too small to contain the 3 matrices involved in the al-
gorithm with affine gap extension. On the other hand, storing a
hundred values around the diagonal means storing 6 million of val-
ues for sequences of 10k bp, which fits into the memory available.
Additionally, as explained in section 4, the values can be stored on
3 bits only.

3.4 Adaptive banded DP algorithm
In order to compute a correct score using the banded DP algorithm,
the path leading to that score must stay within the band. The size of
the band must be chosen according to the estimation of local maxi-
mum cumulative number of gaps and also depends of the difference
between the lengths of the 2 sequences. The larger this estimation
is, the bigger the band size must be. Estimating cumulative gaps is
not easy, and often leads to an overestimation of the band size, and
consequently an excess of calculations.

Figure 3: (A) Fixed band: the optimal path must be located
within the band whose size depends of the number of gaps
and the length difference between the two sequences. (B)
Adaptive band: the position of the window is adjusted accord-
ing to values computed in the anti-diagonal

The adaptive band proposed by [24] is an efficient heuristic to
partially overcome these disadvantages. The computation of the
band is performed on an anti-diagonal window as shown figure 3. At
the beginning, the window is centered at position [0,0] of the matrix
(top left corner). Depending on the values at the extremities of the
window, it is shifted right or down to follow the most likely path.
This heuristic significantly decreases the amount of calculation
as the size of the band can be much smaller while maintaining
equivalent accuracy. However, a new condition is introduced in the
critical loop of the algorithm (inside the band computation), which
leads to an increase in the branch miss-prediction rate on CPU, and
consequently severely limits the performance benefit. In the case of
UPMEM’s PiM DPU, this heuristic is however a good choice. Since
the DPU does not perform any speculative execution, the decrease
in computation provided by the adaptive scheme directly translates
into a proportional speedup of the program’s execution time.

4 IMPLEMENTATION
As explained in section 2.2, implementing N&W on the PiM hard-
ware requires developing a program running on the host CPU and
a compute kernel running on the DPUs. The host program orches-
trates the execution, and the DPU program performs the alignment
by dynamic programming according to equations 3, 4, and 5. This
section provides a short description of the most relevant implemen-
tation choices which enable to optimize the performance of the
PiM implementation.
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4.1 Host program
In a nutshell, the host program’s main loop consists in the following
four steps:

(1) Dispatch batches of pairs of sequences to the DPUs
(2) Launch the DPUs (send a boot command)
(3) Wait for the DPUs to finish their computations
(4) Collect and interpret the alignment results
There are two main aspects related to step 1 which affect the

performance : the time taken to transfer the input sequences from
the host to the DPUs and the load balancing across DPUs.

4.1.1 Data transfer optimization. On the PiM server used for our
experiments, the measured peak bandwidth when transferring data
from the standard memory to the PiM memory reaches around
60GB/s. The data transfer is performed by an API of UPMEM’s SDK
which uses multiple threads to handle the transfer to different PiM
ranks in parallel. In practice, the transfer’s throughput is affected
by multiple characteristics such as the number of memory channels
and the CPU L3 cache size.

But the time taken to transfer a large batch of input sequences to
the PiM system can be significant in the total execution time, and
as explained in section 2.1, the communication cannot be pipelined
with the DPUs execution. By default, each character of the DNA
sequence is encoded on one byte (ASCII character), as it comes
from a human-readable text file on disk. In order to reduce the size
of the transfer to the DPUs, we decided to first encode characters
on 2 bits, which is possible since we use a restricted alphabet of 4
nucleotides A, C, T and G. This encoding is done on the fly while
also distributing the data into different batches that are sent to
different DPUs. After implementing this encoding, the transfer
time is below 15% of the total execution (and represents a negligible
fraction on large datasets), while the additional cost due to the
encoding is minimal.

Note that sequencing is not perfect. In addition to gaps, we
sometimes detect the presence of a nucleotide without being able
to identify which specific one it is. The sequencer represents this
uncertainty with the ambiguous base code "N". While a better com-
pression scheme for handling these ambiguous bases could be de-
vised, [17] suggests that converting N to any nucleotide in at least
one sequence does not affect the alignment results. Additionally,
other genomic tools, such as metaFlye [15], randomly substitute
Ns with A, C, G, or T.

This implementation choice also affects the DPU program which
needs to compare sequences where each nucleotide is encoded on
2 bits. It turns out that this choice is also beneficial for the DPU
program’s performance. On one hand, the DPU needs to perform
smaller data transfers between the DRAM bank (MRAM) and the
scratchpad (WRAM). On the other hand, extracting nucleotides
stored on 2 bits can be made quite efficient using shift instructions
on the DPU.

4.1.2 Load balancing. The distribution of DNA sequences among
the DPUs plays an important role to get a good load balancing
across the system. More precisely, it is of great importance to bal-
ance the workload between DPUs of the same rank (64 DPUs, see
section 2.1), since the system imposes a barrier at the end of ex-
ecution of all DPUs of the same rank. Hence, while it is possible

to independently retrieve the results of different ranks of DPUs,
the results collection of a rank cannot happen before all DPUs of
the rank have completed their work. Minimizing the time interval
between the fastest and the slowest DPU in a rank is thus desirable
to ensure optimal performance. It is also necessary (but less critical)
to balance the workload of each rank to avoid ranks being inactive
or overloaded.

We rely on the time complexity of the banded DP algorithm
with band size𝑤 (as defined in 3.3) to estimate the workload of the
alignment of two sequences of size𝑚 and 𝑛 :

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (𝑚,𝑛) = (𝑚 + 𝑛) ×𝑤 (6)

The workload of a DPU is simply the cumulative workload of all
alignments assigned to it. Input sequences are read in groups from
the disk, the exact number read at once being a parameter of the
program. Then, pairs of reads to compare are distributed equally
in 𝑁 batches with 𝑁 being the number of ranks and sent to a
FIFO queue. When a rank terminates its execution, the next batch
of the queue is assigned to it. The process of reading the input
sequences and filling the queue is happening in parallel of the batch
assignment and DPUs execution. We then employ a simple and well
known heuristic for distributing the workload between DPUs of
rank. We sort the pairs of sequences by decreasing workload, and
keep on assigning the pair with the largest workload to the DPU
with lowest workload, until all pairs have been assigned. This simple
heuristic is fast to execute and provides a good approximation to
the load balancing problem.

4.2 DPU program
4.2.1 Score computation. As stated in 3.2, 3 matrices need to be
computed for the recursion. However, to compute the final score
(𝐻𝑚,𝑛) it is not necessary to keep all the values of these matrices
in memory. The computation of 𝐻𝑖, 𝑗 , 𝐷𝑖, 𝑗 and 𝐼𝑖, 𝑗 requires only the
presence of neighborhood values 𝐻𝑖−1, 𝑗−1, 𝐻𝑖, 𝑗−1, 𝐻𝑖−1, 𝑗 , 𝐷𝑖, 𝑗−1
and 𝐼𝑖−1, 𝑗 . Thus, instead of storing 3 matrices, only 4 anti-diagonals
of size 𝑤 (the size of the band) need to be kept and updated: the
two previous anti-diagonals of 𝐻 and one anti-diagonal from the 𝐼
and 𝐷 matrices.

The memory footprint to compute the score of an alignment
between two DNA sequences is reduced to four integer arrays of
size 𝑤 . This means that these arrays can fit the DPU’s WRAM,
which guarantees fast update.

4.2.2 Traceback algorithm. This procedure aims to provide the
optimal alignment between two sequences in the standard format
called Compact Idiosyncratic Gapped Alignment Report (CIGAR).
The CIGAR is a compact string detailing the position of matches,
insertions and deletions. Building the CIGAR for the best alignment
consists in twomain steps: (1) creation of an auxiliary data structure
during the scores computation to retain the path leading to all scores
and (2) navigate through this structure to extract the optimal path.

Step (1): The auxiliary data structure, denoted 𝐵𝑇 , has dimen-
sions (𝑚 + 𝑛) ×𝑤 . Each row of 𝐵𝑇 corresponds to an anti-diagonal.
Essentially, a cell in 𝐵𝑇 preserves information about which neigh-
boring cell in 𝐻 has contributed to achieving the maximum score.
This score may originate from 𝐻𝑖−1, 𝑗−1, 𝐼𝑖, 𝑗 , or 𝐷𝑖, 𝑗 . To represent
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this information, we derived a 4-bit encoding scheme: 2 bits are al-
located to indicate the origin cell (𝐻 with match, 𝐻 with mismatch,
𝐼 , or 𝐷), while 2 bits indicate whether, in case of a gap (𝐼 or 𝐷), it
corresponds to the initiation of a new gap or the extension of a
pre-existing one.

Step (2): Utilizing the 𝐵𝑇 array, the traceback procedure gener-
ates a CIGAR string, reporting the alignment between the DNA
sequences. Beginning from the 𝐵𝑇 cell associated with 𝐻𝑛,𝑚 , the
algorithm produces a sequence of elementary operations (match,
mismatch, gaps) that corresponds to the transformation of one se-
quence into the other. The process terminates upon reaching the
first anti-diagonal.

4.2.3 Multitasking. As explained in section 2.1, it is necessary
to use a minimum of 11 tasklets on each DPU to reach the best
possible pipeline utilization (i.e., an instruction per cycle count
close to 1). It means that the work assigned to each DPU needs
to be parallelized, which can be done using one of the following
two strategies : (1) data parallelism at alignment level: each tasklet
performs a different alignment concurrently, or (2) data parallelism
at the anti-diagonal level: several tasklets share the work associated
with the computation of a single alignment. The first approach is
the most straightforward to implement, but it also has the largest
memory requirement. Indeed it requires to store at least 11 times the
data needed for one alignment (i.e., matrices 𝐻 , 𝐷 , 𝐼 , the traceback
data 𝐵𝑇 etc.), which could not fit in the DPU’sWRAM. This strategy
enables to use a maximum of 8 tasklets in parallel, which is not
enough to obtain full pipeline usage. Hence, we instead choose to
implement a mix of strategies 1 and 2, where several groups of
tasklets work on different alignments in parallel. Having a group of
tasklets working on the same alignment is challenging in terms of
implementation as tasklets in a group need to be started and ended
dynamically while the DPU has no runtime to easily perform these
operations (by default, each tasklet is booted at startup and runs till
the end of the program). This strategy therefore involves complex
synchronization and low-level tasklets management.

The hybrid approach developed uses 𝑃 pools of 𝑇 tasklets to
simultaneously align 𝑃 pairs of sequences. Within each pool, a
designated tasklet serves as the master, responsible for initializ-
ing buffers and shared variables. Once initialized, it orchestrates
synchronization among the 𝑁 tasklets within its pool at the granu-
larity of anti-diagonal computation. Tasklets are assigned distinct
segments of the three anti-diagonal vectors to update. This paral-
lelization strategy is possible because the calculation of cells within
an anti-diagonal can proceed independently (as described in section
4.2.1). However, it is important to note that the traceback proce-
dure, which entails sequential traversal of the 𝐵𝑇 table, cannot be
parallelized.

4.2.4 Assembly optimization. As outlined in Section 2.1, the In-
struction Set Architecture of the DPU includes specialized instruc-
tions. However, as of today, the code produced by the compiler
does not leverage them at their best in all cases, whereas a gain of
a single instruction in a critical part of code can lead to significant
performance gains. Hence, to optimize further, the assembly code
of critical sections was analyzed and rewritten. Below are described
the two classes of assembly optimizations performed:

• Leveraging instructions that are tailored to the specific ap-
plication domain. For instance, the cmpb4 instruction, which
is a SIMD instruction, can concurrently compare four bytes.
This is particularly advantageous when dealing with DNA
strings, as it enables efficient comparison on multiple base
pairs simultaneously.

• Fused jump instructions involving the combination of arith-
metic or logical operations with control flow. Fused jump
instructions enhance computational efficiency and reduce
the need for separate branching instructions.

These manual optimizations, when applied to the code updating
anti-diagonals, resulted in a total of 38% improvement in DPU’s
code performance.

5 EXPERIMENTATIONS
This section outlines the experiments conducted on an UPMEM PiM
server. We evaluate the performance by conducting a comparative
analysis against an OpenMP multi-threaded CPU implementation
sourced from the minimap2 GitHub repository. This implemen-
tation, shared with the KSW2 library, is vector-optimized with
SSE instructions and does not include the seeding and chaining
steps from the computation, only the N&W step. We are aware of
mm2fast [13] claiming 2x speed up using AVX instructions, unfor-
tunately the server described hereafter performed 20% worse. This
might be partly explained by the lower CPU core frequencies while
using AVX2 and AVX512 instructions on Intel 421X processors. The
UPMEM server configuration used includes 256 GB of standard
memory and 20 DIMMs of PiM memory, yielding a total of 2560
DPUs running at 350 Mhz. There are 2 sockets equipped with Intel
Xeon 4215 CPUs, each housing 16 cores and operating at a peak
frequency of 2.5 GHz. The CPU implementation is evaluated on
two different servers: A) a dual socket server with the same CPUs
as in the PiM server (Intel Xeon 4215, 32 cores operating at 2.5 Ghz,
11MB of L3 cache), and B) a dual socket server with Intel Xeon 4216
CPUs (64 cores operating at 2.1 Ghz, 22MB of L3 cache).

The evaluation is based on several datasets for comprehensive
analysis. First, three synthetic datasets, referred in the rest of the
paper as S1000, S10000 and S30000, featuring read lengths of 1000,
10000 and 30000 respectively, were generated using the data gener-
ator provided in the WFA GitHub repository[18]. Second, two real
datasets were considered. The first one comprises 16S Ribosomal
RNA sequences, sourced from the NCBI bacterial database (August
2022). Only complete 16S RNA sequences were retained through a
curation process. The final dataset contains 9557 sequences. The
second real dataset consists of 38,512 sets of PacBio raw reads. Each
set is composed of 10 to 30 repeated reads of the same region, char-
acterized by a high error rate and the presence of significant gaps
(exceeding 100 bp). Within each set, an all-against-all alignment is
performed to generate a consensus sequence. Note that consensus
computation is not included in our benchmark.

The evaluations have been done with the number of pools 𝑃 set
to 6, and the number of tasklets per pool 𝑇 fixed to 4. These pa-
rameters values have demonstrated effective pipeline usage across
all datasets, achieving utilization rates ranging from 95% to 99%.
This implies that, during the DPU execution, the performance is
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influenced by internal MRAM-WRAM transfers only to a small ex-
tent, with an impact ranging from 1 to 5%. The overall overhead of
the host orchestration of DPUs, including pre-processing, transfers
to and from DPUs, and post-processing of data compared to the
running times of the DPUs is dependent on the dataset. For the
smaller reads found in S1000, the overhead reaches 15% while for
the longer reads found in S30000, the overhead is less than 0.1%.

5.1 Adaptive vs. Static: Accuracy and
Computation

We first look at the execution time of the adaptive N&W formu-
lation against minimap2, which, we recall, implements a highly
efficient CPU implementation of the static N&W algorithm. No-
tably, minimap2 optimizes CPU efficiency through the utilization
of query sequence profile[22], a branchless programming strategy,
coupled with SSE vectorization to achieve optimal performance. In
the context of the DPU implementation, branches are inexpensive
and memory usage is the priority, as it is limited. Thus we opted
for an adaptive formulation of N&W that does not use a query
profile. As stated in section 3, this choice has implications in terms
of accuracy and performance. Accuracy, in this context, refers to
the precision of sequence alignment, measured as the percentage
of correctly aligned sequences in a specific dataset. To establish
a baseline for correct alignments, we leveraged minimap2 while
disabling the band heuristic, thereby obtaining optimal alignments
for reference.

Table 1: Comparison of accuracy percentages across datasets,
for static and adaptive band heuristics. The band size is dou-
bled until reaching 100% accuracy on synthetic datasets.

Static Adaptive
Band size 128 256 512 128

S1000 (%) 100 100
S10000 (%) 99 100 100
S30000 (%) 89 99 100 100
16S (%) 70 81 85 86
Pacbio (%) 29 62 87 85

As we can see in Table 1, which presents a detailed comparison
of accuracy percentages of both static and adaptive band heuristics,
the accuracy of the adaptive heuristic is much higher especially
for long sequences. We can reduce the band size by four times,
thus reducing the amount of computation by the same rate, and
retaining the same accuracy. The performance measurement, in
the rest of the paper, is assessed under a given accuracy constraint,
i.e. the evaluation considers the performance of adaptive and static
heuristics with the minimum band size required to provide a given
level of accuracy (e.g., 100% or 85%). Note that the associated band
size necessary to provide this level of accuracy can be different
between the two different heuristics.

5.2 Synthetic datasets pair alignment
The datasets, denoted as S1000, S10000, and S30000, consist of 10
million, 1 million, and 500 thousand pairs of reads for alignment,

respectively. As previously mentioned, S1000 consists of reads ap-
proximately 1000 bp in size, S10000 features 10,000 bp long reads,
and S30000 features 30,000 bp long reads. This dataset being or-
ganized by pairs of reads to align, each DPU receives one pair of
reads for each alignment to perform. This characteristic makes this
setup the most challenging in terms of communication between
the host and DPUs when compared to other use cases. Indeed, in
other datasets, reads are organized in sets where each read in the
set must be aligned with every other read. This means the number
of alignments to be performed is quadratic with the number of
reads in the set. This therefore increases the ratio of computation
to communication.

Table 2: Runtime on the S1000 dataset at 100% accuracy.

S1000
Time (in s) Speedup

Minimap2 Intel 4215 (32c) 294 1
Minimap2 Intel 4216 (64c) 242 1.2
DPU 10 ranks 560 0.6
DPU 20 ranks 283 1
DPU 40 ranks 146 2

Table 2 shows the comparison between DPU and minimap2 on
the S1000 dataset. For this dataset, minimap2 reaches 100% accuracy
at a band size of 128. Since the DPU algorithm also requires a
band size of 128 for 100% accuracy, the CPU and DPUs perform a
similar amount of computation. We can see that on this dataset,
the scaling of Minimap2 with an increasing number of cores is
quite poor. Indeed, the performance is only 20% better on the Intel
4216 although it has twice as many cores than the 4215. On the
other hand, the scaling of the PiM system is quite good, as the
performance is nearly doubled when doubling the number of ranks
from 20 to 40.

Table 3: Runtime on the S10000 dataset at 100% accuracy.

S10000
Time (in s) Speedup

Minimap2 Intel 4215 (32c) 744 1
Minimap2 Intel 4216 (64c) 369 2
DPU 10 ranks 502 1.5
DPU 20 ranks 255 2.9
DPU 40 ranks 132 5.6

Table 3 shows the comparison on the S10000 dataset. To maintain
100% accuracy, Minimap2 needs to be configured with a band size
of 256, while the DPU still requires a band size of 128. This implies
that the CPU is effectively computing twice the number of cells in
the DP matrices compared to the DPU. With longer reads, the effi-
ciency of the adaptive heuristic becomes apparent. For this dataset,
the pattern favors the second CPU configuration, demonstrating
performance twice that of the first CPU configuration. Surprisingly,
the Intel 4216 CPU performs twice as fast as the Intel 4215 CPU on
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this dataset. Again, we see a good scaling of the DPU implemen-
tation, it is almost linear with an increasing number of DPUs (a
speedup of 3.8 between 10 to 40 ranks).

Table 4: Runtime on the S30000 dataset at 100% accuracy.

S30000
Time (in s) Speedup

Minimap2 Intel 4215 (32c) 1650 1
Minimap2 Intel 4216 (64c) 1265 1.3
DPU 10 ranks 755 2.1
DPU 20 ranks 391 4.2
DPU 40 ranks 200 8

For the S30000 dataset, the band size of Minimap2 is set at 512
to reach 100% accuracy. We see similar results in Table 4 in strong
scaling, the speedup being 3.7 from 10 ranks to 40 ranks. The com-
parison between the Intel 4215 and Intel 4216 shows that Minimap2
struggles to scale efficiently on that dataset.

In summary, the experimental results on the synthetic datasets
underscore the robust performance of the DPU. Notably, the efficacy
of the DPU implementation becomes more pronounced with an
increase in read size. This increase in performance can be attributed
to the adaptive heuristic, which proves particularly advantageous
when dealing with longer reads. In addition, we demonstrate that
the PiM architecture scales well with an increasing number of
DPUs.

5.3 16S RNA sequence comparison for
phylogeny

This experiment seeks to compute an all-against-all comparison
between the sequences essential for phylogeny analysis. It involves
pairwise sequence alignmentwithin the 16S Ribosomal RNAdataset.
In particular, each alignment yields a score without necessitating
the alignment itself (CIGAR).

Given the dataset’s compact size, which allows it to reside within
the MRAM of one DPU, a broadcast mechanism is used to send it to
all DPUs. This approach effectively diminishes the pre-processing
requirements involved in generating and sending each pair of se-
quences, and limits the data transfer footprint. Subsequently, each
DPU is statically assigned the responsibility of computing a subset
of alignments, with each DPU being tasked with the same number
of alignments. This simple static assignment of work enables good
load balancing for this experiment, with a maximum difference in
the execution time of DPUs of the same rank around 5%.

As presented in Table 5, a fully populated UPMEM PiM server
outperforms two server-grade CPUs by a substantial margin. Specif-
ically, the PiM server achieves a remarkable 9.3-fold improvement
compared to the first CPU configuration. The execution time shows
a linear reduction as the number of ranks increases, thus high-
lighting robust scaling. This linear scaling is possible thanks to the
low exchange overhead between the host and the DPU, the dataset
being broadcast only once.

Table 5: Comparison of performance on the 16S dataset. The
performance is being analysed at accuracy greater than 85%
(band size at 512 for minimap2 and 128 on DPU).

16S
Time (in s) Speedup

Minimap2 Intel 4215 (32c) 5882 1
Minimap2 Intel 4216 (64c) 3538 1.7
DPU 10 ranks 2544 2.3
DPU 20 ranks 1257 4.6
DPU 40 ranks 632 9.3

5.4 Long read alignment for consensus sequence
The objective of this experiment is to align sets of sequences. In each
set, individual reads or DNA segments, sequenced from the same
region of the genome, are pairwise aligned. This process constitutes
the foundational step in constructing a consensus sequence. It is
important to note that, in this context, the CIGAR string, which
represents alignment, is an indispensable part of the analysis.

The distribution of sets to the DPUs follows the systematic ap-
proach of load balancing described in 4.1. In practice, this approach
has proved effective in achieving a balanced distribution of the
calculation burden across all DPUs.

Table 6: Comparison of the computation time on the Pacbio
dataset. Performance was analyzed with an accuracy of over
85%. (band size at 512 for minimap2 and 128 on DPU).

Pacbio
Time (in s) Speedup

Minimap2 Intel 4215 (32c) 4044 1
Minimap2 Intel 4216 (64c) 2788 1.4
DPU 10 ranks 1882 2.1
DPU 20 ranks 956 4.2
DPU 40 ranks 505 8

Once again, the performance comparison was conducted against
the two CPU configuration described in section 5. The UPMEM PiM
server consistently outperforms server-grade CPUs by a factor of
up to 8, as detailed in Table 6. The task of attaining a good load bal-
ancing among DPUs poses a more complex challenge, however the
scaling demonstrates remarkable robustness, even with numerous
ranks. A minor reduction in performances is observed only when
the number of ranks reaches 40.

5.5 Impact of using specific instructions
All benchmarks above have been done using an implementation that
contains 26 lines of assembly code for better performance. Those
instructions include a cmpb4, which is the only vector instruction
of the ISA, that allow the comparison of 4 bytes in one cycle. An
other instruction used is a right shift fused with a jump on parity,
this allow efficient retrieval and usage of the results from the cmpb4
instruction. Note that the above instructions cannot be targeted by
the compiler at the moment. The rest of the assembly is needed due
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to the lack of support of C labels inside the inline assembly in the
compiler.

Table 7: Speed up of manually optimised vs pure C DPU
kernels.

Datasets
S1000 S10’000 S30’000 16S Pacbio

DPU pure C (sec) 247 207 316 864 806
DPU asm (sec) 146 132 200 632 505
Speed up 1.69 1.57 1.58 1.36 1.59

In Table 7, we can see that manually optimizing the most inner
loop of computation can lead to an increase in performance of up
to 1.69x. The 16S dataset has the smallest performance increase,
this is explained by the fact that it does not compute the traceback,
thus there is less to be optimized.

5.6 Power efficiency and cost
To estimate the power efficiency gain, we gathered the power
data for the different system part from their specifications and
followed the methodology proposed in [8]. System parts includes
CPU, DIMMs, chassis, fans and PSU. The Intel 4215 server is esti-
mated as requiring 307W, while the Intel 4216 is estimated to require
337W. The addition of 20 PiM DIMMs requires an additional 460W
of power to the Intel 4215, which bring the UPMEM PiM server
at 767W. To compute the power per execution, we multiplied the
power consumption by the time of execution. As we can see from

Table 8: Power consumptions of the 40 ranks PiM server
compared to Intel servers on both real datasets (in kJ).

16S Pacbio

Intel 4215 (kJ) 1805 1241
Intel 4216 (kJ) 1192 939
UPMEM PiM (kJ) 484 387

Table 8, the PiM server consume from 2.4 to 3.7 less power for
computing all the alignment of the two real world dataset.

The cost of the Intel Xeon 4216 server is 11k euros and the
current cost of the additional PiM DIMM is 9k euros. We can draw
from Table 6 a speed up of 5.5x for an Intel 4216 system with PiM
DIMM compared to one without it. This means that to increase the
computational power of the server by 5.5x, only an increase of 1.8x
in term of cost is necessary. Furthermore, during PiM operations,
most of the cores are free to be working on other tasks. Looking
ahead, future study could explore heterogeneous computation using
both PiM and CPU simultaneously. Using the CPU computational
power would add an even greater incentive to integrate a PiM
solution.

6 DISCUSSION
In this paper, we demonstrate the first long read alignment library
on a real Processing-in-Memory device, going further than previous

works that were limited to small reads. It implements a variation of
Needleman and Wunsch (N&W), the adaptive banded, most suited
for the constraints and strengths of the UPMEM PiM device. We
introduce the use of device specific instructions and their impact
on performance. We show that our implementation compares fa-
vorably against the Minimap2 implementation of N&W, the fastest
implementation for our hardware (see section 5), while giving sim-
ilar results. Our performance gains (up to 9.3x) also translate to
power efficiency gains, showing that PiM can effectively reduce
the power consumption of read alignment.

Processing-in-Memory architectures fundamentally target accel-
erating data-intensive applications. With our experiments, we show
that a PiM architecture can challenge x86 architectures in the realm
of sequence alignment. These results are particularly encouraging
considering the fact that UPMEM’s PiM system is a new hardware
and performance of future PiM device should improve (e.g., fre-
quency increase, DDR5, etc.). More generally, PiM is an emerging
paradigm, and we can expect more mature PiM architectures to
reach the market in the near future. We believe that this should
motivate further work in studying the implementation of different
memory-bounded genomics algorithms on PiM systems.

Innovations in CPU have mostly targeted bigger vector units,
faster frequencies and higher core counts. PiM on the other hand
can bring new benefits for different needs. As described in Section
5.5 even simple instructions are sufficient to improve performance
by a substantial margin. Algorithms such as N&W, depend in part
on simple instructions such as comparisons, jumps, shifts, etc. The
multi-thread design used in UPMEMPiM is also efficientmechanism
to saturate the compute unit pipeline without too much effort.

As future work, we plan to expand this work toward mapping
reads using PiM, another important application in genomics analy-
sis. In the current work, dispatching reads was a question of load
balancing. Mapping is an application where reads must be send to
specific DPUs, thus the challenge for homogeneous computations
on the same rank will be greater.
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