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Abstract
Free fermions on Johnson graphs J(n, k) are considered and the entan-

glement entropy of sets of neighborhoods is computed. For a subsystem
composed of a single neighborhood, an analytical expression is provided
by the decomposition in irreducible submodules of the Terwilliger algebra
of J(n, k) embedded in two copies of su(2). For a subsytem composed of
multiple neighborhoods, the construction of a block-tridiagonal operator
which commutes with the entanglement Hamiltonian is presented, its use-
fulness in computing the entropy is stressed and the area law pre-factor
is discussed.

1 Introduction
In quantum systems, observables attached to different regions are generally
correlated to an extent that depends on the state, the geometry, etc. The
notion of entanglement entropy quantifies the correlation between a subsystem
and its complementary part. It plays a central role in many branches of quantum
theory, notably in many-body physics [1, 23, 27].

In recent papers, tools from the study of time and band limiting problems
[22, 29] and from the theory of association schemes [5, 15] have been applied to
the computation of this quantity. They were used for models of free fermions
hopping on chains [9, 10] or on the vertices of distance-regular graphs. In the
latter case, the Hadamard [8] and the Hamming graphs [4, 18, 19] were specifi-
cally studied and in some instances analytical expressions for the entanglement
entropy and thermodynamic limits were obtained. Bethe ansatz techniques were
also shown to be useful to study such problems [3].

We here pursue this exploration and consider the entanglement of free fermions
living on Johnson graphs J(n, k). These graphs are well known to be distance-
regular and to belong to a P - and Q- polynomial association scheme [2]. The
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adjacency and dual adjacency matrices of these graphs span an algebra referred
to as the Terwilliger algebra T of the Johnson scheme [31, 32, 33]. Most objects
we shall use to compute the entropy arise from this structure.

We shall take the system to be in its ground state. The entanglement entropy
can be computed from the eigenvalues of the chopped correlation matrix C [26,
28]. Obtaining the spectrum of this matrix is thus the main aim of this paper.
This shall be done in particular for subsystems corresponding to neighborhoods.
A neighborhood is the set of all the vertices at a given distance from a reference
site. For such subsystems, the chopped correlation matrix C is part of the
Terwilliger algebra T of the Johnson scheme and we can decompose the vector
space on which C is acting in irreducible T -submodules. This process which
can be seen as breaking down the graph J(n, k) into a direct sum of chains (or
paths) greatly simplifies the diagonalization of C.

The determination of the irreducible T -submodules was considered in [24]
and in [13, 25, 30] with an approach based on the theory of Leonard pairs
[34]. These shall be obtained here using a different route. It is known that the
Johnson graphs can be embedded in hypercubes [12]. Translated in algebraic
terms, this statement implies that T can be embedded in two copies of the
Terwilliger algebra of the hypercube. Since the decomposition in irreducible
modules is known for the latter [4, 14], it will also yield the decomposition of
T . This perspective has the advantage of being related to the coupling of two
su(2) representations and establishes a relation between the Terwilliger algebra
of the Johnson scheme and the Hahn algebra h [16].

While expressing the graph J(n, k) as a sum of chains diagonalizes C for
subsystems made out of a single neighborhood, it is not sufficient for subsystems
composed of multiple neighborhoods. To alleviate this issue, we shall construct a
block-tridiagonal operator T which shares with the chopped correlation matrix a
set of common eigenvectors. It will be referred to as a generalized Heun operator
[17]. This procedure proves analogous to the introduction of a commuting second
order differential operator in the study of time and band limiting [22, 29]. This
approach was used to compute the entropy of free fermions on graphs in [8].

The paper is divided in four parts. In section 2, the Hamiltonian of free
fermions on Johnson graphs is presented and diagonalized. The single-particle
excitation energies are given and the ground state is defined. Entanglement
entropy is discussed in section 3. We describe the relation between the spectrum
of the reduced density matrix and the spectrum of the chopped correlation
matrix. In section 4, we give an overview of the Terwilliger algebra of the
Johnson scheme, we find the irreducible components of its standard module
and we show that this decomposition diagonalizes C for single-neighborhood
subsystems. Entanglement entropies are computed and comments are made on
the relation between T and h. In section 5, the generalized Heun operator T is
constructed and the entanglement entropy of large bundles of neighborhoods is
examined.
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2 Free fermions on Johnson graphs
The Johnson graph J(n, k), k ≤ n/2, is constructed in the following way. First,
consider the subsets x ⊂ {1, 2, . . . , n} of cardinality k as the elements of the set
of vertices X. Then, take two subsets to be connected by an edge when they
differ only by one element. This yields a graph with |X| =

(
n
k

)
vertices and a

diameter of k. Given two subsets x and y in X, their distance is

d(x, y) = k − |x ∩ y|. (1)

In this paper, we consider free fermions living on the vertices of Johnson graphs
J(n, k). In particular, we study fermionic systems for which the hopping con-
stant αd(x,y) between the sites x and y is real and depends only on d(x, y). More
precisely, the Hamiltonian is defined as

Ĥ =
∑
x,y∈X

αd(x,y)c
†
xcy, (2)

where c†x and cx are creation and annihilation operators associated to the site
x. They satisfy the following canonical relations:

{cx, cy} = 0, {c†x, c†y} = 0, {cx, c†y} = δxy, ∀x, y ∈ X. (3)

We note that this model contains k+ 1 parameters and that α0 is related to the
presence of an external magnetic field. We can also give an alternative expression
for Ĥ. Let MatX(C) denote the space of matrices with complex entries and with
rows and columns labeled by elements in X. For i ∈ {0, 1, . . . , k}, one defines
the ith adjacency matrix Ai of J(n, k) as the matrix in MatX(C) whose entry
[Ai]xy is

[Ai]xy =

{
1 if d(x, y) = i,
0 otherwise. (4)

Each vertex x ∈ X of the graph is represented by a column vector |x〉 which
has a 1 in the row x as its unique non-zero entry. In terms of the vectors of
operators ĉ† =

∑
x c
†
x 〈x| and ĉ =

∑
x |x〉 cx, the Hamiltonian can be rewritten

as

Ĥ = ĉ†
[ k∑
i=0

αiAi

]
ĉ. (5)

2.1 Diagonalization and energies

To diagonalize (5) it is sufficient to diagonalize
∑k
i=0 αiAi. Since the Johnson

graph J(n, k) is distance-regular, a result from the theory of association scheme

3



implies that Ai can be expressed as a polynomial of degree i in A ≡ A1 [2]:

Ai = (−1)i
(
k

i

)
Ri(A+ k; 0, n− 2k, k)

= (−1)i
(
k

i

) i∑
r=0

(
i

r

)
(k − r)!
(r)!(k)!

r−1∏
`=0

(−A− k + `(n− 2k + 1) + `2),

(6)

where Ri refers to the dual Hahn polynomial of degree i [20]. Thus, we only
have to diagonalize A. Its spectrum is known to be1:

θj = j(j + 1)− (n− 2k)2

4
− n

2
, with j ∈ {n

2
− k, n

2
− k + 1, . . . ,

n

2
}. (7)

For now, we shall also refer to the basis vectors of the jth eigenspace of the
adjacency matrix with |θj , `〉:

A |θj , `〉 = θj |θj , `〉 . (8)

The label ` accounts for the degeneracy Dj of the eigenspace j. The actual
construction of these vectors and an explicit expression for Dj is also discussed
in section 4.2. For each j and `, let us now define a new pair of creation and
annihilation operators:

c̄†j,` =
∑
x∈X
〈x|θj , `〉 c†x and c̄j,` =

∑
x∈X
〈θj , `|x〉 cx (9)

One can check that they satisfy the same canonical relations as cx and c†y and
that they allow the diagonalization of Ĥ:

Ĥ =

n
2∑

j=n
2−k

Dj∑
`=1

Ωj c̄
†
j,`c̄j,`, (10)

where

Ωj =

k∑
i=0

αi(−1)i
(
k

i

)
Ri(θj + k; 0, n− 2k, k). (11)

In some useful cases, formula (11) reduces to a simplier form. For instance, a
model restricted to nearest neighbor hopping is obtained by taking αi = 0 for
i > 1. Then, Ωj is proportional to θj and hence quadratic in j. Furthermore,
cases where the hopping terms decrease exponentially with the distance are
modeled by taking αi = e−ci for all i, where c ≥ 0. Then (11) corresponds to
the generating function of the dual Hahn polynomials and strictly grows with
j:

Ωj = (1− e−c)n
2−j2F1

[ n
2 − k − j −

n
2 + k − j

1
; e−c

]
, (12)

where is 2F1 is the hypergeometric function [20].
1The spectrum of A is usually presented as (k−u)(n−k−u+1)−k with u ∈ {0, 1, . . . , k}

[2]. The label j = n/2− u is used in (7) instead for reasons we discuss in section 4.2.
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2.2 Ground state
Let |0〉〉 be the vacuum state annihilated by all the operators c̄j,`. In fermionic
systems, the ground state |Ψ0〉〉 is the state for which all the energy levels Ωj < 0
are occupied. We denote SE the set of all the integers j ∈ {n2 − k,

n
2 − k +

1, . . . , n2 } associated to negative single-particle excitation energies Ωj . For fixed
parameters αi, one can easily identify SE by computing the values taken by
(11). The ground state |Ψ0〉〉 is then given by

|Ψ0〉〉 =
[ ∏
j∈SE

Dj∏
`=1

c̄†j,`

]
|0〉〉. (13)

For nearest neighbor or exponentially decreasing hopping, Ωj grows with j and
so SE corresponds to a set {n2 − k,

n
2 − k + 1, . . . , j0} for some integer or half

integer j0. As we shall see in section 3, the information we need to compute
entanglement entropies is contained in the correlation matrix Ĉ. It is the matrix
whose components Ĉxy are defined as

Ĉxy = 〈〈Ψ0|c†xcy|Ψ0〉〉, where x, y ∈ X. (14)

We can use the eigenbasis of A {|θj , `〉 : j ∈ {n2 − k, . . . ,
n
2 }, ` ∈ {1, . . . , Dj}} to

express c†x and cy in terms of c̄†j,` and c̄j,`. Then, simple algebraic manipulations
yields

Ĉ =
∑
j∈SE

Dj∑
`=1

|θj , `〉 〈θj , `|

=
∑
j∈SE

Ej ≡ πSE ,
(15)

where Ej is the projection operator onto the eigenspace j of A and πSE is the
projection operator onto all the eigenspaces associated to an integer or half
integer in SE.

3 Entanglement entropy
The ith neighborhood with respect to a vertex x0 is the set of sites x ∈ X such
that d(x0, x) = i. The projector onto this set of vertices is

E∗i =
∑
x∈X

d(x0,x)=i

|x〉 〈x| . (16)

Let us take a subset SD of distances in {0, 1, . . . , k}. We refer to the bundle of
neighborhoods of x0 associated to integers in SD as the subsytem 1 or SV ⊂ X.
The projection operator onto this subsystem is

πSV =
∑
x∈SV

|x〉 〈x| =
∑
i∈SD

E∗i . (17)
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Similarly, we refer to its complement X\SV as the subsystem 2. In the ground
state, the reduced density matrix ρ1 and the von Neumann entropy S of the
subsystem 1 are respectively defined as

ρ1 = tr2|Ψ0〉〉〈〈Ψ0| and S = −tr(ρ1 ln ρ1). (18)

The entanglement entropy S measures to which extent the state of SV is cor-
related with the state of X\SV . Once the eigenvalues of ρ1 are determined,
computing S is immediate. It is known that these eigenvalues are related to
those of the chopped correlation matrix C [26, 28], which is defined as

C = |Ĉxy|xy∈SV , (19)

and is given by

C = πSV πSEπSV (20)

in terms of the projection operators (15) and (17). The relation between the
spectra of ρ1 and C allows to rewrite (18) in terms of the eigenvalues λ of the
chopped correlation matrix and their degeneracy Dλ [6]:

S = −
∑
λ

Dλ [λ ln (λ) + (1− λ) ln (1− λ)] . (21)

Thus, we are interested in diagonalizing C. By developing expression (20), we
find

C =
∑

i,i′∈SD

∑
j∈SE

E∗i EjE
∗
i′ . (22)

Since J(n, k) is distance-regular, we know from the theory of association schemes
that the set of projectors onto the eigenspaces of A, i.e.

{En
2−k, E

n
2−k+1, . . . , En

2
}, (23)

and the set of projectors onto neighborhoods, i.e.

{E∗0 , E∗1 , . . . , E∗k}, (24)

generate an algebra referred to as the Terwilliger algebra T of the Johnson
scheme [31, 32, 33]. From formula (22), we see that the chopped correlation
matrix is the representation of an element in the algebra T . Thus, decomposing
the vector space C|X| on which C is acting in its irreducible T -submodules
simplifies the diagonalization by allowing to work on one submodule at a time.
Obtaining this decomposition is the aim of the next section.
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4 The Terwilliger algebra of the Johnson scheme
First, we present an overview of T , the algebra spanned by the primitive idem-
potents Ei and dual primitive idempotents E∗i . This algebra is also generated
by the set of adjacency matrices {A0, A1, . . . , Ak} defined by (4) and the set
of dual adjacency matrices {A∗0, A∗1, . . . , A∗k}. These are diagonal matrices in
MatX(C) for which the non-zero entries are given by

[A∗i (x0)]xx =

(
d

k

)
[En

2−i]x0x, (25)

where x0 is the reference vertex in (16). Note, that we use the simplified no-
tation: A∗i = A∗i (x0) and E∗i = E∗i (x0). By construction, the set of vectors
{|x〉}x∈X associated to sites in the graph gives an eigenbasis of the dual adja-
cency matrices. In particular, it is known [13, 33] that (25) implies

A∗ |x〉 =

(
n− 1− n(n− 1)

k(n− k)
d(x0, x)

)
|x〉 . (26)

Recall that (6) gives Ai as a polynomial of A. Since J(n, k) is Q- polynomial,
we also have that its ith dual adjacency matrix A∗i is a polynomials of degree i
in A∗ ≡ A∗1 and thus

T = 〈A,A∗〉. (27)

The commuting algebra spanned only by the adjacency matrices Ai (or
equivalently by the projectors Ei) of an association scheme is referred to as
its Bose-Mesner algebra. The elements in the Bose-Mesner algebra of J(n, k)
verify [2, 5]:

• A0 = 1|X|×|X| and En
2

=
J|X|×|X|
|X| ;

•
∑k
i=0Ai = J|X|×|X| and

∑n
2

j=n
2−k

Ej = 1|X|×|X| ;

• Ai1 ◦Ai2 = δi1i2Ai1 and Ej1Ej2 = δj1j2Ej1j2 ;

• Ai1Ai2 =
∑k
i3=0 p

i3
i1i2

Ai3 and Ej1 ◦ Ej2 = 1
|X|
∑n

2

j3=
n
2−k

q
n
2−j3
n
2−j1,

n
2−j2

Ej3 ,

where (A ◦ B)mn = AmnBmn is the entry-wise product, J is the matrix of
ones and pi3i1i2 and qi3i1i2 are real coefficients. Furthermore, there exist some
coefficients pi(j) and qn

2−j(i) such that

Ai =
∑
j

pi(j)Ej and Ej =
1

|X|
∑
i

q d
2−j

(i)Ai. (28)

The connection of the Johnson scheme with the Hahn polynomials and dual
Hahn polynomials exploited before in (6) stems from this Bose-Mesner algebra
[2].

The commuting algebra spanned by the dual adjacency matrices is the dual
Bose-Mesner algebra of the scheme. The relations verified by its generators are:

7



•
∑k
i=0E

∗
i = 1|X|×|X|;

• A∗i1A
∗
i2

=
∑k
i3=0 q

i3
i1i2

A∗i3 and E∗i1E
∗
i2

= δi1i2E
∗
i1

;

• A∗i1 =
∑
i2
qi1(i2)E∗i2 and E∗i1 = 1

|X|
∑
i2
pi1(i2)A∗i2 .

The Johnson graphs can be embedded in hypercubes [12]. As we shall see,
this can be used to embed the Terwilliger algebra of the Johnson scheme T in two
copies of the Terwilliger algebra of the hypercube T. Since the decomposition
in irreducible modules is known for T, we can use this relation to obtain the
equivalent decomposition for T .

4.1 Embedding of J(n, k) in H(n, 2)

The hypercube graph H(n, 2) is distance-regular and a special case of a Ham-
ming graph H(n, q). Its vertices are all the binary tuples of length n composed
of zeros and ones. Two vertices v = (v1, v2, . . . , vn) and v′ = (v′1, v

′
2, . . . , v

′
n)

are connected by an edge if there exists a unique position i ∈ {1, 2, . . . , n} such
that vi 6= v′i. The distance between any pair of sites v and v′ is given by their
Hamming distance ∂(v, v′):

∂(v, v′) = #{i ∈ {1, . . . , n} : vi 6= v′i}. (29)

Each vertex v = (v1, . . . , vn) in H(n, 2) can be represented by a vector |v〉 in
(C2)⊗n :

|v〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉 , (30)

where |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
are column vectors. In this basis, the first

adjacency matrix A of H(n, 2) is

A =

n∑
i=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1 times

⊗ σx ⊗ 1⊗ · · · ⊗ 1, (31)

where σx is the usual Pauli matrix. Indeed, one can check using (30) and (31)
that 〈v|A |v′〉 is non-zero only when v and v′ are neighbors in H(n, 2). Since
H(n, 2) is distance-regular, it has its own Terwilliger algebra which we refer to
as T. Similar to T , it is generated by the first adjacency matrix A and the first
dual adjacency matrix A∗ of the n-cube:

T = 〈A,A∗〉. (32)

A∗ is defined with respect to a reference vertex v0 = (0, 0, . . . , 0) in H(n, 2)
through a relation similar to (25). Its action on vectors |v〉 associated to sites
in the hypercube is known to be given by [14, 33]:

A∗ |v〉 = (n− 2∂(v0, v)) |v〉 . (33)
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In the basis (30), on can check that it can be expressed as

A∗ =

n∑
i=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1 times

⊗ σz ⊗ 1⊗ · · · ⊗ 1. (34)

In the following, we shall refer to the projector onto the ith eigenspace of A as
Ei and the projector onto the ith eigenspace of A∗ (i.e. the ith neighborhood of
v0) as E∗i .

To embed the Johnson graph J(n, k) in the hypercube H(n, 2), one has to
map the k-subsets of {1, 2, . . . , n} onto the binary tuples v = (v1, v2, . . . , vn) of
length n containing k ones. It can be achieved by associating the k-subset x to
the tuple v(x) whose entry vi is

vi =

{
1 if i ∈ x,
0 otherwise. (35)

For instance, (35) maps the vertex x = {3} of J(3, 1) onto the tuple v(x) =
(0, 0, 1) of H(3, 2) (see Figure 1).

010

001

100
000

111

101

110

011
{1}

{3}

{2}

H(3, 2) J(3, 1)

Figure 1: An embedding of J(3, 1) in H(3, 2). The left figure represents the
3-cube. The vertex in gray is the reference vertex v0 and the black vertices
correspond to its first neighborhood. The dotted lines show which pairs are at
a Hamming distance ∂ of two. The right figure represents the Johnson graph
J(3, 1) with dotted lines connecting vertices at distance one.

The vertices of J(n, k) are thus identified with the sites in the n-cube which are
in the kth neighborhood of v0 , i.e. with the set of sites in H(n, 2) onto which
the operator E∗k projects. Moreover, we see that two subsets are connected by
an edge in J(n, k) if and only if their Hamming distance in H(n, 2) is two. In
other words, if v(x) and v(y) are the binary tuples associated to the subsets x
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and y, we have

d(x, y) =
1

2
∂(v(x), v(y)). (36)

This embedding can be translated in algebraic terms. Indeed, the first ad-
jacency matrix of the Terwilliger algebra of the Johnson scheme A corresponds
to the restriction of the second adjacency matrix A2 of H(n, 2) to the vertices
in the kth neighborhood of v0:

A = E∗kA2E
∗
k. (37)

Since the matrices Ai can be given in terms of Krawtchouk polynomials of
degree i in A [2, 20], we also have

A =
1

2
E∗k(A2 − n)E∗k. (38)

We now consider the relation between A∗(x0) = A∗ and the generators in T.
Without loss of generality, let us pick

x0 = {n− k + 1, n− k + 2, . . . , n} (39)

as the reference vertex of J(n, k). We recall that the action of A∗ and the action
of A∗ on a vector |v(x)〉 is diagonal and given by (26) and (33) respectively.
While the eigenvalue of A∗ on |v(x)〉 depends linearly on the distance d(x0, x),
the eigenvalue of A∗ on |v(x)〉 depends linearly on the distance ∂(v0, v(x)), with
v0 6= v(x0) since these tuples are not in the same neighborhood of the n-cube.
So, we define the following automorphism of the hypercube H(n, 2):

R = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−k times

⊗σx ⊗ σx ⊗ · · · ⊗ σx︸ ︷︷ ︸
k times

, (40)

which exchanges v0 = (0, 0, . . . , 0) and

v(x0) = (0, 0, . . . , 0︸ ︷︷ ︸
n−k times

, 1, 1, . . . , 1︸ ︷︷ ︸
k times

) (41)

while preserving the distance between any pair of vertices. Formula (36) and
(33) hence implies that

RA∗R |v(x)〉 = (n− 4d(x0, x)) |v(x)〉 (42)

and that A∗ corresponds to RA∗R up to an affine transformation. Comparing
their spectrum, we find

A∗ = − (n− 1)(n− 2k)2

4k(n− k)
+

n(n− 1)

4k(n− k)
RA∗R. (43)
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Now let A2n′×2n′ and A
∗
2n′×2n′ refer to the adjacency and dual adjacency ma-

trices of the hypercube H(n′, 2). Similarly, let T2n′×2n′ refer to the Terwilliger
algebra they span. Using (34) and (40), one can check that

RA∗2n×2nR = A∗2n−k×2n−k ⊗ 12k×2k − 12n−k×2n−k ⊗A∗2k×2k .

Thus, A∗ is contained in T2n−k×2n−k ×T2k×2k . Moreover, since

A2n×2n = A2n−k×2n−k ⊗ 12k×2k + 12n−k×2n−k ⊗A2k×2k , (44)

A∗2n×2n = A∗2n−k×2n−k ⊗ 12k×2k + 12n−k×2n−k ⊗A∗2k×2k , (45)

and since the E∗k are polynomials of A∗, (38) guarantees that A is also part of
T2n−k×2n−k ×T2k×2k . Thus, T is embedded in the direct product of two copies
of the Terwilliger algebra of the hypercube.

4.2 The irreducible T -submodules and su(2)

The generators of T give a representation of the Lie algebra su(2) [4, 15]. Indeed,
one can use (31) and (34) to show that the generators

jx =
A

2
, jz =

A∗

2
and jy =

[jx, jz]

2i
(46)

obey the defining relations of su(2). In particular, this representation corre-
sponds to the n-fold product of the fundamental representation. For H(n, 2)
with n even (resp. odd) and for each j in {0, 1, . . . , n2 } (resp. in {1/2, 3/2, . . . ,

n
2 }),

the standard Clebsh-Gordan decomposition yields 2j+1
n+1

(
n+1
n
2−j
)
orthogonal sub-

spaces spanned by vectors {|j,m〉`}−j≤m≤j such that

A |j,m〉` = 2jx |j,m〉` =
√

(j +m+ 1)(j −m) |j,m+ 1〉`
+
√

(j −m+ 1)(j +m) |j,m− 1〉`
(47)

and

A∗ |j,m〉` = 2jz |j,m〉` = 2m |j,m〉` , (48)

where the label ` ∈ {1, . . . , 2j+1
n+1

(
n+1
n
2−j
)
} indicates in which subspace of dimension

2j + 1 these vectors are contained. Since the vectors |j,m〉` are eigenvectors of
A∗ of eigenvalue 2m, they are in the (n2−m)th neighborhood of v0 = (0, 0, . . . , 0),
i.e.

|j,m〉` ∈ span{|v〉 : ∂(v0, v) =
n

2
−m}. (49)

The embedding discussed in subsection 4.1 allows to apply the relation between
T and su(2) to the Terwilliger algebra of the Johnson scheme and to obtain

11



the decomposition of C|X| in irreducible T -submodules. In terms of the ladder
operators

j+ = jx + ijy =

n−1∑
i=0

E∗i+1AE
∗
i (50)

and

j− = jx − ijy =

n−1∑
i=0

E∗iAE
∗
i+1, (51)

one can check using (38) that A is given by

A =
1

2
E∗k({j+, j−} − n)E∗k. (52)

We also have the following relation:

{j+, j−} = 2j2 − 2(jz)2, (53)

where j2 = j2x+j2y +j2z is the Casimir operator of su(2). Since jz = n
2 −k on the

kth neighborhood and since [E∗k, j
2] = 0, we can rewrite the adjacency matrix A

of J(n, k) as

A = E∗k

(
j2 − (n− 2k)2

4
− n

2

)
. (54)

So the first adjacency matrix of J(n, k) is the restriction of the total Casimir
operator of su(2) to a single neighborhood of H(n, 2). For A∗, we note that the
representation of su(2) defined in (46) corresponds to the coproduct of repre-
sentations of lower dimension. For instance, we have jz = jz1 + jz2 where

jz1 =
A∗2n−k×2n−k

2
⊗ 12k×2k and jz2 = 12n−k×2n−k ⊗

A∗2k×2k

2
. (55)

This allows to express the dual adjacency matrix of J(n, k) as

A∗ = − (n− 1)(n− 2k)2

4k(n− k)
+

n(n− 1)

2k(n− k)
(jz1 − jz2 ) (56)

and implies that both generators of T are representing elements in su(2)⊗su(2).
We can use (54) and (56) to derive expressions for the eigenvectors of A and A∗.
Let |j1,m1〉`1 be an eigenvector of jz1 in an irreducible T2n−k×2n−k -submodule
and let |j2,m2〉`2 be an eigenvector of jz2 in an irreducible T2k×2k -submodule.
When m1 +m2 = n

2 − k, we see that

A∗ |j1,m1〉`1 ⊗ |j2,m2〉`2 = θ∗m1,m2
|j1,m1〉`1 ⊗ |j2,m2〉`2 , (57)

12



where

θ∗m1,m2
= − (n− 1)(n− 2k)2

4k(n− k)
+

n(n− 1)

2k(n− k)
(m1 −m2). (58)

Since the vectors of this form are orthogonal and generate C|X|, they give an
eigenbasis of A∗. By construction, we also note that |j1,m1〉`1 ⊗ |j2,m2〉`2 is in
the (n−k2 −m1)−th neighborhood of the Johnson graph, i.e.

|j1,m1〉`1 ⊗ |j2,m2〉`2 ∈ span{|x〉 : d(x0, x) =
n− k

2
−m1 =

k

2
+m2}. (59)

Next, we can consider the eigenvectors of A. We can define the following sub-
spaces Vj1,`1,j2,`2 of C|X|:

Vj1,`1,j2,`2 = span{|j1,m1〉`1 ⊗ |j2,m2〉`2 : m1 +m2 =
n

2
− k}. (60)

Since they are isomorphic for different values of `1 and `2, we also use the
notation Vj1,j2 = Vj1,`1,j2,`2 . The vectors |j1,m1〉`1 ⊗ |j2,m2〉`2 diagonalize the
operators jz1 , jz2 , j21 and j22. We know from the theory of angular momentum
coupling how to construct an alternative basis {|j,m〉 : |j1 − j2| ≤ j ≤ j1 +
j2, m = n

2 − k} of Vj1,`1,j2,`2 diagonalizing jz and j2 instead:

jz |j, n/2− k〉 = (n/2− k) |j, n/2− k〉 (61)

and

j2 |j, n/2− k〉 = j(j + 1) |j, n/2− k〉 . (62)

From expression (54), we deduce that these vectors diagonalize A:

A |j, n/2− k〉 =

(
j(j + 1)− (n− 2k)2

4
− n

2

)
|j, n/2− k〉 . (63)

In particular, |j, n/2− k〉 ∈ Vj1,`1,j2,`2 is in the eigenspace j of the adjacency
matrix:

Ej′ |j, n/2− k〉 = δjj′ |j, n/2− k〉 , (64)

and gives an explicit construction for the vectors |θj , `〉 of subsection 2.1. Now
that we have a basis for the eigenspace j of A, we see that its degeneracy Dj is
given by the number of subspaces Vj1,`1,j2,`2 such that |j1 − j2| ≤ j ≤ j1 + j2:

Dj =
∑
j1,j2

|j1−j2|≤j
j≤j1+j2

Dj1,j2

=
∑
j1,j2

|j1−j2|≤j
j≤j1+j2

(2j1 + 1)(2j2 + 1)

(n− k + 1)(k + 1)

(
n− k + 1
n−k
2 − j1

)(
k + 1
k
2 − j2

)
,

(65)
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where Dj1,j2 is the number of subspaces Vj1,`1,j2,`2 associated to the integers or
half-integers j1 and j2 :

Dj1,j2 =
(2j1 + 1)(2j2 + 1)

(n− k + 1)(k + 1)

(
n− k + 1
n−k
2 − j1

)(
k + 1
k
2 − j2

)
. (66)

Finally, we want to show that the subspaces Vj1,j2 are irreducible T -submodules.
The overlaps between the vectors in an irreducible representation of su(2) |j,m〉
and the vectors in the basis yielded by the tensor product of two irreducible
representations |j1,m1〉 ⊗ |j2,m2〉 = |j1,m1, j2,m2〉 are the Clebsh-Gordan co-
efficents cj,j1,j2m,m1,m2

of su(2). These are known to be given in terms of the dual
Hahn polynomials Ri(λ(x), γ, δ,N) [21]. Indeed, if j1 < j2 we have [21]:

cj,j1,j2m,m1,m2
= 〈j m|j1,m1, j2,m2〉 = N Ri(x(x+ δ + γ + 1), γ, δ,N), (67)

with

N = (−1)i

√
(N !)(−N)x(γ + 1)x(2x+ δ + γ + 1)

(−1)x(x!)(δ + 1)x(x+ δ + γ + 1)N+1

√(
γ + i

i

)√(
N + δ − i
N − i

)
(68)

and

i = j1 −m1, x = j1 − j2 + j, N = 2j1,

δ = −j1 + j2 −m and γ = −j1 + j2 +m.
(69)

For j1 > j2, one only needs to exchange j1 with j2 and m1 with m2 in (69).
From the three terms recurrence relation and difference equation of the dual
Hahn polynomials, we find that the action of A on the eigenvectors of A∗ and
the action of A∗ on the eigenvectors of A are irreducible tridiagonal. Thus,

C|X| =
⊕

j1,`1,j2,`2

Vj1,`1,j2,`2 =
⊕
j1,j2

Dj1,j2Vj1,j2 (70)

corresponds to the decomposition in the irreducible T -submodules we were look-
ing for.

4.3 The entanglement entropy for a single neighborhood
We shall see that (70) simplifies the computation of the entanglement entropy.
Let us denote |j1,m1〉`1 ⊗ |j2,m2〉`2 = |j1,m1, j2,m2〉`1,`2 and define

c†j1,m1,`1,
j2,m2,`2

=
∑
x∈X
〈x|j1,m1, j2,m2〉`1,`2 c

†
x (71)

and

cj1,m1,`1,
j2,m2,`2

=
∑
x∈X

`1,`2〈j1,m1, j2,m2 |x〉 cx, (72)
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where we recall that m2 = n/2− k−m1. These operators respect the canonical
relations of fermionic creation and annihilation operators and allow to rewrite
the Hamiltonian as

Ĥ =
∑
j1,`1,
j2,`2

[Ĥ]Vj1,`1,j2,`2
,

(73)

where [Ĥ]Vj1,`1,j2,`2
= [Ĥ]Vj1,j2

is given by

∑
m1,m′1

`1,`2〈j1,m1, j2,m2|
[ k∑
i=0

αiAi

]
|j1,m′1, j2,m′2〉`1,`2 c

†
j1,m1,`1,
j2,m2,`2

c†
j1,m

′
1,`1,

j2,m
′
2,`2

. (74)

Since there is at most one vector per neighborhood of x0 in a given submodule
Vj1,j2 , the operator (74) can be understood as the Hamiltonian of free fermions
hopping on a chain. Similarly, we find for the chopped correlation matrix that

C = πSV πSEπSV

=
∑
j1,`1,
j2,`2

[πSV πSEπSV ]Vj1,`1,j2,`2

=
∑
j1,`1,
j2,`2

[C]Vj1,`1,j2,`2
,

(75)

where [C]Vj1,`1,j2,`2
= [C]Vj1,j2

is the restriction of the chopped correlation ma-
trix to a subspace Vj1,j2 . Its entries are

〈j1,m1, j2,m2|[C]Vj1,j2
|j1,m′1, j2,m′2〉 =

∑
j∈SE

cj,j1,j2m1+m2,m1,m2
cj,j1,j2m′1+m

′
2,m
′
1,m
′
2
,

(76)

with the Clebsh-Gordan coefficients cj,j1,j2m1+m2,m1,m2
being given by (67). While

the dimension of the chopped correlation matrix is equal to the number of sites
in all the neighborhoods of the subsystem, the dimension of its submatrices is

dim[C]Vj1,j2
= #{i ∈ SD : j1 ≥ |(n− k)/2− i|, j2 ≥ |k/2− i|}. (77)

This is at most the number of distances in SD. The decomposition thus signif-
icantly simplify the diagonalization of the chopped correlation matrix. In fact,
if the subsystem is made out of a single neighborhood, the decomposition yields
the eigenvalues of C. Indeed, the submatrices are then at most 1−dimensional
and their unique entry is an eigenvalue of C. If the subsystem 1 is the ith
neighborhood of x0, we have:

λj1,j2 =
∑
j∈SE

(
cj,j1,j2m1+m2,(n−k)/2−i,i−k/2

)2
. (78)

15



The degeneracy Dj1,j2 of λj1,j2 is given by (66). These formulas can be used as
inputs in (21) to obtain an analytical expression for the von Neumann entropy.
Figure 2 presents results obtained for different values of n, of neighborhood’s
distance i and of number of energy levels occupied |SE|.

(a) (b)

Figure 2: Entanglement entropy for single neighborhoods in fermionic systems
on J(n, n/2). (a): von Neumann entropy of the neighborhoods i = k/2, i = k/4
and i = k/8 when the first 1/10 of the energy levels are occupied (∼ half-filling).
(b) Ratio of the entropy over the dimension of the subsystem in the case n = 30
and k = 15 for different neighborhood’s distance i and number of energy level
occupied |SE|.

On the left figure, we see that the entanglement entropy is bounded by the
number of sites in SV . Since all the vertices in a neighborhood are on the
boundary of the subsystem, this is consistent with an area law.

The figure on the right shows that the ratio of the entanglement entropy
over the number of sites in SV , i.e. the pre-factor of the area law, peaks when
a small fraction of the energy levels are occupied. This is due to the massive
degeneracy Dj of the lowest energy levels. For instance, while free fermions on
J(30, 15) have k+1 = 16 energy levels, approximately half of the single-particle
excitations are associated to the first three of them. Looking at the system in
terms of its path decomposition (70), this is translated as the absence of high
energy levels in most chains. Finally, let us note that the symmetry of the right
figure with respect to i = 7.5 is due to the equivalence of the neighborhoods i
and k − i when k = n/2.
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4.4 T and the Hahn algebra
Before considering subsystems composed of multiple neighborhoods, we shall
make an additional remark concerning T . We recall that (54) and (56) give an
expression for the generators of the Terwilliger algebra of the Johnson scheme
in terms of generators from two copies of su(2). We can use this connection to
compute the commutation relations for pairs of elements in T . Let

K̂1 =
2k(n− k)

n(n− 1)
A∗, K̂2 = A (79)

and take j21 and j22 to be the Casimir operators associated to the first and second
copy of su(2). Note that these are central elements in T . One can check that
the following relations are verified:

[K̂1, K̂2] = K̂3, (80)

[K̂2, K̂3] = a{K̂1, K̂2}+ bK̂2 + c1K̂1 + d1 (81)

and

[K̂3, K̂1] = aK̂2
1 + bK̂1 + c2K̂2 + d2, (82)

where

a = −2, b = −2(n− 2k)2

n
,

c1 = −(n− 2k)− 2n, c2 = −4,

d1 = −bc1
4

+ (n− 2k)(j21 − j22),

d2 = −2n+ 4(j21 + j22)− b2

8
+
bn

4
.

(83)

Since (80), (81) and (82) are the defining relations of the Hahn algebra h, we
find that the Terwilliger algebra of the Johnson scheme is a quotient of a cen-
tral extension of h. The Hahn algebra was introduced in [16] to describe the
symmetry properties of the dual Hahn polynomials, which appeared in equation
(6), in equation (67) and are related to the Johnson scheme, as already pointed
out at the beginning of section 4.

5 The generalized algebraic Heun operator
In this section, we are interested in the case where SV is the set of sites at a
distance lower than some large integer N + 1 from a given vertex, i.e.

πSV =

N∑
i=0

E∗i . (84)
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The submatrices in formula (75) have a dimension proportional to the number of
neighborhoods in SV , have mostly non-zero entries and have many eigenvalues
near 0 and 1. Consequently, diagonalizing the operators [C]Vj1,j2

is less practical
as N increases and we shall turn to an approach developed to study time and
band limiting problems [9, 10, 22, 29]. We thus look for an operator T with
practical diagonalization properties that verify

[C, T ] = 0. (85)

Such an operator would share with C common eigenvectors. Recently, the
diagonalization of the chopped correlation matrix associated to free fermions
on general distance-regular graphs was considered and a way of constructing T
was presented [8]. For Johnson graphs, it requires to look at the most general
symmetric block-tridiagonal operator in T :

T = {A,A∗}+ µA∗ + νA. (86)

T is referred to as a generalized algebraic Heun operator [17]. We want to fix
µ and ν so that T commutes with both πSV and πSE , assuring that it also
commutes with C. The action of the adjacency matrix and dual adjacency
matrix is obviously diagonal on their own eigenbasis. Moreover, one can check
that the action of A on the eigenbasis of A∗ is tridiagonal:

A |j1,m1, j2,m2〉 = am1+1 |j1,m1 + 1, j2,m2 − 1〉+ bm1
|j1,m1, j2,m2〉

+ am1 |j1,m1 − 1, j2,m2 + 1〉
(87)

where

am1 =
√

(j1 +m1)(j1 −m1 + 1)(j2 −m2)(j2 +m2 + 1) (88)

and

bm1
= (j1 + 1)(j1) + (j2 + 1)(j2)−m2

1 −m2
2 −

n

2
. (89)

The same is true for the action of A∗ on the eigenvectors of A. Let us denote
cj,j1,j2m,m1,m2

= cjm1
. We find that

A∗ |j, n/2− k〉 = A∗
∑
m1

cjm1
|j1,m1, j2, n/2− k −m1〉

=
∑
m1

(a∗j+1c
j+1
m1

+ b∗jc
j
m1

+ a∗jc
j−1
m1

) |j1,m1, j2, n/2− k −m1〉

= a∗j+1 |j + 1 n/2− k〉+ b∗j |j n/2− k〉+ a∗j |j − 1 n/2− k〉 ,
(90)

where

a∗j =
n(n− 1)

k(n− k)

(
(j2 −m2)(j2 − (j1 − j2)2)((j1 + j2 + 1)2 − j2)

(4j2 − 1)(4j2)

) 1
2

(91)
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and

b∗j = − (n− 1)(n− 2k)

2k
+
n(n− 1)(n− 2k)

2k(n− k)

(
1

2
+

(j1 + j2 + 1)(j1 − j2)

2j(j + 1)

)
.

(92)

We can use these formulas to express the action of the generalized algebraic
Heun operator on both basis. We find that

T |j,m〉 = a∗j+1(θj+1 + θj + µ) |j + 1,m〉
+ (µb∗j + νθj + 2b∗jθj) |j,m〉+ a∗j (θj−1 + θj + µ) |j − 1,m〉

(93)

and

T |j1,m1, j2,m2〉 = am1+1(θ∗m1+1,m2−1 + θ∗m1,m2
+ ν) |j1,m1 + 1, j2,m2 − 1〉

+ (νbm1
+ µθ∗m1,m2

+ 2bm1
θ∗m1,m2

) |j1,m1, j2,m2〉
+ am1

(θ∗m1−1,m2+1 + θ∗m1,m2
+ ν) |j1,m1 − 1, j2,m2 + 1〉 .

(94)

The restriction of this operator T to a single module Vj1,j2 corresponds to an
affine transformation of the Heun operator constructed to study the dual Hahn
fermionic chain in [9]. In the case where SV = {x ∈ X : d(x0, x) ≤ N} and
SE = {n2 − k, . . . , j0}, the action of the projectors πSV and πSE is given by

πSV |j1,m1, j2,m2〉 =

{
|j1,m1, j2,m2〉 if n−k2 −m1 ≤ N,
0 otherwise (95)

and

πSE |j, n/2− k〉 =

{
|j, n/2− k〉 if j ≤ j0,
0 otherwise. (96)

One can check using (94) and (95) that [T, πSV ] = 0 if

θ∗n−k
2 −N−1,−

k
2+N+1

+ θ∗n−k
2 −N,−

k
2+N

+ ν = 0. (97)

Similarly, we find with (93) and (96) that [T, πSE ] = 0 if

θj0+1 + θj0 + µ = 0. (98)

In other words, condition (85) is verified if we choose

µ = −θj0+1 − θj0 and ν = −θ∗n−k
2 −N−1,−

k
2+N+1

− θ∗n−k
2 −N,−

k
2+N

. (99)

Since T is tridiagonal on each module Vj1,j2 , it is in general easier to diago-
nalize than C. Once we have its eigenvectors, we can act on them with the
chopped correlation matrix and read out the spectrum of C from the out-
come. Figure 3 presents von Neumann entropies associated to subsystems
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(a) (b)

Figure 3: Ratio of the von Neumann entropy S over the size of the boundary
∂SV of the subsystem for free fermions on J(30, k). (a) Ratio S/|∂SV | for
different diameter k of the Johnson graph and for different number of neighbor-
hoods in SV . (b) Ratio S/|∂SV | for a different number of energy levels filled
and for different number of neighborhoods in SV .

SV = {x ∈ X : d(x0, x) ≤ N} of J(30, k) that were obtained by this method
and by diagonalizing T numerically.

As expected, the entanglement entropy is bounded by the number of sites
on the boundary ∂SV , i.e. the number of sites in the N th neighborhood. We
also see that the pre-factor S/|∂SV | of the area law peaks when only the lowest
energy levels are occupied and when the number of sites in both the subsystem
SV and its complement X\SV is large. The first condition was discussed in
subsection 4.3 and has to do with the important degeneracy of these levels. The
second condition suggests that the area law pre-factor for this system depends
more on the entanglement of the bulk than on the entanglement of the boundary.
Indeed, figure 3a shows that the ratio S/|∂SV | reaches its maximum value when
the subsystem SV and its complement X\SV are both large. In figure 3b which
represents the symmetric case k = n/2, this happens at N ≈ k/2. By contrast,
the ratio of the entanglement entropy of the N th neighborhood (the boundary
between the two regions) over its size is at its lowest when N ≈ k/2. This is
shown in figure 2b.
It should be stressed that, even if Johnson graphs are equivalent to bundles of
chains, a model of free fermions on J(n, k) does not share all the properties
of one dimensional systems. For instance, the dominating role of the bulk in
the pre-factor only emerges when considering the graph. It does not appear
for an individual chain in the path decomposition (70) of J(n, k), where the
entanglement of a region behaves similarly to the entanglement of its boundary
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(a) (b)

Figure 4: Entranglement entropy of half chains, for chains in J(30, 15). (a) En-
tanglement entropy of half chains SV of different lengths and of their boundary
site ∂SV in the case j1 = 6.5, j2 = 7.5. (b) Entanglement entropy of half chains
SV of different lengths and of their boundary site ∂SV in the case j1 = j2 = 7.5.

site (see figure 4). Since the relation between the entanglement entropy S and
the length of a half chain changes for different values of j1 and j2, it seems that
the correlation between the entanglement of a region and the entanglement of
its shell is lost when one looks at the graph and sums over the contribution of
each path.

6 Concluding remarks
We have investigated the entanglement entropy of sets of neighborhoods in sys-
tems of free fermions living on the vertices of Johnson graphs. For a subsystem
composed of a single neighborhood, we have provided an analytical expression.
It was given by the decomposition in irreducible representations of the Ter-
williger algebra of the Johnson scheme, which was obtained by embedding the
algebra in two copies of the Terwilliger algebra of the hypercube. It was also
shown that T is a quotient of the centrally extended Hahn algebra h. For sub-
systems composed of many neighborhoods, we have constructed a simple block-
tridiagonal operator T commuting with the chopped correlation matrix. As a
difference analog of a second order differential operator, it is prone to possess
a well-distributed spectrum which allows to compute easily the entanglement
entropy numerically for large systems and to investigate area law pre-factors.

A similar approach was used in [4] to study the entanglement entropy of
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free fermions on Hamming graphs. In that case, the block-tridiagonal operator
T was a Heun operator of Lie type that could be diagonalized analytically by
algebraic Bethe ansatz methods [3, 7]. Since the FRT presentation of the Hahn
algebra is known [11], we expect that the algebraic Bethe ansatz could also
be used to diagonalize the operator T of Hahn type which arise for Johnson
graphs. Future work could be oriented in this direction. Moreover, it should
prove interesting to study the entanglement of free fermions on other distance-
regular structures, such as the dual polar and Grassman graphs [5] which are
related to q-polynomials of the Askey-scheme [33].
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