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Abstract—Automated Machine Learning emerges as a solu-
tion to reduce the instantiation time of systems that rely on
Artificial Intelligence (AI) by accelerating the search process
for models and hyperparameters. These techniques, however,
still require high execution time. In critical applications, such
as intrusion detection in vehicular networks, delays in applying
countermeasures can provoke accidents. Therefore, it is essential
to guarantee accurate models in the shortest possible time to
detect threats effectively. This work proposes AutoMHS-GPT,
a system that uses generative artificial intelligence to reduce
the time it takes to define hyperparameters and models when
implementing machine learning to detect threats in vehicular
networks. Based on a description of the problem, the generative
model returns a text containing the appropriate model with its
hyperparameters for training. Results show that AutoMSH-GPT
produces models with higher threat classification performance
than automated machine learning approaches AutoKeras and
Auto-Sklearn, increasing in the best case the recall by 9%.
Furthermore, the current proposal reduces the model search and
training process, carrying out the task in around 30 minutes,
while the other evaluated frameworks require two to three days.

Index Terms—Machine Learning; Generative AI; Network
Security; Vehicular Networks; AutoML.

I. INTRODUCTION

The capability to automate tasks and reduce costs makes
machine learning an attractive technology for several areas,
such as computer networks, intelligent vehicles, medicine,
and others. However, deploying artificial intelligence models
in production environments takes days or even months [1].
This delay occurs due to the data collection and model
training process. A model requires training time in the order
of minutes [2]. Execution time varies depending on the
dataset size, the chosen model, and available computational
resources. However, with the wide availability of existing
models and hyperparameters, it is difficult to determine model
hyperparameters to use for a new learning task. Thus, a
common approach is to apply hyperparameter optimization.

Optimizing models and hyperparameters is the most com-
putationally intensive and time-consuming task since search

processes are generally in large dimensional spaces. There-
fore, automating models and hyperparameters definition is
essential for reducing the time it takes to make a machine
learning model available. Furthermore, automating machine
learning steps allows users with little technical knowledge to
develop high-quality machine learning models, only worrying
about the data acquisition process.

Thus, Automated Machine Learning (Automated Machine
Learning - AutoML) [3], [4], [5] is a research field that
seeks to automate the learning process, where the combined
selection of algorithm and optimization of hyperparameters
(Combined Algorithm Selection and Hyperparameter Opti-
mization - CASH) is one of the specific cases addressed
by AutoML [6]. AutoML uses Bayesian optimization tech-
niques to reduce the search space and determine the most
promising hyperparameters and models, generally considering
a maximum execution time. However, these techniques still
require high execution time or produce results with low
classification performance when the search time is short.
The scenario becomes even worse in vehicular networks,
where applications are sensitive to latency, particularly in
intrusion detection systems, where a vulnerable vehicle can
be compromised by an attacker, putting the physical safety of
passengers at risk.

We propose AutoMHS-GPT (Automated Model and Hyper-
parameter Selection with Generative Pre-Trained model)!, a
system that uses generative artificial intelligence to reduce the
search time for hyperparameters and models in the instantia-
tion of machine learning services. We consider in our proposal
the intrusion detection in vehicular networks learning task as
a use case and ChatGPT [7] is used as generative artificial
intelligence (Generative Artificial Intelligence - GenAl). From
a description of the problem, “determine the best model
and set of hyperparameters for a vehicular networks attacks
dataset which contains tabular data”, GenAl returns a text
containing an appropriate answer. After this step, training

'A preliminary version of this paper was published in Portuguese and
is available at https://www.gta.uftj.br/ftp/gta/TechReports/SSA24.pdf.



begins with the result transformed into code that imple-
ments the model. Results show that AutoMSH-GPT produces
models with higher threat classification performance than
evaluated automated machine learning approaches AutoKeras
and Auto-Sklearn, delivering 9% higher recall in the best
case. The same effect occurred in other metrics, such as
accuracy, precision, and F1 score, demonstrating that the
model correctly classifies more samples and generates fewer
false positives than the alternatives evaluated. Furthermore,
the current proposal reduces the model search and training
process, carrying out the task in around 30 minutes, while
the other evaluated frameworks require two and three days to
determine the model.

We organize the paper as follows. Section II presents the
state of the art in intrusion detection in vehicular networks
and applications of generative learning in computer networks.
Section III describes the proposed system, the steps, and
the data used for model selection, hyperparameters, and
subsequent training. Section IV evaluates the system and
compares it with other state-of-the-art AutoML proposals:
AutoKeras and Auto-Sklearn. Finally, Section V concludes
this work and presents future research directions.

II. RELATED WORKS

This section presents state-of-the-art solutions for threat
detection in vehicular networks and the use case adopted
by the proposed system. Furthermore, we discuss alterna-
tives for hyperparameter optimization and model selection
in machine learning systems. Finally, we exhibit applications
of generative models in computer networks. The discussion
demonstrates that the main applications focus on detecting
anomalies or generating new samples for model training.

A. Threat Detection in Intelligent Vehicle Networks

Intrusion detection in vehicular environments is vital to
ensure the safety of drivers and passengers. Unlike other
computer systems, a compromised vehicle by an attacker can
cause accidents, including fatalities. Yakan et al. propose an
intrusion detection system for vehicular networks focusing
on Vehicle-to-Network (Vehicular-to-Network - V2N) [8]
communication. The authors use Long Short-Term Memory
(LSTM) models to capture temporal relationships in attacks
and Federated Learning (Federated Learning - FL) to increase
privacy and communication efficiency during training. Vinita
and Vetriselvi [9] propose a system to identify the integrity
of emergency messages transmitted over vehicular networks.

On the one hand, Vehicle-to-Everything (V2X) commu-
nication brings opportunities to increase driving efficiency
by sending an update on local traffic conditions, such as
reporting accidents. On the other hand, attackers can spread
false messages to degrade traffic conditions. Therefore, the
authors propose using machine learning models to detect false
accident reports through Sybil attacks. Furthermore, the pro-
posal uses the federated learning paradigm to preserve users’
privacy. Bousalem et al. [10] propose using reinforcement

learning to mitigate DDoS attacks in vehicular networks.
The 5G-V2X network allows you to instantiate slices with
few communication resources to isolate attackers or clients
with suspicious behavior. However, these isolated nodes must
recover resources after the threat has ceased. Thus, the authors
propose a reinforcement learning algorithm to determine
when to reduce users’ resources by assigning them to a
resource-limited slice and when to increase their resources
again. Although the proposals are promising in combating
threats in vehicular networks, the procedures developed to
select models and adjust their hyperparameters represent an
open challenge.

B. Model Selection and Hyperparameter Optimization

Model selection and hyperparameter optimization are two
of the main challenges that exist in the development of
machine learning systems. Thus, a relevant research topic is
hyperparameter optimization [11], [12]. AutoML [3], [4], [5]
is a research area focused on automating the learning process,
defining data pre-processing, models, and hyperparameters.
CASH is one of the specific cases of AutoML in which
the objective is to select models and hyperparameters [6].
There are several AutoML implementations available, such
as Auto-Sklearn [3], H20 [5], AutoKeras [4], and Google
AutoML [13]. Furthermore, there are other proposals such as
Auto-CASH [14] and the proposal by Horvéth er al. [12].
Auto-CASH is a tool that uses reinforcement learning to
automate the hyperparameter and model selection process
and thereby reduce the need for human intervention. In
other ways, Horvith et al. use Principal Component Analysis
(Principal Component Analysis - PCA) in conjunction with
a similarity measure as a way of creating meta-features
that assist the process of making decisions in the same
optimization task. However, these techniques still require a
long execution time to achieve satisfactory results. However,
the increasing development of applications that use generative
models raises the question of the ability to solve this problem
faster than current techniques while also providing accurate
models.

C. Generative Models in Computer Networks

The use of generative artificial intelligence (Generative Al
- GenAl) on computer networks is a research topic currently
explored. Jacobs et al. [15] propose using a prompt for
automatic network configuration, analyzing users’ intentions
through a high-level description. Zhang et al. [16] study
the use cases of generative Al in vehicular networks. The
authors identify three vehicular network applications that can
be improved using generative Al: traffic simulation, data
augmentation, and risk assessment. Furthermore, the authors
propose reducing communication with high-fidelity recreation
of sending accident information. The proposal is to send the
most relevant image characteristics with descriptive text to
reconstruct the original in other vehicles.

Due to the ability of these models to generate new data
from previous observations, generative Al is used to augment



datasets in order to train other models on a larger set of
samples. TrajGAIL (Trajectory Generative Adversarial Im-
itation Learning) [17] is a framework that applies generative
Al to generate urban vehicle trajectories. The authors propose
to combine a Partially Observable Markov Decision Process
(Partially Observable Markov Decision Process - POMDP)
with the generative model to generate more realistic data.
Obtaining data is difficult due to challenges such as scarcity
and privacy issues to collect datasets of urban trajectories,
as well as the high computational cost of approaches such
as Inverse Reinforcement Learning (Inverse Reinforcement
Learning - IRL). Similarly, SCAN-GAN (Synthetic Con-
troller Area Network-Generative Adversarial Network) [18]
is a method for generating synthetic data, but for intrusion
detection in vehicular networks.

Another possibility for applying generative networks is the
transformation of input characteristics to identify anomalies.
Cobilean et al. propose a transformation-based anomaly de-
tection system for CANs [19]. Since transformer networks
detect dependencies in sequences, the authors use this feature
to predict the likely value in a sequence of CAN messages.
When the received value differs greatly from the forecast, the
system detects an anomaly. Zhao et al. propose and evaluate
four structures of an intrusion detection system on the CAN
bus [20]. The authors combine a Generative Adversarial Net-
work (Generative Adversarial Networks- GAN) with out-of-
distribution detection (Out-of-Distribution - OOD) to classify
data as normal, known attacks or unknown attacks. The
article trains the GAN discriminator to distinguish sequences
of benign and malicious messages, differently than previous
proposals that use GAN as a data generator. Furthermore, the
proposal applies an isolation forest model to detect unknown
attacks. Du et al. [21] present applications of generative Al
in computer networks and discuss how this technology can
impact security. Generative Al can be a source of malicious
code or data to poison discriminative models such as machine
learning-based intrusion detection systems. However, this
technology is also capable of extracting important character-
istics of attacks or even creating new attack patterns to train
other models.

Gupta et al. [22] present the applications for security in
computer networks using ChatGPT (Generative Pre-trained
Model - Generative Pretrained Model). The authors discuss
the ability of this tool to generate codes to execute attacks or
countermeasures. Despite hallucination problems, the model
generates codes that perform the tasks required in different
scenarios tested by the authors. Juttner et al. [23] use Chat-
GPT as a mechanism to explain to non-expert users the result
of the classification performed by Intrusion Detection Systems
(Intrusion Detection Systems - IDS). Furthermore, the authors
propose to use the generative model to indicate necessary
countermeasures.

Unlike previous proposals, we use generative artificial
intelligence to produce a machine learning model with hyper-
parameters adjusted to the learning task based on information

about the data set and the learning problem. The proposal
allows for reducing model generation time, searching for
suitable options for training, and eliminating complex tasks
such as optimization through exhaustive searches for hyper-
parameters and models. On the other hand, the proposal is
dependent on the generative model without guaranteeing that
the generated model is optimal. Furthermore, the work ad-
dresses the scenario of threat detection in vehicular networks
as its main application, although it is possible to adapt it to
other learning problems.

III. THE SYSTEM AUTOMHS-GPT

AutoMHS-GPT consists of a system for defining models
and hyperparameters using artificial intelligence. The system
has an intelligence service that uses generative artificial
intelligence to estimate the best hyperparameters, including
the learning model, based on information about the data set.
The information considered is the types of characteristics of
the dataset and the learning task. Thus, the generative model
receives as input a sentence in natural language that contains
the predicted information and generates as a response a model
with the appropriate hyperparameters for the classification
problem. Therefore, the proposal applies the pre-trained gen-
erative model as a form of AutoML. The response time,
however, is less than necessary to obtain a classification model
compared to tools such as AutoKeras and Auto-Sklearn. The
proposed use case consists of training models to identify
threats in vehicular networks.

The execution of the system starts with a user’s request
to the intelligence service through the vehicle safety module.
AutoMHS-GPT uses ChatGPT for hyperparameter and model
selection. Therefore, the system receives as input a sentence
in natural language “I have a classification problem that
uses the VeReMi dataset and I want to know which is the
best model with the defined hyperparameters for this task.
The dataset is tabular and I only wish to receive a model
and its hyperparameters.”. After processing this sentence,
the ChatGPT returns a machine learning model with the
configured hyperparameters. Hyperparameters missing after
this step are set to the default value of the machine learning
library used. Because the generative model is pre-trained, the
response is generated in a few seconds. The main advantage
of the proposal is the definition of the learning model and its
hyperparameters before training. Furthermore, the generative
model is adaptable to other classification tasks or datasets by
changing the input sentence. On the other hand, alternatives
for hyperparameter and model optimization run the training
process multiple times to determine the best model. Although
the search has heuristics to reduce execution time, a change in
the learning problem requires the execution of several models
again.

A limitation of the current AutoMHS-GPT implementation
is the dependency on ChatGPT. Although the text used as
input and the prompt are adjustable, the generative model
is used as an external application programming interface



(Application Programming Interface - API). Therefore, the
system does not control the data used to train the generative
model at first. On the other hand, AutoML approaches spend
more time searching for the model with the appropriate
hyperparameters for the classification task. In the case of
applications with greater tolerance to high model search time
and use of computational capacity, AutoML is capable of
evaluating more possibilities about the data set and finding a
better model. Therefore, there is a trade-off in response time
and performance. Depending on the application, response
time is predominant, as in a dynamic environment such as
the vehicle addressed by the current proposal.

Figure 1 displays the architecture of the proposed system.
White modules and components are features not implemented
by the current work. The system architecture contains six
services, three of which are presented in this paper. The
(1) vehicle safety service manages the learning models to
be executed in the vehicle. This service has two modules,
(a) model request, responsible for searching for models for
threat detection, and module (b) responsible for executing
the model in the vehicle. Module (a) executes in the cloud,
while threat detection executes in the vehicle. The (2) intelli-
gence service receives requests for models and, based on the
received information, searches for an appropriate model for
the classification problem. If no model is found, the model
selection module starts training a new model. This service
applies generative artificial intelligence to analyze requests
and return a suitable model. The (3) machine learning model
training service is responsible for adjusting the parameters
of the models defined by the intelligence service. The trained
models are stored in a model database to be accessed and used
later. Currently, the system has a centralized training module,
which can be used for learning tasks in which the information
transmitted is not sensitive and can be stored in the cloud.
The remaining modules and services will be implemented in
future work.

IV. PROTOTYPE DEVELOPMENT AND RESULTS OBTAINED

This section presents the data set used to evaluate the
created models, characterizes the execution environment, and
presents the results obtained.

A. Dataset Description

Heijden et al. [24] present the publicly available Vehicular
Reference Misbehavior Dataset (VeReMi) and evaluate plau-
sibility mechanisms in the generated data. The dataset consists
of message records for each vehicle in the simulation and a
basic information file that specifies the attackers’ behavior.
The messages are of the CAM type. VeReMi contains five
attacks: constant position, constant displacement, random
position, random displacement, and eventual stop. All attacks
are related to the car’s position, sending either the same
location or the actual position plus a noise signal, which can
be constant or random. The eventual stop attack simulates
a byzantine behavior, where the car starts sending the real

position, but suddenly starts sending a constant false position.
Kamel et al. [25] extend the previous dataset to include more
data and attack patterns. Thus, the VeReMi extension contains
patterns such as delayed messages, DoS, data replay, fake
vehicle message diffusion, and speed malfunction, in addition
to the position malfunction attacks in the first version of the
dataset, described below.

The attacker’s main objective is to cause disturbance in the
vehicular environment, either by unavailability of communi-
cation or by sending false data. The unavailability of com-
munication reduces the advantages obtained by cooperative
driving systems, such as information on traffic conditions in a
region. Likewise, sending false data harms vehicles’ decisions
about routes between origin and destination. For example, the
information that a road has many cars, or that the vehicle’s
speed is low can be a decisive factor for other vehicles to
follow a different route. Furthermore, the attacker can cause
accidents by reporting a sudden stop to nearby vehicles and
forcing them to stop unnecessarily or perform a lane change.

There are 19 types of attacks in the VeReMi Extension
dataset. Constant position (1) the vehicle with malicious
behavior reports the same fixed position despite its movement.
Constant position offset (2) the vehicle adds a predetermined
fixed value to its current position, resulting in the generation
of a path parallel to the true path. Random position (3) the
vehicle sends a random position instead of the true position.
Random position shift (4) the vehicle adds a random number
to its true position, creating a confusing path. The constant
speed (5), constant speed change (6), random speed (7), and
random speed change (8) attacks are respectively similar to
the first four, the only difference is that the attacker changes
his speed value instead of its location. Eventual stop (9)
the vehicle initially sends its precise location and speed
information, but after a certain time, it begins to report a zero
position and speed. Disruptive (10) the vehicle reproduces
information previously received from random neighbors to
overload the network. Data replay (11) the vehicle reproduces
the information received from a specific given neighbor as if
it were its own.

Other attacks directly affect communication, such as de-
layed messages (12) in which the attacking vehicle sends
precise information about its previously recorded movement
after a pre-defined time. DoS (13) the attack consists of
flooding the network with information to make other vehicles
unavailable. Random DoS (14) attack is similar to DoS,
however, all values included in the messages are random
and inaccurate. Disruptive DoS (15) combines increasing the
sending frequency with the flooding of previously received
random messages. Traffic congestion Sybil (16) the attacker
intends to create a false congestion reporting the existence
of ghost vehicles, where pseudo-vehicle IDs are created for
non-existent vehicles in a specific target position, and the
attacker maintains a realistic communication position with
ghost vehicles. Sybil data replay (17) is similar to attack
11, but more sophisticated. The attacker replays the data
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Figure 1. AutoMHS-GPT architecture. This work implements the intelligence service, security service, and centralized training.

of a target neighbor using multiple pseudo-IDs to mask
the identity of the real attacker. Random Sybil DoS (18)
combines three forms of attacks into one: increased frequency
of sent messages, randomization of all values in messages,
and multiple fake pseudo-IDs. Disruptive Sybil DoS (19) the
attacker replays previously received messages from neighbors
randomly with high frequency using many pseudo IDs.

B. Test environment

A prototype of the proposed system was implemented
in Python v3.10.12 and tested on models created with the
scikit-learn library v1.2.12. Furthermore, generative artificial
intelligence is implemented by ChatGPT [7], with the Au-
toML frameworks AutoKeras [4] v1.1.0 and Auto-Sklearn [3]
v0.15.0 used for comparison. The two selected frameworks
stand out for being open-source and easy to use, an advantage
compared to other AutoML frameworks. The experiments
were carried out on an Intel Xeon E5-2650 CPU 2.00 GHz
server with 32 processing cores and 504 GB of RAM. Finally,
the results obtained are demonstrated with 95% confidence
intervals. The dataset was partitioned with 80% of the data for
training and 20% for testing. The data set is unbalanced, with
the normal class being the majority. This configuration was
maintained in the experiments, with the only pre-processing
performed being the elimination of highly correlated features
based on Pearson correlation.

AutoKeras and Auto-Sklearn require parameter definition
before starting the search process for models and hyperparam-
eters. Thus, Table I displays the configuration of parameters
used for AutoML frameworks. AutoKeras requires the num-
ber of epochs for training each model and the total number of
models to be evaluated. Auto-Sklearn requires the maximum

28cikit-learn [26] is an open source, well-documented library, for creat-
ing machine learning models, which has numerous developers. Available at
https://scikit-learn.org/

Table 1
PARAMETERS USED FOR AUTOML FRAMEWORKS.

Framework Paramter Value

Model StructuredDataClassifier
AutoKeras Total Attempts 30

Total Training Epochs 100

Model
Maximum Time
Timeout per Attempt

AutoSklearnClassifier
1725 minutes
573 minutes

Auto-Sklearn

time to execute each search task and the total search time.
Furthermore, both proposals have a model used to optimize
hyperparameters. The choice of values for these AutoML
parameters is discussed in the execution time comparison
of each approach. On the other hand, AutoMHS-GPT uses
ChatGPT as a search engine for the same activity. After
processing the text in natural language, the system returned a
random forest model, whose hyperparameters are 150 trees,
two samples as the minimum number to divide, and one
sample at least per leaf. The remaining hyperparameters
remained with the default configuration. As the generative
model is pre-trained, the response is generated in a few
seconds. The classification performance results using the
different approaches are presented below.

C. Comparison between AutoMHS-GPT and State of the Art

This section presents the experiments to evaluate and
compare AutoMHS-GPT with the state-of-the-art. The first
part evaluates the classification performance, while the second
experimental part evaluates the time required to execute the
proposals until the models are instantiated.

1) Classification Performance: The first experiment car-
ried out evaluates the classification performance of the dif-
ferent proposals. As the dataset has 20 distinct classes, it
is possible to use two approaches, binary or multiple-class



classification. Binary classification consists of determining
whether the transmitted message is part of an attack or normal
communication. However, this type of classification reduces
the granularity in the countermeasure instantiation process, as
the detection system only knows the existence of the attack.
Therefore, the results consider the classification of multiple
classes for specific reactions to each type of attack later.

VeReMi Dataset: First, we evaluate the performance of
three frameworks on VeReMi dataset, with six different
classes. Figure 2 displays the accuracy of the three ap-
proaches. AutoMHS-GPT classifies more samples correctly
than the other proposals, presenting 0.62% more accuracy
than the model generated by Auto-Sklearn and 11.48% higher
than AutoKeras.

50
AutoMHS-GPT AutoKeras Auto-Sklearn

Accuracy (%)

Figure 2. Accuracy evaluation of the three proposals on the VeReMi dataset.
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Figure 3. Preicision evaluation of the three proposals on the VeReMi dataset.

We also observe that the precision of AutoMHS-GPT’s
model is higher than the other two approaches. However,
Auto-Sklearn has a precision value close to AutoMHS-GPT,
99.76% and 99.99% respectively. This means that the model
generated by AutoMSH-GPT produces fewer false positives
than Auto-Sklearn. Also, both approaches have better results
than AutoKeras, which has only 77.73% of precision, gen-
erating a higher amount of false positives. Figure 3 presents
this result.

Regarding the recall, the model generated by AutoKeras
is capable of detecting only 71% of attacks. This means
that around 29% can affect the system when deploying a
model trained by AutoKeras with VeReMi dataset. Moreover,
AutoMHS-GPT and Auto-Sklearn detect 99.94% and 97.97%
of attacks, respectively, as shown in Figure 4.

Finally, for the this first dataset, we evaluate the F1-score
and display the results in Figure 5. This metric is a harmonic

Recall (%)

50
AutoMHS-GPT

AutoKeras Auto-Sklearn

Figure 4. Recall evaluation of the three proposals on the VeReMi dataset.
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50
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Figure 5. F1 score evaluation of the three proposals on the VeReMi dataset.

mean between the precision and recall. Since the metrics
follow the same pattern and similar values, the harmonic
maintains almost the same result as the other two metrics.

AutoKeras has the lowest values for all classification
metrics for the VeReMi dataset. One possible solution to
increase its classification performance is to change the Au-
toML parameters, e.g. increasing the number of epochs.
However, this approach will also increase the time to search
for models, which we reduce with our proposal. Then, a better
solution is to select Auto-Sklearn or AutoMHS-GPT as the
AutoML strategy for the VeReMi dataset. We execute the
same experiment on the VeReMi Extension dataset to validate
these first results. The VeReMi Extension dataset is a more
complex problem than the first dataset, because it has more
classes and more features.

VeReMi Extention Dataset: At the second part of the first
experiments, we evaluate the performance of three frame-
works on VeReMi Extension dataset, with 20 different classes.
This is a more complex problem compared to the first dataset,
because it has more classes and more features. Figure 6
displays the accuracy of the three approaches evaluated on
the attack dataset on vehicular networks. AutoMHS-GPT
classifies more samples correctly than the other proposals,
presenting 1.35% better performance compared to the model
generated by Auto-Sklearn and 3.99% better compared to
AutoKeras.

The same behavior can be observed concerning accuracy,
where the model generated by the current proposal presents
an average accuracy of 90.74%, while the others generated
models with 79.44% and 89.65%, for AutoKeras and Auto-
Sklearn, respectively. Figure 7 presents this result.

Furthermore, AutoMHS-GPT increases the ability to detect
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Figure 6. Accuracy evaluation of the three proposals on the VeReMi
Extention dataset.
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Figure 7. Precision evaluation of the three proposals on the VeReMi
Extention dataset.

attacks, as it has a higher recall than other proposals. The
result is shown in Figure 8. Finally, the F1 Score of the
proposed system is also higher than the others, since both
precision and recall are higher than those of the compared
frameworks, as shown in Figure 9.

F1 Score (%)

50
AutoMHS-GPT

AutoKeras Auto-Sklearn

Figure 9. F1 score evaluation of the three proposals on the VeReMi Extention
dataset.

The generative artificial intelligence used as a model and
hyperparameter search engine in the threat detection scenario
in vehicular networks has a superior performance than Au-
toML. Another important evaluation metric for the current
problem is execution time. Therefore, the second part of
the experiment consists of evaluating this metric for each
approach.

D. Model Training Performance

The execution time comprises model definition, hyperpa-
rameters, and training time. We execute this experiments for
both datasets, because they have different sample spaces and
feature spaces. Thus, for VeReMi dataset, we expect that the

0
AutoMHS-GPT

AutoKeras Auto-Sklearn

Figure 8. Recall evaluation of the three proposals on the VeReMi Extention
dataset.

execution time will be shorter than the same metric on the
VeReMi Extension.

We exhibit the results for the VeReMi dataset in Figure 10.
AutoMHS-GPT has an execution time of approximately two
orders of magnitude shorter than other AutoML tools. This
occurs because the process of searching for hyperparameters
and models is carried out by the pre-trained model, obtaining
the result in a few seconds. Therefore, the main factor in the
execution time of the proposal is the training of the model
resulting from the proposal for threat classification.

Figure 11 shows the result of this experiment for the second
dataset. The tendency is the same as the results obtained
for the first dataset. Comparing the results between the two
datasets, the time to generate the models on the VeReMi
dataset is slightly lower as expected, for all proposals. Since
the dataset is smaller, each search executed by the AutoML is
also faster than the search on VeReMi Extension. Nonetheless,
on both datasets, the execution time is in order of minutes for
the model generated with AutoMHS-GPT, while the AutoML
frameworks need more than one day to search for the best
model.

The execution time of AutoML frameworks is dependent on
the parameters displayed in Table I. Reducing the number of
epochs in the case of AutoKeras generates inaccurate models.
Auto-Sklearn is more sensitive to adjusting the timeout per
attempt. A very strict timeout makes the framework unable
to train models, generating only a dumb classifier (Dummy-
Classifier), which assigns all samples the majority class in
the dataset. In the case of the evaluated data set, all samples
are classified as normal by this classifier. Furthermore, the
size of the dataset directly influences the execution time of
all approaches. Therefore, for smaller datasets, the difference
can be reduced. In the security scenario in vehicular networks,
it is essential to generate a model in the shortest possible
time. The absence of an updated model makes the vehicle
vulnerable and susceptible to the attacks discussed above,
putting the physical integrity of its passengers at risk. Also,
the experiment demonstrates that our proposal reduces the
model deployment time to approximately 30 minutes, while
AutoML frameworks require approximately 3 days for the
same task. Finally, the results show that Auto-Sklearn gener-
ates a model with a performance similar to AutoMHS-GPT



in both datasets. Nevertheless, the time to models’ search of

Auto-Sklearn is more than 41 times greater than the time
needed for our proposal.
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Figure 10. Proposals’ execution time on the VeReMi dataset.

4

>
1 . I I
1

0 AutoMHS-GPT AutoKeras Auto-Sklearn

S =)

5,:

Execution Time (s)

=}

Figure 11. Proposals’ execution time on the VeReMi Extention dataset.

V. CONCLUSION AND FUTURE WORKS

We presented AutoMSH-GPT, a system to automate model
and hyperparameters definition based on information from
the dataset. The automation of model selection is carried out
through generative artificial intelligence based on data about
the classification problem. The results show that AutoMSH-
GPT generates a model with high classification performance
and low time to define the model and its hyperparameters for
training, compared to AutoML approaches. In future work, we
intend to implement a transformer-based architecture that is
specific to the task of model hyperparameter optimization and
add new modules to the proposed system. We also envision
training models through federated learning to preserve user
privacy.

REFERENCES

[1] A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in Deploying
Machine Learning: a Survey of Case Studies,” Computing Surveys,
vol. 55, no. 6, pp. 1-29, 2022.

[2] S. Kumar et al., “Exploring the Limits of Concurrency in ML Training
on Google TPUs,” Proceedings of Machine Learning and Systems,
vol. 3, pp. 81-92, 2021.

[3] M. Feurer et al., “Efficient and Robust Automated Machine Learning,”
Advances in Neural Information Processing Systems (NIPS), vol. 28,
2015.

[4] H. Jin, Q. Song, and X. Hu, “Auto-Keras: An Efficient Neural Ar-
chitecture Search System,” in International Conference on Knowledge
Discovery & Data Mining (SIGKDD). ACM, 2019, pp. 1946-1956.

[5] E. LeDell and S. Poirier, “H20 AutoML: Scalable Automatic Machine
Learning,” in AutoML Workshop (ICML). International Machine
Learning Society, 2020.

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Thornton et al., “Auto-WEKA: Combined Selection and Hyperpa-
rameter Optimization of Classification Algorithms,” in International
Conference on Knowledge Discovery and Data Mining (SIGKDD).
ACM, 2013, pp. 847-855.

OpenAl, “ChatGPT: Optimizing Language Models for Dialogue,”
Available at: https://openai.com/blog/chatgpt/, 2023, Ultimo acesso: 28
de janeiro de 2024.

H. Yakan, I. Fajjari, N. Aitsaadi, and C. Adjih, “Federated Learning
for V2X Misbehavior Detection System in 5G Edge Networks,” in
Conference on Modeling Analysis and Simulation of Wireless and
Mobile Systems. ACM, 2023, pp. 155-163.

L. J. Vinita and V. Vetriselvi, “Federated Learning-based Misbehaviour
Detection on an Emergency Message Dissemination Scenario for the
6G-enabled Internet of Vehicles,” Ad Hoc Networks, vol. 144, p.
103153, 2023.

B. Bousalem et al., “DDoS Attacks Mitigation in 5G-V2X Networks: A
Reinforcement Learning-Based Approach,” in International Conference
on Network and Service Management (CNSM). 1EEE, 2023, pp. 1-5.
H. N. C. Neto, I. Dusparic, D. M. Mattos, and N. C. Fernande, “FedSA:
Accelerating Intrusion Detection in Collaborative Environments with
Federated Simulated Annealing,” in International Conference on Net-
work Softwarization (NetSoft). 1EEE, 2022, pp. 420-428.

T. Horvéth et al., “Hyper-Parameter Initialization of Classification
Algorithms using Dynamic Time Warping: A Perspective on PCA
Meta-Features,” Applied Soft Computing, 2023.

E. Bisong and E. Bisong, “Google AutoML: Cloud Vision,” Building
Machine Learning and Deep Learning Models on Google Cloud
Platform: A Comprehensive Guide for Beginners, pp. 581-598, 2019.
T. Mu et al., “Auto-CASH: A Meta-Learning Embedding Approach for
Autonomous Classification Algorithm Selection,” Information Sciences,
vol. 591, pp. 344-364, 2022.

A. S. Jacobs et al., “Hey, LUMI! Using Natural Language for Intent-
Based Network Management,” in Annual Technical Conference (ATC).
USENIX, 2021, pp. 625-639.

R. Zhang et al., “Generative Al-enabled Vehicular Networks:
Fundamentals, Framework, and Case Study,” arXiv preprint
arXiv:2304.11098, 2023.

S. Choi, J. Kim, and H. Yeo, “TrajGAIL: Generating Urban Vehicle
Trajectories using Generative Adversarial Imitation Learning,” Trans-
portation Research Part C: Emerging Technologies, vol. 128, p. 103091,
2021.

A. Chougule, K. Agrawal, and V. Chamola, “SCAN-GAN: Generative
Adversarial Network Based Synthetic Data Generation Technique for
Controller Area Network,” Internet of Things Magazine, vol. 6, no. 3,
pp. 126-130, 2023.

V. Cobilean et al., “Anomaly Detection for In-Vehicle Communication
Using Transformers,” in Industrial Electronics Society (IECON). 1EEE,
2023, pp. 1-6.

Q. Zhao, M. Chen, Z. Gu, S. Luan, H. Zeng, and S. Chakrabory, “CAN
Bus Intrusion Detection Based on Auxiliary Classifier GAN and Out-of-
distribution Detection,” Transactions on Embedded Computing Systems
(TECS), vol. 21, no. 4, pp. 1-30, 2022.

H. Du et al., “Spear or Shield: Leveraging Generative Al to Tackle
Security Threats of Intelligent Network Services,” arXiv preprint
arXiv:2306.02384, 2023.

M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From
ChatGPT to ThreatGPT: Impact of Generative Al in Cybersecurity and
Privacy,” arXiv preprint arXiv:2307.00691, 2023.

V. liittner, M. Grimmer, and E. Buchmann, “ChatIDS: Explainable
Cybersecurity Using Generative AL” arXiv preprint arXiv:2306.14504,
2023.

R. W. Van Der Heijden, T. Lukaseder, and F. Kargl, “VeReMi:
A Dataset for Comparable Evaluation of Misbehavior Detection in
VANETS,” in Security and Privacy in Communication Networks (Se-
cureComm).  Springer, 2018, pp. 318-337.

J. Kamel, M. Wolf, R. W. Van Der Hei, A. Kaiser, P. Urien, and
F. Kargl, “VeReMi Extension: A Dataset for Comparable Evaluation
of Misbehavior Detection in VANETS,” in International Conference on
Communications (ICC). 1EEE, 2020, pp. 1-6.

F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.



