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Abstract

The present article deals with semi-linear hyperbolic boundary value problems defined in the strip
geometry. After having established a strong well-posedness result by using a rather classical linear scheme
of approximation, we address the question of the construction of approximate solutions by geometric
optics expansions methods. On the one hand because the problem is semi-linear, the non linearity creates
one self-interaction of the phases: the generation of harmonics. Such a self-interaction is classical. But, on
the other hand, because of the geometry of the strip, a phase can regenerate itself by repeated reflections
against the two sides of the boundary. Consequently we have an other self-interaction phenomenon. A
natural question is to ask if these two phenomena can interact the one with the other. We here show
and rigorously justify that the answer of the above question. The reason being essentially that one
phenomenon occurs in the interior while the second one is located at the boundary.
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1 Introduction

This article deals with the construction of geometric optics expansions construction and the analysis of semi-
linear hyperbolic boundary value problems defined in a strip. We will thus consider throughout the text the
system of partial differential equations: for T > 0, d ≥ 1,

L(∂)u := ∂tu+
∑d
j=1Aj∂ju = f + F(u) in ΩT := ]0, T [× Rd−1 × ]0, 1[ ,

B0u|xd=0 = g0 on ∂Ω0,T := ]0, T [× Rd−1 × {0},
B1u|xd=1 = g1 on ∂Ω1,T := ]0, T [× Rd−1 × {1},
u|t=0 = 0 on Γ := Rd−1 × ]0, 1[ ,

(1)

where the coefficients Aj ∈ MN×N (R) are given fixed matrices, for some fixed N ≥ 1. The unknown u has
its values in RN . The non linearity F being a function of class C∞ of its arguments or entire and satisfying
F(0) = 0.

In system (1), the boundary conditions B0 and B1 are given matrices in Mp×N (R) and M(N−p)×N (R)
respectively, where p stands for the number of (strictly) positive eigenvalues of the normal coefficient Ad.
Consequently the number of boundary conditions in (1) is suitably chosen in such a way that the system (1)
is not over or under-determined.

The aims of the article are twofold, firstly we briefly describe a strong well-posedness theory for the semi-
linear system (1). Such well-posedness question for the underlying linear problem associated to (1) has been
addressed in [2]. In this contribution, the author shows that in order to obtain a sharp strong well-posedness
theory, that is to say a theory characterizing the minimal growth of the solution with respect to time, some
extra condition issued from the analysis of [20] in the quarter-space is necessary and (”almost”) sufficient.

This extra condition encodes the self-interaction of the solution by repeated reflections against the sides
∂Ω0,T and ∂Ω1,T . What we mean here is that in the strip geometry the solution never spreads to infinity.
It suffers repeated reflections against the two sides of the boundary periodically with respect to time. Con-
sequently, the solution essentially behaves like Ct where C > 0 is a numerical constant corresponding to
the coefficient of amplification during a return travel of the solution to the side ∂Ω0,T . When C > 1, the
solution then has a non trivial exponential growth with respect to time, while when C ≤ 1 such a growth
does not occurs and the problem is said to be sharply well-posed1. Let us however insist on the fact that
such a characterization is really pertinent for unbounded times of resolution. Indeed for a fixed finite time
of resolution T > 0, then the solution just behaves like CT <∞.

As a consequence, in the present article, because we are interested in non linear problems, we should in
particular consider a priori finite times of resolution. So we will not use the sharp theory of [2] to establish
the L2 strong well-posedness of the linear problem, but we will just consider a simple and straightforward
argument of localization.

Because the above argument is not sharp, one can not prevent the solution to have a non trivial ex-
ponential growth with respect to the time variable. But such a growth will not influence the resolution of
system (1) by using iterative schemes of approximation. Consequently the proof exposed here for the strong
well-posedness is not very new but it has the advantage of simplicity and to be (in the author’s knowledge)
the first well-posedness result for hyperbolic problems combining the two difficulties of having a non linearity
and having several components in the boundary of the domain of resolution. The relations that these two
difficulties share are then studied in more details thanks to geometric optics expansions.

We have reasons to believe that taking into account the sharp estimates of [2] can be of some help to
obtain sharp times of existence for the semi-linear problem (1). In particular, we believe that is shall be of
particular interest to determine and characterize the couple of boundary conditions which act as damping
terms and which can lead to a longer time of existence than the one in the half-space geometry. However

1In [2] we used the heavy terminology low exponentially well-posed.
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such a precise analysis is left for future studies.

Once that we have established the existence (and uniqueness) of a solution to the semi-linear problem
(1) a natural question is then the existence of geometric optics expansions approximating the exact solution.
In a second time, we will thus restrict our attention to semi-linear problems with highly oscillating sources
terms and we aim to describe an algorithm permitting to construct approximate solutions for such systems.
Let 0 < ε≪ 1 be the typical wavelength, we consider

L(∂)uε = F(uε) in ΩT ,

B0u
ε
|xd=0 = gε0 on ∂Ω0,T ,

B1u
ε
|xd=1 = 0 on ∂Ω1,T ,

uεt=0 = 0 on Γ,

(2)

where the source gε0 admits fast oscillations with respect to the small parameter ε.
Geometric optics expansions for hyperbolic systems of equations have a long story and are described in

an abundant literature. We refer to the seminal series of papers of Joly, Métivier and Rauch of the 90’ (parts
of such results being summarized in the book [22]) for the Cauchy problem and to the series of works of
Coulombel, Guès and Williams of the 10’ for problems in the half-space geometry (see also the earlier results
of Williams [23] and [24]).

In the not so considered geometry of the strip, the construction of such geometric optics expansions for
the underlying linear problem associated to (2) has been considered by the author in [3]. The main point of
this article is to show that in order to start the resolution of the cascade of equations of geometric optics,
a new invertibility condition has to be imposed (we refer to [3] for more details). Such a condition is a
microlocalized version of the global condition ensuring the sharp strong well-posedness in [2]. Consequently
it is linked to the self-interaction of the phases caused by the repeated reflections against the two sides of
the strip.

Because we are now dealing with non linear problem other self-interaction phenomena of the phases
composing the expansion occur. They are caused by the generation of the harmonics and the possible res-
onances2 of the phases. So we have a priori three sources of self-interaction appearing in our framework of
study.

The main question that we would like to answer here is: ”Do these self-interaction phenomena can
interact the one with the other ?”.

The answer of this question will be that the above phenomena do not interact the one with the other
to create some new qualitative phenomena. The reason can simply be summarized has follows. Resonances
and generation of harmonics form self-interaction phenomena that come into play at the level of the interior
equation while the self-interaction phenomenon caused by repeated reflections come into play at the level of
the boundary conditions. Consequently these two phenomena decouple the one from the other.

With more details, because we are not interested here in a precise description of the profiles equations
induced by resonances (see for example [7]) we can use the so-called adapted basis of [25] and [24] (see also
[11]) which consists in a reduced choice of the basis where the resonances do not occur3. So we just have to
deal with generation of harmonics and repeated reflection self-interaction phenomena.

The main point here is that the amplitudes solve non linear equations essentially reading under the form
(we refer to equation (36) for more details):

transport u♭ = F̃♭(u) in ΩT ,

u♭|xd=0 = G0u
♯
|xd=0 on ∂Ω0,T ,

u♭|t=0 = 0 on Γ,

and


transport u♯ = F̃♯(u) in ΩT ,

u♯|xd=1 = G1u
♭
|xd=1 on ∂Ω1,T ,

u♯|t=0 = 0 on Γ,

(3)

2We shortly recall that the generation of harmonics means that we have to consider the phases nφ, n ∈ Z where φ is a
characteristic phase appearing in the linear expansion, while resonances occur when two such phases, namely φa and φb, interact
to produce a third one, namely φc. More precisely if one can find three integers na, nb, nc ∈ Z such that naφa +nbφb = ncφc.

3Crudely speaking if a resonance naφa + nbφb = ncφc occurs then the adapted basis consists in considering only the family
(φa, φb) instead of (φa, φb, φc) because at the end of the day the contribution of φc is already taken into account by φa and
φb.

3



where G0 and G1 are linear and where we used a decomposition4 uε = u♯ + u♭.
Consequently in (3) we have an interior coupling coming from the non linearity and a boundary coupling

coming from the repeated reflections5. To deal with these two coupling especially the one in the interior
induced by the non linearity, iterative scheme shall be considered. The main point being here that we do not
require to use an approximation scheme to deal with the boundary coupling. Such a coupling being handled
by assuming the inversibility of an operator reading under the form I − T as in the linear framework (we
refer to [3] or to Paragraph 3.3) to determine the value of the trace u♭|xd=0 from which we can then deduce

the one of u♯|xd=1. So that, we can define the iterative scheme of approximation: let u♭,0, u♯,0 be given and

for ν ≥ 1, let u♭,ν , u♯,ν be the solutions to:
transport u♭,ν = F̃♭(uν−1) in ΩT ,

u♭,ν|xd=0 = known on ∂Ω0,T ,

u♭,ν|t=0 = 0 on Γ,

and


transport u♯,ν = F̃♯(uν−1) in ΩT ,

u♯,ν|xd=1 = known on ∂Ω1,T ,

u♯,ν|t=0 = 0 on Γ,

and the classical analysis of convergence (see for instance [24]) follows.

The fact that the non linear self-interactions do not influence the repeated reflection one is on the one
hand a positive result because geometric optics expansions will be easy to construct. But on the other hand
we can be a little disappointed, because nothing new happen. In order to force things in such a way that
new phenomena appear we have two ideas. The first one is of course to consider instead of a linear boundary
condition a non linear one. In such a way, both equations in the interior and at the boundaries need to be
approximated by the iterative scheme of resolution and it is possible that now the repeated self-interaction
phenomenon interacts with such an approximate boundary condition. A second alternative might possibly be
to consider multiphase (at the boundary) geometric optics expansion as in [12]. In both cases, constructing
geometric expansions for such hyperbolic boundary value problems in a strip are left for future studies.

We also think that it shall be very interesting in the future to consider quasi-linear problems which are
completely motivated by their physical relevance. By first considering here the toy models of semi-linear
problems, the results of the paper can be seen as a first step in such a program.

The article is organized as follows. Section 2 gives the first main result of the article, namely Theorem
2.1 establishing the local in time well-posedness of the semi-linear problem (1). Then Section 3 deals with
the associated geometric optics expansions. The main results being Theorem 3.1 (whose proof occupies
Paragraphs 3.2, 3.3 and 3.4) which gives the construction of the geometric optics expansion and Theorem
3.2 (shown in Paragraph 3.5) which justifies the fact that the constructed geometric optics expansions is
effectively an approximate solution to (2).

2 Well-posedness theory

This section concerns the existence and uniqueness of the solution to the semi-linear problem (1). In order
to state our main result precisely, let us define for some s ∈ N and some T > 0,

Ws
T := {u ∈ C 0([0, T ] ;Hs(Γ)) \ ∀ 0 ≤ j ≤ s, we have ∂jt u ∈ C 0([0, T ] ;Hs−j(Γ))},

4To be precise this decomposition corresponds to consider separately incoming and outgoing modes.
5In the half-space geometry, equation (3) simply reads

transport u♭ = F̃♭(u) in ΩT ,

u♭
|xd=0

= G0u
♯
|xd=0

on ∂Ω0,T ,

u♭
|t=0

= 0 on Γ,

and

{
transport u♯ = F̃♯(u) in ΩT ,

u♯
|t=0

= 0 on Γ,

so that we do not have such a boundary coupling. We can determine u♯ first and then proceed to the determination of u♭, by

using the value of u♯
|xd=0

as a source term.
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where for k ≥ 0, Hk stands for the usual Sobolev space. The space Ws
T is equipped with the following norm:

for u ∈ Ws
T we denote

|||u(t)|||s :=
s∑
j=0

∥∂jt u(t)∥Hs−j(Γ) <∞.

We remark that we have the inclusions Hs+1(ΩT ) ⊂ Ws
T ⊂ Hs(ΩT ). We will also consider W∞

T :=
∩s≥0W

s
T . For compatibility reasons and because of the homogeneous initial condition6 in (1), we require

some flatness of the sources. More precisely for X ⊂ ΩT , we introduce Hs
♭ (X) the subset of functions of

Hs(X) with flatness at the time origin:

Hs
♭ (X) := {u ∈ Hs(X) \ ∀ 0 ≤ j ≤ s, (∂jt u)|t=0 = 0}.

The well-posedness result for (1) is the following

Theorem 2.1 Let s ∈ N be such that s > d
2 , and let T > 0 be such that the sources f ∈ Hs

♭ (ΩT ), (g0, g1) ∈
Hs
♭ (∂Ω0,T )×Hs

♭ (∂Ω1,T ). Then there exists some T0 ∈ ]0, T [ such that the semi-linear problem (1) admits a
unique solution u ∈ Ws

T0
.

The proof of this theorem occupies the end of the current section. It is a classical proof based upon the
convergence of a linear scheme of approximation which decouples to two sides of the interior equation. The
linear hyperbolic boundary value problem associated to (1) is studied in Paragraph 2.1. Then with such a
well-posedness result in hand, we investigate the non linear problem in Paragraph 2.2.

2.1 Well-posedness of the linear problem

Until the end of the paragraph, let us consider the linear problem associated to (1), namely:
L(∂)u = f in ΩT ,

B0u|xd=0 = g0 on ∂Ω0,T ,

B1u|xd=1 = g1 on ∂Ω1,T ,

u|t=0 = 0 on Γ,

(4)

where f , g0 and g1 are given sources in the suitable Sobolev spaces Hs
♭ .

We aim to show the following strong well-posedness result:

Theorem 2.2 Assume that the linear hyperbolic boundary value problem (4) is symmetric (Assumption
2.1), with non characteristic boundary (Assumption 2.2) and finally that the two sides of the boundary
have strictly dissipative boundary conditions (Assumption 2.3). Then there exists 0 < T ≤ T such that if
the sources f ∈ Hs

♭ (ΩT ), (g0, g1) ∈ Hs
♭ (∂Ω0,T ) × Hs

♭ (∂Ω1,T ), then (4) admits a unique solution u ∈ Ws
T .

Moreover u satisfies the energy estimate, for all 0 < t ≤ T one can find a constant Ct > 0 such that

|||u(t)|||s+∥u|xd=0∥Hs(∂Ω0,t)+∥u|xd=1∥Hs(∂Ω1,t) ≤ Ct

(∫ t

0

|||f(r)|||s dr + ∥g0∥Hs(∂Ω0,t) + ∥g1∥Hs(∂Ω1,t)

)
. (5)

Before to give the proof of Theorem 2.2 in Paragraphs 2.1.1 and 2.1.2, let us conclude this introduction
by a clarification of the above assumptions. These three assumptions are performed in order to ensure a
priori energy estimates for the solutions the three problems constituting the linear strip problem (4). More
precisely, the two problems involving the boundaries ∂Ω0,T and ∂Ω1,T respectively and the problem in the
interior of the strip.

The strong well-posedness of the problem in the interior is ensured under some hyperbolicity assumption.
Here we choose to restrict our study to symmetric operators

Assumption 2.1 (Symmetric operators) The operator L(∂) is symmetric. That is to say that for all
j ∈ J1, dK, we have ATj = Aj, where ·T stands for the transpose operator.

6The following analysis can be extended in a rather straightforward manner to non homogeneous initial conditions if one
assumes the suitable compatibility conditions.
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While the strong well-posedness of the half-space problems is facilitated under Assumption 2.1 and under
the assumption:

Assumption 2.2 (Non characteristic boundary) We assume that the normal coefficient matrix Ad is
invertible.

The strong well-posedness result for the half-spaces problems also requires some properties on the bound-
ary conditions. Here to simplify as much as possible the exposition and because we do not have in mind
a sharp well-posedness result, we will assume that the boundary conditions are strictly dissipative in the
following sense:

Assumption 2.3 (Strictly dissipative boundary conditions) We assume that the boundary condition
B0 (resp. B1) on ∂Ω0,T (resp. ∂Ω1,T ) is strictly dissipative meaning that

∀ v ∈ kerB0 ( resp. kerB1) we have ⟨Adv, v⟩ < 0 ( resp. ⟨Adv, v⟩ > 0).

Following [13], [[4]-Chapter 4], Assumptions 2.1, 2.2 and 2.3 do not constitute the most general framework
where strong well-posedness holds. Indeed the symmetry assumption can be transformed into the one of
constant hyperbolicity, while Assumption 2.3 can be turned into the (sharp) uniform Kreiss-Lopatinskii
condition [13] or [[4]-Chapter 4]. Assumption 2.2 can also be removed of the analysis (we refer for example
to [[4]-Chapter 6]). Some comments about the sharp estimate in such a general framework are given at the
end of Paragraph 2.1.1.

2.1.1 A simple L2 well posedness theory

In this paragraph we give a proof of Theorem 2.2 in the particular framework where s = 0 that is to say that
we are interested in the L2 strong well-posedness. In the following, we only describe the establishment of the
a priori energy estimate. The existence of a solution is then classically deduced from the dual a priori energy
estimate as it is done first in [15], then in [2] (see also [[4]-Sections 4.4 and 4.5]). Similarly the ”weak=strong”
lemma establishing that the solution satisfies the a priori energy estimate is a straightforward regularization
argument by mollification with respect to the tangential variables (t, x′).

Because we are interested in non linear problems, we should a priori assume that we are in finite time, so
that we will not follow the analysis of [2] and we will not use the weighted L2 spaces L2

γ := {u ∈ D ′ \e−γtu ∈
L2}. As we will see the following localization argument however gives rise to a non optimal maximal time
of resolution and we have good reasons to believe that the analysis of [2] could be of some help to recover
the sharp maximal time of existence. This is however left for future studies.

The main result of the paragraph is the following:

Proposition 2.1 Under Assumptions 2.1, 2.2 and 2.3, if u is regular enough then it satisfies the a priori
energy estimate: there exists 0 < T ≤ T such that, for all t ≤ T we have:

∥u(t, ·)∥L2(Γ)+∥u|x1=0∥L2(∂Ω0,t) + ∥u|xd=1∥L2(∂Ω1,t) (6)

≤ C

(∫ t

0

∥{L(∂)u}(s, ·)∥L2(Γ) ds+ ∥B0u|xd=0∥L2(∂Ω0,t) + ∥B1u|xd=1∥L2(∂Ω1,t)

)
.

Proof : The proof exposed here is a straightforward localization argument. Let us introduce two cut-off
functions χ0 and χ1 ∈ C∞(]−1, 2[) satisfying

χ0(xd) :=

{
1 for 0 ≤ xd ≤ 1

3 ,

0 for 2
3 ≤ xd ≤ 1,

and χ1(xd) :=

{
0 for 0 ≤ xd ≤ 1

3 ,

1 for 2
3 ≤ xd ≤ 1.

We define χ1/2 := 1− χ0 − χ1 and for k ∈ {0, 12 , 1}, uk := χku. Clearly u1/2 satisfies the Cauchy problem:{
L(∂)u1/2 = χ′

1/2Adu+ χ1/2L(∂)u for (t, x) ∈ ]0, T [× Rd,
u1/2|t=0

= 0 on Rd,
(7)

6



while u0 and u1 satisfy the half-space boundary value problems
L(∂)u0 = χ′

0Adu+ χ0L(∂)u in ΩT ,

B0u0|xd=0
= g0 on ∂Ω0,T ,

u0|t=0
= 0 on Γ,

(8)

and 
L(∂)u1 = χ′

1Adu+ χ1L(∂)u in ΩT ,

B1u1|xd=1
= g1 on ∂Ω1,T ,

u1|t=0
= 0 on Γ,

(9)

where we defined

ΩT := ]0, T [× Γ, ΩT := ]0, T [× Γ, with Γ := Rd−1 × {xd < 1} and Γ := Rd−1 × {xd > 0}.

Because of Assumption 2.1 we have the following a priori energy estimate for the Cauchy problem (7):
for all 0 < t ≤ T

∥u1/2(t, ·)∥L2(Rd) ≤ C

∫ t

0

∥{χ′
1/2Adu+ χ1/2L(∂)u}(s, ·)∥L2(Rd) ds

≤ C1/2

(
T sup
t∈]0,T [

∥u(t, ·)∥L2(Γ) +

∫ t

0

∥{L(∂)u}(s, ·)∥L2(Γ)

)
. (10)

Using Assumptions 2.1, 2.2 and 2.3, Kreiss’s theory for half-space hyperbolic boundary problems applies (see
[13] and [21]) and we deduce the two a priori energy estimates: for all 0 < t ≤ T ,

∥u0(t, ·)∥L2(Γ)+∥u|xd=0∥L2(∂Ω0,t)

≤ C0

(
T sup
t∈]0,T [

∥u(t, ·)∥L2(Γ) +

∫ t

0

∥{L(∂)u}(s, ·)∥L2(Γ) ds+ ∥B0u|xd=0∥L2(∂Ω0,T )

)
, (11)

and

∥u1(t, ·)∥L2(Γ)+∥u|xd=1∥L2(∂Ω1,t)

≤ C1

(
T sup
t∈]0,T [

∥u(t, ·)∥L2(Γ) +

∫ t

0

∥{L(∂)u}(s, ·)∥L2(Γ) ds+ ∥B1u|xd=1∥L2(∂Ω1,T )

)
. (12)

Estimate (6) follows from the triangle inequality where we restrict the maximal time t ≤ T with for
instance T := 1

6max(C0,C1/2,C1)
, in order to absorb the three terms supt∈]0,T [ ∥u(t, ·)∥L2(Γ) appearing in the

right-hand side of (10), (12) and (11) by the one in the left-hand side of (6).

□

This ends up the proof of Theorem 2.2 when s = 0. The next paragraph then uses such a well-posedness
result to deduce the result for s > 0.

Before that, let us just mention how we can also use the mentioned L2 weighted spaces introduced at
the beginning of this paragraph to derive a priori energy estimates. Because the above localization result
only requires the well-posedness of the three problems (7), (8) and (9), then it can be extended to the most
generic class of systems which are constantly hyperbolic and satisfy the so-called uniform Kreiss-Lopatinskii
condition of [13]. In such a framework, using the results of [13], or the complete expositions of [[5]-Chapter
7] and [[4]-Chapters 4 and 5], or [21] to incorporate non homogeneous sources, estimate (6) becomes: there
exists γ0 > 0 such that if the sources f ∈ L2

γ(ΩT ), (g0, g1) ∈ L2
γ(∂Ω0,T )× L2

γ(∂Ω1,T ) for γ ≥ γ0, then

e−2γT ∥u(T, ·)∥2L2(Γ) + γ∥u∥2L2
γ(ΩT ) + ∥u|xd=0∥2L2

γ(∂Ω0,T ) + ∥u|xd=1∥2L2
γ(∂Ω1,T ) (13)

≤ C

(
1

γ
∥L(∂)u∥2L2

γ(ΩT ) + ∥B0u|xd=0∥2L2
γ(∂Ω0,T ) + ∥B1u|xd=1∥2L2

γ(∂Ω1,T )

)
,
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where we stress that the above threshold γ0 is a priori strictly positive (we refer to the introduction of [2]
for more details).

Such an estimate can then be extended to higher order Sobolev spaces and can be used in place of the
energy estimate of Theorem 2.2 to deal with non linear problems. If one does so then to make the iterations

converge he/she will have to ensure that e2γT

γ is small (see Paragraph 2.2). It can be ensured by assuming

first that T ∼ 1
γ to kill the exponential factor and then by considering γ ≥ γ0 large enough. Consequently

we also obtain a finite time of resolution.
In [2], by using an extra assumption asking the invertibility of some operator reading I −T we charac-

terized the boundary conditions for which the estimate (13) holds for γ0 = 0. Consequently in the above
discussion at the end of the day one only has to impose that γ > 0 is large enough and a priori the final
time of resolution is longer.

2.1.2 Persistence of regularity

Once again we will only show the energy estimate. Because tangential derivatives commute with the initial
and boundary conditions of (4) we can apply Proposition 2.1 which gives the estimate for the Hs

x′ -norms of
u in terms of the analogous norms of the sources. Consequently in order to close the estimate for the first
term in |||u(t)|||s it is sufficient to estimate the norms Hj

xd
(Hs−j

x′ ) of u. In order to do so, we consider first
the second term appearing in |||u(t)|||s, that is to say the term involving the first time derivative. Classically

we use the interior equation to isolate the time derivative ∂tu and write ∂tu = f −
∑d
j=1Aj∂ju from which

we evaluate the value of the trace (∂tu)|t=0. Because of the flatness of the source terms it vanishes.

Let β ∈ Nd−1 be such that |β| ≤ s− 1, we have that ∂t∂
β
x′u solves the system

L(∂)∂t∂
β
x′u = ∂t∂

β
x′L(∂)u in ΩT ,

B0(∂t∂
β
x′u)|xd=0 = ∂t∂

β
x′B0u|xd=0 on ∂Ω0,T ,

B1(∂t∂
β
x′u)|xd=1 = ∂t∂

β
x′B1u|xd=1 on ∂Ω1,T ,

(∂t∂
β
x′u)|t=0 = 0 on Γ,

(14)

so that Proposition 2.1 applies. It gives the control of the first part of the second term in |||u(t)||| namely the
control of ∂tu in Hs−1

x′ . We can use such a control to close the estimate for the first term of |||u(t)|||s. Using
Assumption 2.2, we can now isolate the normal derivative. Indeed we can write

∂βx′∂du = A−1
d

[
∂βx′L(∂)u− ∂βx′∂tu−

d−1∑
j=1

Aj∂j∂
β
x′u︸ ︷︷ ︸

∈L2(Γ)

]
.

We can conclude iteratively. Indeed let β ∈ Nd−1 be such that |β| ≤ s− 2, then we have

∂βx′∂
2
du =A−1

d

[
∂βx′∂dL(∂)u−

d−1∑
j=1

Aj∂j∂
β
x′∂du︸ ︷︷ ︸

∈L2(Γ)

]
−A−1

d ∂t∂du

= A−1
d

[
∂dL(∂)u−

d−1∑
j=1

Aj∂j∂
β∂du

]
− (Ad)

−2
[
∂t∂

β
x′L(∂)u−

d∑
j=1

Aj∂j∂
β
x′∂tu︸ ︷︷ ︸

∈L2(Γ)

]
+A−2

d ∂2tt∂
β
x′u,

where to estimate the last term in the right-hand side we use (14). A simple induction then ends the proof
of estimate (6). This completes the discussion of the main lines of the proof of Theorem 2.2.

2.2 Well-posedness of the non linear problem

The proof of the well-posedness of the non linear problem (1) follows from the one of the associated linear
problem (4) by a straightforward contraction argument. Such a method being classical, we will here only
insist on the main ideas in the proof.

8



Let us first recall the following non linear estimates (see for instance [[19]-Paragraph 2.5.1])

Proposition 2.2 Consider a C∞ function F satisfying F(0) = 0. Then for all s > d
2 , there is a non

decreasing function C(·) on R+ such that for all T > 0 and for all u ∈ Ws
T , F(u) ∈ Ws

T . In addition for all
0 ≤ t ≤ T :

|||u(t)|||s ≤ R =⇒ |||{F(u)}(t)|||s ≤ C(R).

Moreover we also have the lipschitzian estimate, for all u, v ∈ Ws
T satisfying |||u(t)|||s, |||v(t)|||s ≤ R then

|||{F (u)− F (v)}(t)|||s ≤ C(R)|||{u− v}(t)|||s.

We define the sequence (uν)ν∈N as follows: u0 as the solution to
L(∂)u0 = f in ΩT ,

B0u
0
|xd=0 = g0 on ∂Ω0,T ,

B1u
0
|xd=1 = g1 on ∂Ω1,T ,

u0|t=0 = 0 on Γ,

(15)

and for all ν ≥ 1, uν as the solution to
L(∂)uν = f + F(uν−1) in ΩT ,

B0u
ν
|xd=0 = g0 on ∂Ω0,T ,

B1u
ν
|xd=1 = g1 on ∂Ω1,T ,

uν|t=0 = 0 on Γ.

(16)

Let us stress here that such a sequence is well-defined at least for short times. Indeed, Theorem 2.2
applies to justify the existence of u0 on the time interval [0, T ]. Then because ∂jtF(u) reads under the form

∂jtF(u))|t=0 =

j∑
k=1

∑
j=j1+...+jk

Ckj1,...,jk d
k
uF(u0)(∂

j1
t u, ..., ∂

jk
t u),

where the C ·
··· stand for some numerical constants, then the flatness of uν−1 (see (14)) spreads to the interior

source term of (16). The regularity of the source being given by Proposition 2.2. As a consequence, Theorem
2.2 applies and shows that uν is well-defined for all ν ∈ N.

The next point aims to obtain uniform bounds on the sequence (uν)ν∈N. More precisely

Lemma 2.1 We can choose R > 0 large enough and 0 < T0 ≤ T small enough such that for all ν ∈ N and
for all 0 ≤ t ≤ T0, we have |||uν(t)|||s ≤ R

Proof : We proceed by induction. Firstly for ν = 0, the energy estimate of Theorem 2.2 gives that for all
0 < t ≤ T ∣∣∣∣∣∣u0(t)∣∣∣∣∣∣

s
≤ C

(∫ T

0

∥f(s·)∥L2(Γ) ds+ ∥g0∥2Hs(∂Ω0,T ) + ∥g1∥2Hs(∂Ω1,T )

)
︸ ︷︷ ︸

:=C0

.

So that, we have the desired property for the initial step as soon as we choose R ≥ C0.
Then we assume that at some step ν ∈ N, we have |||uν(t)|||s ≤ R, for all t ≤ T . The energy estimate of

Theorem 2.2 gives

∣∣∣∣∣∣uν+1(t)
∣∣∣∣∣∣
s
≤ C0 + C

∫ T

0

|||{F(uν)}(r)|||s dr ≤ C0 + TC(R),

where we used the first property of Proposition 2.2. We fix R such that R ≥ C0 + 1 and we then choose T
small enough in order to ensure that TC(R) ≤ 1. So that for 0 < t ≤ T0 = min(T , 1

C(R) ) we have the desired
property.

9



□

Once we have shown uniform bounds on the sequence (uν)ν∈N then the convergence of this sequence follows
easily. Indeed consider the sequence (vν)ν∈N defined by vν := uν+1 − uν . Such a sequence satisfies

L(∂)vν = F(uν)− F(uν−1) in ΩT ,

B0v
ν
|xd=0 = 0 on ∂Ω0,T ,

B1v
ν
|xd=1 = 0 on ∂Ω1,T ,

vν|t=0 = 0 on Γ,

so that the energy estimate of Theorem 2.2 gives the bound (we use the second point of Proposition 2.2):
for all t ≤ T0

|||vν(t)|||s ≤ C(R)

∫ t

0

∣∣∣∣∣∣vν−1(r)
∣∣∣∣∣∣
s
dr.

We have
∣∣∣∣∣∣v0(t)∣∣∣∣∣∣

s
≤ 2R so that iterative integrations lead to the estimate

|||vν(t)|||s ≤ Kν+1 tν−1

(ν − 1)!
→ν→∞ 0,

for some K > 0. As a consequence (uν)ν∈N converges in Ws
T0
, its limit being a solution to (1). The proof of

the uniqueness of the solution follows the same lines and is omitted here. It ends up the proof of Theorem
2.1.

□

3 Geometric optics expansions

This section is devoted to the asymptotic study of the following highly oscillating problem associated to (1).
For 0 < ε≪ 1 and T > 0, we consider

L(∂)uε = F(uε) in ΩT ,

B0u
ε
|xd=0 = gε(t, x′) on ∂Ω0,T ,

B1u
ε
|xd=1 = 0 on ∂Ω1,T ,

uε|t=0 = 0 on Γ,

(17)

where the given source gε reads

gε(t, x′) := G
(
t, x′;

ζ · (t, x′)
ε︸ ︷︷ ︸

:=ψ(t,x′)=θ0

)
,

for a given smooth function G which is periodic with respect to the last variable θ0 ∈ R, and where ζ :=

(τ , η) ∈ R1+d−1 is a given boundary frequency.
Of course Theorem 2.1 applies to system (17) and shows that this problem is locally well-posed in time.

However a priori the final time of resolution T given by Theorem 2.1 depends on ε. An interesting question
is consequently the one of the existence of a solution to (17) on a time interval independent of ε to make
sure that such an interval does not shrink to {0} when ε ↓ 0. Such a question will be answered in Theorem
3.2 by constructing an exact solution near an approximate one.

In order to do so, in the following we will discuss and describe the solution uε to (17) by using geometric
optics expansions. In order to do this, the current section is divided as follow: Paragraph 3.1 recalls some
materials which are classically used in the construction of geometric optics expansions and states the main
results, namely Theorems 3.1 and 3.2. Then the proof of Theorem 3.1 (existence of the expansion) occupies
Paragraphs 3.2, 3.3 and 3.4, while the one of Theorem 3.2 (justification of the expansion) occupies Paragraph
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3.5.

Here our aim was to recover the same kind of results as the ones obtained in [24]. We will however
simplify the framework of study by considering only hyperbolic frequencies (see Definition 3.1) whereas
Williams achieved the construction in the difficult and technical case of glancing frequencies (see Lemma
3.1). Such a simplification will be explained and motivated in the core of the text. It is fair to say that our
analysis and exposition closely follows the one of [24].

3.1 Preliminaries and main results

3.1.1 Mandatory materials

This paragraph regroups the several main objects and assumptions needed in order to perform geometric
optics expansion for the strip problem (17). We tried to be as brief as possible and we refer to [3] for a longer
exposition of the phase generation process in the strip geometry.

Let us first describe the expected phases appearing in the geometric optics expansion. In order to do so,
it is convenient to have a quick spectral analysis of the hyperbolic operator L(∂). We perform a Laplace
transform with respect to time t↭ σ := γ+ iτ , with γ > 0 and τ ∈ R and a Fourier transform with respect
to x′ ↭ η ∈ Rd−1, in the evolution equation L(∂)u = 0. At least at the formal level, it leads us to consider
the so-called resolvent strip problem

d
dxd

û(ζ, xd) = A (ζ)û(ζ, xd) for xd ∈ ]0, 1[ ,

B0û|xd=0(ζ) = ĝ0,

B1û|xd=1(ζ) = 0,

(18)

where ζ is now a shorthand notation for (σ, η) and where the resolvent matrix A is defined by:

A (ζ) := −A−1
d

(
σI +

d−1∑
j=1

ηjAj

)
.

It will be convenient to define the frequency set

Ξ :=
{
ζ := (σ := γ + iτ, η) ∈ C× Rd−1 \ γ ≥ 0

}
,

and its boundary Ξ0 := Ξ ∩ {γ = 0}.
The eigenvalues of A then encode the behaviour of the solution to (18). A well-known result of Hersh

[10] establishes that as long as the Laplace frequency σ has non vanishing real part, then the eigenvalues of
A (ζ) have non vanishing real part. With more details p (resp. N −p) of them have negative (resp. positive)
real part. In the following we denote by Es(ζ) (resp. Eu(ζ)) the associated eigenspace. We thus have the
decomposition

CN = Es(ζ)⊕Eu(ζ). (19)

When studying geometric optics expansions a precise analysis of the boundary frequencies, namely the
ones satisfying γ = 0 is required (recall the definition of ζ in (17)). Of course, Hersh’s result [10] does
not hold any more for these boundary frequencies, because in the limit γ ↓ 0, a signed quantity will not
be signed any more. Consequently the real part of some of the eigenvalues will degenerate to zero. The
following lemma, the so-called block structure lemma of [13] (see also [18]), describes how such degeneracies
occur.

Lemma 3.1 If the boundary value problem (17) is strictly hyperbolic and admits a non characteristic bound-
ary (see Assumption 2.2 below), then for all ζ ∈ Ξ, one can find a neighbourhood V of ζ in Ξ, a positive

integer L ≥ 0, integers ϱ1, ..., ϱL ≥ 1 such that N =
∑L
k=1 ϱk and finally a matrix T ∈ GLN (C) defined and

regular on V such that
∀ ζ ∈ V , T−1(ζ)A (ζ)T (ζ) = diag(A1(ζ), ...,AL(ζ)),

where the blocks Aj ∈ Mϱj×ϱj (C) satisfy one of the following alternatives:

11



1. All the elements in the spectrum of Aj have strictly negative real part.

2. All the elements in the spectrum of Aj have strictly positive real part.

3. We have ϱj = 1, Aj(ζ) ∈ iR and ∂γAj(ζ) ∈ R \ {0}.

4. We have ϱj > 1 and there exists µj ∈ R such that the matrix Aj(ζ) reads

Aj(ζ) = i

µj 1 0
. . . 1

0 µj


where the South-West corner coefficient of ∂γAj(ζ) ∈ R \ {0}.

With such lemma in hand, we can define the four possible kinds of frequencies.

Definition 3.1 Let ζ ∈ Ξ0 we say that such a boundary frequency is

� elliptic if Lemma 3.1 (for ζ) holds with blocks of type 1. and 2. only.

� mixed if Lemma 3.1 holds with blocks of type 1., 2. and at least one block of type 3..

� hyperbolic if Lemma 3.1 holds with blocks of type 3. only.

� glancing if Lemma 3.1 holds with one block of type 4..

Each of the above frequencies have a distinct behaviour in geometric optics expansions. The hyperbolic
ones, associated to type 3. blocks in Lemma 3.1 are the most frequently studied. They are linked with the
well-known transport phenomena in geometric optics expansions. The elliptic and glancing ones, associated
to blocks of type 1., 2. and 4., are considered for instance in [1] (see also [17] and [16]) for elliptic modes
or in the seminal works of Williams [23] and [24] for glancing modes. In the geometric optic expansion,
such modes are not associated to transport phenomena, but with boundary layers. That is to say that they
create terms reading under the form U(t, x; xd

εα ) (with α = 1 for elliptic modes and α = 1
2 for glancing ones)

appearing to correct the expansion near the boundary in order to force it to satisfy the boundary conditions.
As pointed in [3], the self-interaction phenomenon induced by the geometry of the strip is linked to

hyperbolic modes only. It is due to the fact that boundary layers have fast decay with respect to the normal
variable xd. So that, when an information on ∂Ω0,T is propagated via such layers it hits the other side of
the boundary ∂Ω1,T with amplitude O(ε∞), so that it is negligible from a geometric optics point of view.
As a consequence, such boundary layers are not reflected back and can not lead to self-interaction.

Because in this contribution we are particularly interested in an analysis where non linear self-interaction
and geometric self-interaction coexist, we will restrict our study to the case of a hyperbolic boundary fre-
quency. In such a setting, the decomposition (19) is still valid in the limit γ ↓ 0 and it is well-known that
the spaces Es(ζ) and Eu(ζ) can be made more precise. Following for instance [6], we have

Es(ζ) := ⊕k∈I kerL (τ , η, ξk) and Eu(ζ) := ⊕ℓ∈O kerL (τ , η, ξℓ), (20)

where L denotes the symbol of L(∂), that is to say for (ξ0, ξ
†) ∈ R1+d, L (ξ0, ξ

†) := ξ0I +
∑d
j=1 ξ

†
jAj , and

where the set I (resp. O) is the set of incoming (resp. outgoing) indices. These sets are defined in terms
of the group velocities as follows.

Let us first remark that iξm is a purely imaginary eigenvalue of A (ζ) if and only if we have the dispersion
relation

det(τI +A(η, ξm)) = 0. (21)

where A(ξ†) :=
∑d
j=1 ξ

†
jAj stands for the spatial symbol of L(∂).

So that if we use the following hyperbolicity assumption
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Assumption 3.1 The operator L(∂) is strictly hyperbolic in the sense that there exists N analytic functions
λ1 < ... < λN on Rd \ {0} such that

∀ ξ† ∈ Sd−1, det
(
τI +A(ξ†)

)
=

N∏
k=1

(
τ + λk(ξ

†)
)
.

Then one can find some index km ∈ J1, NK such that τ + λkm(η, ξm) = 0. This motivates the definition:

Definition 3.2 (Group velocities) We define

� I the set of incoming7 indices as the set formed by the indices m ∈ J1, NK such that ∂dλkm(η, ξm) > 0.

� O the set of outgoing indices as the set formed by the indices m ∈ J1, NK such that ∂dλkm(η, ξm) < 0.

� For j ∈ I ∪ O, we denote vj := ∇λkj (η, ξj) the so-called group velocity associated to the index j.

This motivates the following definition for the phase functions: for all j ∈ J1,MK, φj := φj(t, x) := ψ(t, x′)+
xdξj , where the (ξ

j
)j∈J1,NK, denote the roots in the ξ-variable of the dispersion relation

det
(
τI +

d−1∑
j=1

η
j
Aj + ξAd

)
= 0.

We regroup the several phases in the following notation: for all j ∈ J1, NK, let θj be a placeholder for 1
εφj

and
θ := (θ1, ..., θN ), φ = (φ1, ..., φN ). (22)

We assume that the boundary frequency ζ satisfies:

Assumption 3.2 Let ζ := (iτ , η) ∈ Ξ0 be a given boundary frequency. We assume that ζ satisfies the
requirements:

� ζ is hyperbolic in the sense of Definition 3.1.

� We have the small divisor condition that there exists C > 0 and d ∈ R such that

∀α ∈ ZN \ {0}, |∇(t,x)α · φ| ≥ C|α|d. (23)

Let us stress that condition (23) implies in particular that the phases contained in φ are Q-independent. It
will be particularly useful in the derivation of the cascade of equations (see Paragraph 3.2). As a consequence,
(23) excludes real resonances of the form naφa + nbφb = ncφc, with (na, nb, nc) ∈ Z3, so that it a priori
excludes one type of non-linear selfinteraction that we wanted to study.

Let us however point that this is not really an obstruction nor a restriction. Indeed, if a resonance of the
form naφa + nbφb = ncφc, with (na, nb, nc) ∈ Z3, occurs then one can uses adapted basis as in [24] in order
to rearrange the things in such a way that (23) holds.

We give some more details about such adapted basis as introduced in [[25]-Section 3] and then considered
in [24]-Paragraph 8.2].

A real resonance occurs when we have a relation
∑
j∈I∪O njφj = 0 for some (non trivial) integers nj ∈ Z.

In such a situation, we will consider a so-called adapted basis for the Q-span of {φj}j∈I∪O . Consider a
basis B(ζ) of the Q-span of {φj}j∈I∪O , because of the resonances such a basis contains b ≤ M elements
and we parametrize B(ζ) := span{ψk}1≤k≤b. We then introduce the shorthand notation ψ := (ψ1, ..., ψb)
and consider

Dj := {α ∈ Zb \ α · ψ is in the R− span of φj}.
Let α∗

j be an element with minimal length in Dj , such that α∗
j · ψ = λjφj , λj > 0. With such tools in

hand we can precise the notion of adapted basis8 as a straightforward modification of the adapted basis of
[[24]-Definition 8.2].

7We choose as a convention incoming and outgoing for the side ∂Ω0,T . Of course, if one denotes by I1 (resp. O1) the set
of incoming (resp. outgoing) indices for the side ∂Ω0,T , then he/she obtains I1 = O and O1 = I .

8Maybe the study of some example can here be of some help. Assume that we have the resonance relations φ1 + 2φ2 = φ3

and φ2 + 2φ3 = φ4. We claim that (φ1, φ2) is an adapted basis. Indeed, the boundary values are satisfied and moreover in
such a setting we have α∗

1 = (1, 0), α∗
2 = (0, 1), α∗

3 = (1, 2) and α∗
4 = (2, 5).
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Definition 3.3 [Adapted basis]A basis B(ζ) = {ψk}1≤k≤b of the Q-span of {φj}j∈I∪O is said to be adapted
if

1. For all k ∈ J1, bK, ψk|xd=0
= mkψ for some mk ∈ Z.

2. For all k ∈ J1, bK, one can find some j ∈ I ∪ O, such that ψk|xd=1
= mk(ψ + ξj) for some mk ∈ Z.

3. For all j ∈ I ∪ O, φj = α∗
j · ψ.

Points 1. and 3 of Definition 3.3 appear in Definition 8.2 of [24]. Point 2. is just a straightforward adaptation
made to ensure that the adapted basis has a good behaviour on the second side of the strip ∂Ω1,T .

So that if for a resonant family of (φj)j∈I∪O we consider the family (ψk)1≤1k≤b instead of (φj)j∈I∪O

then because the new family is not resonant any more it satisfies the small divisor Assumption 3.2.

Of course the question of the existence of such adapted basis should be addressed. The interesting fact
is here that such basis can always be constructed at least for hyperbolic frequencies. We refer the interested
reader to [[25]-Proposition 3.7]. Because we modified a little the definition of adapted basis, one has to verify
that the constructed basis in [[25]-Proposition 3.7] satisfies the extra condition 2. of Definition 3.3, but it is
straightforward.

So that, such basis permit to deal with resonances, but let us point that compared to some more recent
works of the literature (see for instance [7]), then such a way to take into account resonances it not very
descriptive. Indeed we can find in [7] (see equations (2.63) and (2.64)) some profiles equations which clearly
take into account and describe the influence of such resonances. Such equations are non-linear so that they
are solved inductively by using iterative schemes (see equations (2.71) and (2.72) of [7]).

As we will see in Paragraph 3.3 the main point in the present construction is to justify that in the
analysis of such schemes, one can decouples the geometric self-interaction (which acts in the boundary
conditions) from the non-linear one (which acts in the interior equation). So that, even if we do not have
a precise description of resonances here because of the use of adapted basis, then we however succeeded in
our objective which was to justify that the two self-interaction phenomena do not interact the one with the
other.

We have reasons to believe that in the framework of [7] the non linear coupling in the interior and the
one at the boundary do not interact the one with the other exactly as it will be described below. So that the
combination of the profiles equations of [7] with the present article shall probably give a descriptive descrip-
tion of resonances for hyperbolic strip problems. Our aim being here to determine if some new phenomena
come into play, we postpone this precise description for later studies.

We then consider our second small divisor assumption.

Assumption 3.3 Consider a boundary frequency ζ, its associated phases functions φ and let P(α) be the
symbol of the operator of derivation P appearing in the cascade of equations (27) (see equations (28) and
(31)). Then we assume that there exists two numerical constants C > 0 and d ∈ R such that for all α ∈ ZN
satisfying that detP(α) ̸= 0 we have

|detP(α)| ≥ C|α|d.

Such an assumption is classically used in non linear geometric optics expansions in order to be able to
construct correctors. With more details the above assumption ensures the existence of some pseudo-inverse
operators (see the operator Q in the following) which are required to express the non polarized part of the
correctors (and consequently to construct such higher order terms). By the way let us introduce the following
usual projections in geometric optics expansions:

Definition 3.4 For all j ∈ J1, NK we consider

� πj the projection on kerL (dφj) along the range of L (dφj).

� rj ∈ CN a generator of kerL (dφj).
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Of course, one can ask when the small divisors Assumptions 3.3 holds. The answer is that for hyperbolic
frequencies one can generically assume that Assumption 3.3 holds. Our aim is not here to be very precise
about what we mean by ”generically” and we refer to [[25]-Proposition 4.5] for a precise statement and proof.

To construct geometric optics expansions for boundary value problems, a microlocalized version of the
condition ensuring the strong well-posedness, namely the uniform Kreiss-Lopatinskii condition of [13], is
mandatory. We will consequently assume in the following that we have

Assumption 3.4 [Localized Kreiss-Lopatinskii condition] Let ζ be a boundary frequency. We assume that
the boundary condition B0 (resp. B1) satisfies the localized Kreiss-Lopatinskii condition for the side ∂Ω0,T

(resp. ∂Ω1,T ) at ζ meaning that

kerB0 ∩Es(ζ) = {0} (resp. kerB1 ∩Eu(ζ) = {0}).

In particular, the matrix B0 (resp. B1) is invertible when restricted to Es(ζ) (resp. Eu(ζ)). We denote such
an inverse by ϕ0 (resp. ϕ1).

At last, the following definition gives a rigorous framework for the set of profiles and the set of remainders.

Definition 3.5 (Profiles and remainders) To define precisely the set of profiles we first introduce

P̃T :=

{
ũ := ũ(t, x; θ̃) ∈ C∞(ΩT × TN ), ũ :=

∑
α∈ZN

uα(t, x)e
iα·θ̃ s.t. ∀α ∈ NN , ∂t,x,θ̃ ũ is bounded

}
.

� The set of profiles PT is the set of functions in P̃T which have been evaluated in the suitable phases
described above. More precisely

PT :=
{
u = u(t, x; θ) s.t. u = ũ|θ̃=θ with ũ ∈ P̃T and θ as in (22)

}
.

� For s ∈ N and T, ϱ > 0. We define:

Bs
ϱ,T := {uε := uε(t, x) ∈ Hs(ΩT ) \ ∀α ∈ N1+d with |α| ≤ s, ∥∂αuε∥L2(ΩT ) ≤ ϱε−|α|},

Ds
ϱ,T := {uε := uε(t, x) ∈W s,∞(ΩT ) \ ∀α ∈ N1+d with |α| ≤ s, ∥∂αuε∥L∞(ΩT ) ≤ ϱε−|α|},

and we define similarly the sets Bs
ϱ,T,0 and Ds

ϱ,T,0 (resp Bs
ϱ,T,1 and Ds

ϱ,T,1) as the sets obtained when
one uses ∂Ω0,T (resp. ∂Ω1,T ) instead of ΩT in the above definitions. The set of remainders in the
interior (resp. at the boundary) Rs

ϱ,T (resp. rsϱ,T,0 and rsϱ,T,1) is thus defined by Rs
ϱ,T := Bs

ϱ,T ∩Ds
ϱ,T

(resp. rsϱ,T,0 := Bs
ϱ,T,0 ∩Ds

ϱ,T,0 and rsϱ,T,1 := Bs
ϱ,T,1 ∩Ds

ϱ,T,1).

� For all the above functional spaces, here symbolized by X, we will use the notation X♭ for the subspace
of X formed of functions which are flat at the time origin.

3.1.2 Main results.

The main results of the article about geometric optics expansions are Theorems 3.1 and 3.2. The first one
establishes the existence of the expansion. The second one, namely Theorem 3.2 is a Guès’s type theorem
(see [9]) showing the existence of a solution to (17) lying near an approximated one. As a consequence,
combining the two above theorems, we end up with Corollary 3.1 which in particular justifies that the
constructed geometric optics expansion is effectively an approximate solution to (17).

Theorem 3.1 Under Assumptions 2.1, 2.2 and 2.3 to ensure the well-posedness and Assumptions 3.1, 3.2,
3.3 and 3.4 to construct the expansion. Consider an entire non linearity F satisfying F(0) = 0 and a
boundary source gε in (17) satisfying that G is regular, flat at the time origin, with bounded derivatives.
Choose a couple of parameters (M,m1) in such a way that M − 1 ≥ m1 ≥ d+1

2 . Then there exists a time
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0 < T0 ≤ T , profiles un ∈ PT0,♭, remainders Rε ∈ Rm1

ϱ,T0,♭
and (rε0, r

ε
1) ∈ rm1

ϱ,T0,0,♭
× rm1

ϱ,T0,1,♭
such that the

ansatz

ũε(t, x) :=

N∑
n=0

εnun

(
t, x;

φ(t, x)

ε

)
(24)

satisfies 
L(∂)ũε = F(ũε) + εM−1Rε in ΩT ,

B0ũ
ε = gε + εM−1rε0 on ∂Ω0,T ,

B1ũ
ε = εM−1rε1 on ∂Ω1,T ,

ũε|t=0 = 0 on Γ.

(25)

Theorem 3.2 (Exact solutions near approximate ones) Under Assumptions 2.1, 2.2 and 2.3, choose
two parameters (M1,m1) in such a way that M1 ≥ m1 >

d+1
2 and let be given an approximate solution ũε

to (1) in the sense that ũε ∈ Dm1

ϱ,T,♭, for some ϱ, T > 0 and that we have
L(∂)ũε = F(ũε) + εM1Rε in ΩT ,

B0ũ
ε = gε + εM−1rε0 on ∂Ω0,T ,

B1ũ
ε = εM−1rε1 on ∂Ω1,T ,

ũε|t=0 = 0 on Γ,

for some terms Rε ∈ Bm1

ϱ,T,♭, (r
ε
0, r

ε
1) ∈ Bm1

ϱ,T,0,♭ ×Bm1

ϱ,T,1,♭. Then there exists ε0 > 0 and ϱ0 > 0 such that for

all 0 < ε < ε0 the problem (17) has a unique solution uε = ũε + εM1Bm1

ϱ0,T,♭
.

Combining Theorems 3.1 and 3.2 we then end up with

Corollary 3.1 Under Assumptions of Theorems 3.1, let the several parameters T0, (M,m1) be as above.
We consider the profiles un given by Theorem 3.1, then there exists ε0, ϱ0 > 0, such that for all 0 < ε < ε0,
the problem (17) admits a unique solution uε ∈ Hm1(ΩT0). This solution is given by uε = ũε+ εM−1Bm1

ϱ0,T0,♭

where ũε is given by (24).

3.2 The ansatz and the cascade of equations

We recall that θ is a placeholder for φ
ε , θ0 is one for 1

εψ(t, x
′). For M ∈ N, we define as an ansatz

ũε(t, x) :=

M∑
n=0

εnun
(
t, x;

φ(t, x)

ε

)
. (26)

Injecting the ansatz (26) in the interior equation of (17), Taylor expanding the non-linearity around u0 and
regrouping the different terms according to their powers of ε gives a cascade of equations in the interior.
With more details, we obtain the cascade:

Pu0 = 0 for ε−1,

Pu1 + L(∂)u0 = f(u0) for ε0,

Pun+1 + L(∂)un = f ′(u0)un + Fn(u0, ..., un−1) for εn, ∀n ≥ 1

(27)

where the operator P is defined by

P := P(∂θ) :=
∑

j∈I∪O

L (dφj)∂θj . (28)

and where the term Fn depends on the derivatives of F. Using for instance [[19]-equation (2.5.5)], such terms
can be made precise. However such explicit values will be of little interest in the following.
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Injecting the ansatz in the boundary conditions of (17) gives the boundary cascade of equations

∀n ≥ 0,

{
B0un|xd=0

(t, x′; θ0, ..., θ0) = δn,0G(t, x
′; θ0) on ∂Ω0,T ,

B1un|xd=0
(t, x′; θ0 + ξ1, ..., θ0 + ξN ) = 0 on ∂Ω1,T

(29)

where δ·,· stands for Kronecker’s symbol.
At last, injecting the ansatz in the initial condition gives:

∀n ≥ 0, un|t=0
= 0 on Γ. (30)

The two next paragraphs describe the construction of solutions to the cascades (27), (29) and (30). We
first consider the leading order term in Paragraph 3.3, while Paragraph 3.4 is devoted to higher order terms.

3.3 The leading order term

Let us use the classical notation: for a periodic function f with respect to some variable θ we write
f(θ) := f + f∗(θ) where f stands for the mean of f and f∗ denotes the oscillating part.

3.3.1 Analysis of the profiles equations

The first equation of (27) implies that the leading order amplitude u0 lies in kerP. So that we have to
consider E the projection onto kerP. To precise this operator, let us remark that for a profile u ∈ PT , we
have

Pu =

N∑
j=1

L (dφj)∂θj

( ∑
α∈ZN

uα(t, x)e
iα·θ

)
= i

∑
α∈ZN

N∑
j=1

αjL (dφj)︸ ︷︷ ︸
:=P(α)

uα(t, x)e
iα·θ. (31)

So that a non trivial amplitude will contribute in the ansatz if and only it lies in a trivial component of
kerP(α). This motivates the following definition;

Definition 3.6 [Characteristic frequencies]Let α ∈ ZM , we say that α is a characteristic frequency and we
denote α ∈ C if we have detP(α) = 0. With the material of Paragraph 3.1.1 in hand, we can describe
C := ∪Nj=1Cj, where

Cj := {α ∈ ZN \ α · dφ ∈ spanR{dφj}}.

Because of the small divisor Assumption 3.2, the several sheets of C do not intersect (because we do not have
resonance), except for α = 0, so that

Cj :=
{
(0, ..., 0, αj , 0, ..., 0) ∈ ZN with αj ∈ Z

}
.

Then we define properly the projection E : PT → PT on kerP. In order to do so, we first extend the
definitions of the projections πj on kerL (dφj) to the whole set of frequencies, by setting: for α ∈ ZN

πα = 0 if α ̸∈ C,
π0 = I,

πα = πj if α ∈ Cj \ {0}.
(32)

Because of the remark of Definition 3.6, we can write E := E0 +
∑N
j=1 Ej , where the projections Ej do

not interact the one with the others and where the operators E· have the following action on monomials:{
E0(uαe

iα·θ) = uα if α = 0 and E0(uαe
iα·θ) = 0 otherwise,

Ej(uαe
iα·θ) = (παuα)e

iα·θ if α ∈ Cj \ {0} and Ej(uαe
iα·θ) = 0 otherwise.
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As already mentioned with Assumption 3.3 in hand, we can construct (we refer for instance to [[22]-Paragraph
7.4] an operator Q : PT → PT which is a pseudo-inverse of P in the sense that

PQ = QP = I −E,

Im E = kerP = kerQ,
kerE = Im P = Im Q.

(33)

Applying Q to the first equation of the cascade (27) gives (I − E)u0 = 0, so that Eu0 = u0 and we recover
the usual polarization property of the leading order amplitude.

Because of the definition of E, we can write

Eu0(t, x; θ) := u0(t, x) +

M∑
j=1

σ0,j(t, x; θj)rj , (34)

where the σ0,j are some (unknown) real valued functions and where we recall, see Definition 3.4, that
span{rj} := kerL (dφj). So that, in order to construct the leading order term it is sufficient to determine
its mean u0 and the amplitudes σ0,j .

To obtain evolution equations for such quantities, we consider the second equation in the interior cascade
(27). Applying E to cancel the first term in the left-hand side, we obtain EL(∂)Eu0 = EF(u0). Using the

decomposition of E = E0+
∑N
j=1 Ej , the expression (34), and Lax lemma9 [14], we end up with the (coupled

via the non linearity) system of equations in the interior for the leading order term{
L(∂)u0 = F(u0) in ΩT ,

∀ j ∈ J1, NK, (∂t + vj · ∇x)σ0,jrj = EjF(u0) in ΩT × T,
(35)

and we have to precise the required boundary conditions. Let us first recall here that depending on the kind
of vj , the transport equation in (35) can be incoming (j ∈ I ), and it only requires a boundary condition
on ∂Ω0,T , or outgoing (j ∈ O), and it only requires a boundary condition on ∂Ω1,T .

So that with the expression (34), the first couple of boundary conditions in the boundary cascade becomes:{
B0

[
u0 +

∑
k∈I σ0,krk

]
|xd=0,θ=(θ0,...,θ0)

= G−B0

[∑
ℓ∈O σ0,ℓrℓ

]
|xd=0,θ=(θ0,...,θ0)

,

B1

[
u0 +

∑
ℓ∈O σ0,ℓrℓ

]
|xd=1,θ=(θ0+ξ1,...,θ0+ξN )

= −B1

[∑
k∈I σ0,krk

]
|xd=1,θ=(θ0+ξ1,...,θ0+ξN )

,

so that separating the mean value from the oscillations and from the uniform Kreiss-Lopatinskii condition
(see Assumption 3.4), we obtain the quadruplet of boundary conditions

B0u0|xd=0
= G,

B1u0|xd=1
= 0,

∀ k ∈ I , σ0,k|xd=0
(θ0)rk = πkϕ0

[
G∗(θ0)−B0

∑
ℓ∈O σ0,ℓ|xd=0

(θ0)rℓ

]
,

∀ ℓ ∈ O, σ0,ℓ|xd=1
(θ0 + ξℓ)rℓ = −πℓϕ1B1

∑
k∈I σ0,k|xd=1

(θ0 + ξk),

where we recall that ϕ0 and ϕ1 stands for the inverse given by the localized Kreiss-Lopatinskii condition (see
Assumption 3.4). As a consequence, adding the initial conditions we end up with the following system to

9Such a classical lemma ensures that

∀ j ∈ J1, dK, ∀ k ∈ J1, NK we have πkAjπk = vk,jπk.
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solve in order to determine the several components of the leading order amplitude

L(∂)u0 = F(u0) in ΩT ,

B0u0|xd=0
= G on ∂Ω0,T ,

B1u0|xd=1
= 0 on ∂Ω1,T ,

u0|t=0
= 0 on Γ,

∀ j ∈ I ∪ O, (∂t + vj · ∇x)σ0,jrj = EjF(u0) in ΩT × T,
∀ k ∈ I ,

∑
k∈I σ0,k|xd=0

(θ0)rk = πkϕ0

[
G∗(θ0)−B0

∑
ℓ∈O σ0,ℓ|xd=0

(θ0)rℓ

]
on ∂Ω0,T × T,

∀ ℓ ∈ O, σ0,ℓ|xd=1
(θ0 + ξℓ)rℓ = −πℓϕ1B1

∑
k∈I σ0,k|xd=1

(θ0 + ξk) on ∂Ω1,T × T,
∀ j ∈ I ∪ O, σ0,j|t=0

= 0 on Γ× T.

(36)

Such a system is studied in the following paragraph. Before its resolution, let us end up the present paragraph
by a short discussion describing the main ideas in the forthcoming proof. The system (36) is classically (see
for instance [24], [7]) composed of a boundary value problem determining the mean u0 with transport
phenomena determining the unknowns σj,0. Such two distinct behaviours being coupled the one with the
other via the non linearity F(u0) appearing in the interior equations.

However, compared with the classical geometry of the half-space10, we have an extra coupling of the
amplitudes at the level of the boundary conditions.

Such a coupling was first encountered in the linear case in [3]. What will be convenient for our following
analysis is that in order to deal with the boundary coupling in [3], no iterative scheme was used. Indeed,
such a coupling was ruled out by imposing the inversibility of some operator reading under the form I −T
(we refer to [3] or to the following paragraph for more details). As a consequence, there is no interaction
between the two coupling. Indeed, to deal with the non linear interior we use a usual iterative scheme, it
fixes the source term in the interior. The invertibility of the above operator, then decouples the boundary
conditions and determines the values of the required trace.

3.3.2 Solving the two coupled non linear systems

The following paragraph justifies that system (36) admits a unique solution at least for a short time of
existence T0 ≤ T . In order to state the result precisely it will be convenient to introduce the following
modification of the spaces Ws

T : for T > 0 and s ∈ N, let

Ws
T := {u ∈ C 0([0, T ] ;Hs(Γ× T)) \ ∀ j ∈ J0, sK we have ∂jt u ∈ C 0([0, T ] ;Hs−j(Γ× T))}.

It is equipped with the obvious norm and we define W
s

T := (Ws
T )
N . At last, we consider W

∞
T := ∩s≥0W

s

T .

Proposition 3.1 Under Assumptions 2.1, 2.2 and 2.3 and 3.4 if the source G is regular and flat at the origin
there exists a time 0 < T0 ≤ T such that system (36) has a unique solution (u0, (σ0,j)j∈I∪O) ∈ W∞

T0
×W

∞
T0
.

Moreover, the solution (u0, (σ0,j)j∈I∪O) is flat at the time origin.

The proof of Proposition 3.1 uses the study of the convergence of the following iterative scheme of
approximation. Let u00 ≡ 0 and for all j ∈ I ∪ O, σ0

0,j ≡ 0. We define the sequence (uν0 , σ
ν
0,j)ν∈N∗,j∈I∪O as

the solution (given by Theorem 2.1 and Proposition 3.2) of the following (decoupled) system of equations:

10In such a geometry, the outgoing modes do not require any boundary conditions, the associated transport equations can be
solved at the beginning and the associated traces can then be used in the boundary condition determining the incoming modes.
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for all µ ≥ 0,

L(∂)uν+1
0 = F(uν0) in ΩT ,

B0u
ν+1
0|xd=0

= G on ∂Ω0,T ,

B1u
ν+1
0|xd=1

= 0 on ∂Ω1,T ,

uν+1
0|t=0

= 0 on Γ,

∀ j ∈ I ∪ O, (∂t + vj · ∇x)σ
ν+1
0,j rj = EjF(u

ν
0) in ΩT × T,

∀ k ∈ I , σν+1
0,k|xd=0

(θ0)rk = πkϕ0

[
G∗(θ0)−B0

∑
ℓ∈O σ

ν+1
0,ℓ|xd=0

(θ0)rℓ

]
on ∂Ω0,T × T,

∀ ℓ ∈ O, σν+1
0,ℓ|xd=1

(θ0 + ξℓ)rℓ = −πℓϕ1B1

∑
k∈I σν+1

0,k|xd=1
(θ0 + ξk) on ∂Ω1,T × T,

∀ j ∈ I ∪ O, σν+1
0,j|t=0

= 0 on Γ× T.

(37)

The precise study of the convergence can be made exactly as the one described in Paragraph 2.2, so that
we will feel free to omit the details here and we will only give the well-posedness of the two linear problems
constituting scheme (37). We consider the two linear problems

L(∂)u = f in ΩT ,

B0u|xd=0 = g on ∂Ω0,T ,

B1u|xd=1 = 0 on ∂Ω1,T ,

u|t=0 = 0 on Γ,

(38)

whose well-posedness has been studied in Section 2, and
∀ j ∈ I ∪ O, (∂t + vj · ∇x)σjrj = πjf in ΩT × T,
∀ k ∈ I , σk|xd=0

(θ0)rk = πkϕ0

[
g0(θ0)−B0

∑
ℓ∈O σℓ|xd=0

(θ0)rℓ

]
on ∂Ω0,T × T,

∀ ℓ ∈ O, σℓ|xd=1
(θ0 + ξℓ)rℓ = −πℓϕ1B1

∑
k∈I σk|xd=1

(θ0 + ξk) on ∂Ω1,T × T,
∀ j ∈ I ∪ O, σj|t=0

= 0 on Γ× T,

(39)

whose well-posedness is considered in the following proposition.

Proposition 3.2 Under Assumptions 2.1, 2.2 and 3.4, let T > 0 be given. Then for all f ∈ L2
♭ (ΩT × T),

g0 ∈ L2
♭ (∂Ω0,T × T), system (39) admits a unique solution (σj)j∈I∪O in

[
L2
♭ (ΩT × T)

]N
. Such a solution

satisfies the energy estimate: for all 0 < t ≤ T , for all j ∈ J1, NK:

∥σj(t, ·)∥L2(Γ×T) + ∥σj|xd=0
∥L2(∂Ωt,0×T)+∥σj|xd=1

∥L2(∂Ωt,1×T) (40)

≤ CT

[∫ T

0

∥f(s, ·)∥L2(Γ×T) ds+ ∥g0∥L2(∂Ω0,T×T)

]
.

Moreover, for all s ∈ N, if the sources f ∈ Hs
♭ (ΩT ×T), g0 ∈ Hs

♭ (∂Ω0,T ×T), the solution (σj)j∈I∪O ∈ W
s

T,♭

and the energy estimate (40) holds in high order Sobolev norm (that is the Ws
T -norm).

In particular if f ∈ H∞
♭ (ΩT ) and g0 ∈ H∞

♭ (∂Ω0,T ), then the solution (σj)j∈I∪O ∈ W
∞
T,♭.

Proof of Proposition 3.2 We construct by hand an explicit solution to (39). We then verify that this
solution verify (40) and that it check the persistence of regularity and flatness properties.

In order to construct the solution, we follow the method of [3]. We recall such a method because it is
the core of the proof, but let us stress that in the present contribution we just give a rather straightforward
extension of [3]. More precisely we extend the method of [3] to a periodic setting with non trivial interior
sources.

Let us assume for a while that I := I(t, x′; θ0) =
∑
ℓ∈O σℓ|xd=0

(θ0)rℓ is known, so that the right-hand side
of the boundary condition on ∂Ω0,T is a known function. For incoming modes, we thus have to solve

∀ k ∈ I ,


(∂t + vk · ∇x)σkrk = πkf in ΩT × T,
σk|xd=0

(θ0)rk = πkϕ0 [g0(θ0)−B0I(θ0)] on ∂Ω0,T × T,
σk|t=0

= 0 on Γ× T.
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Integrate along the characteristics, thus gives the explicit formula

σk(t, x, θ0)rk :=πkϕ0 [g0 −B0I]

(
t− xd

vk,d
, x′ − v′

k

vk,d
xd; θ0

)
(41)

+ 1{t− xd
vk,d

≥0}
1

vk,d

∫ xd

0

πkfk

(
t− 1

vk,d
(xd − y), x′ − v′

k

vk,d
(xd − y), y; θ0

)
dy

+ 1{t− xd
vk,d

<0}

∫ t

0

πkf (s, x− vk(t− s); θ0) ds

so that we deduce the values of the terms σk|xd=1
(θ0 + ξk) appearing in the right-hand side of the boundary

condition on ∂Ω1,T of (39). We have∑
k∈I

σk|xd=1
(θ0 + ξk)rk =

∑
k∈I

πkϕ0 [g0 −B0I]

(
t− 1

vk,d
, x′ − v′

k

vk,d
; θ0 + ξk

)
(42)

+
∑
k∈I

1{t− 1
vk,d

≥0}
1

vk,d

∫ 1

0

πkfk

(
t− 1

vk,d
(1− y), x′ − v′

k

vk,d
(1− y), y; θ0 + ξk

)
dy

+
∑
k∈I

1{t− 1
vk,d

<0}

∫ t

0

πkfk (s, x
′ − v′

k(t− s), 1− vk,d(t− s); θ0 + ξk) ds.

Clearly when t < 1
vk,d

the information initially lying at ∂Ω0,T , because it travels with finite speed vk,

has not hit the side ∂Ω1,T yet. So, there is no loss of generality to consider for such short times the problem
in the half-space {xd > 0} instead of the strip problem. Consequently to consider a ”true” strip problem
there is no loss of generality by assuming that t ≥ 1

vk,d
and (42) simplifies into:

∑
k∈I

σk|xd=1
(θ0 + ξk)rk =

∑
k∈I

πkϕ0 [g0 −B0I]

(
t− 1

vk,d
, x′ − v′

k

vk,d
; θ0 + ξk

)
(43)

+
∑
k∈I

1

vk,d

∫ 1

0

πkfk

(
t− 1

vk,d
(1− y), x′ − v′

k

vk,d
(1− y), y; θ0 + ξk

)
dy

:=
∑
k∈I

πkϕ0 [g0 −B0I]

(
t− 1

vk,d
, x′ − v′

k

vk,d
; θ0 + ξk

)
+ (F1f)(t, x

′; θ0).

So that at this step, we know (in terms of the unknown I) the boundary source term in the outgoing transport
equations:

∀ ℓ ∈ O,


(∂t + vℓ · ∇x)σℓrℓ = πℓf in ΩT × T,
σℓ|xd=1

(θ0 + ξℓ)rℓ = −πℓϕ1B1

∑
k∈I σk|xd=1

(θ0 + ξk)rk on ∂Ω0,T × T,
σℓ|t=0

= 0 on Γ× T.

We integrate along the characteristics to obtain with the notation of (43) in hand,

σℓ(t, x, θ0)rℓ :=− πℓϕ1B1

∑
k∈I

πℓϕ0 (44)

[g0 −B0I]

(
t− 1

vk,d
− 1

vℓ,d
(xd − 1), x′ − v′

k

vk,d
− v′

ℓ

vℓ,d
(xd − 1); θ0 + ξk − ξℓ

)
− πℓϕ1B1(F1f)

(
t− 1

vℓ,d
(xd − 1), x′ − v′

ℓ

vℓ,d
(xd − 1); θ0 − ξℓ

)
− 1{t− 1

vℓ,d
(xd−1)≥0}

1

vℓ,d

∫ 1

xd

πℓf

(
t− 1

vℓ,d
(xd − y), x′ − v′

ℓ

vℓ,d
(xd − y), y; θ0

)
dy

+ 1{t− 1
vℓ,d

(xd−1)<0}

∫ t

0

πℓf (s, x− vℓ(t− s); θ0) ds.
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Once again there is no loss of generality by assuming that the time is taken sufficiently large to ensure that
the last term does not contribute in σℓ|xd=0

.

As a consequence, we have that I is solution to the equation

(I −T)I = Gg0 + Ff, (45)

where we defined

(Tu)(t, x′; θ0) :=
∑
ℓ∈O

∑
k∈I

πℓϕ1B1πℓϕ0B0u

(
t− 1

vk,d
+

1

vℓ,d
, x′ − v′

k

vk,d
+

v′
ℓ

vℓ,d
; θ0 + ξk − ξℓ

)
, (46)

(Gg)(t, x′; θ0) :=
∑
ℓ∈O

∑
k∈I

πℓϕ1B1πℓϕ0g

(
t− 1

vk,d
+

1

vℓ,d
, x′ − v′

k

vk,d
+

v′
ℓ

vℓ,d
; θ0 + ξk − ξℓ

)
,

(Ff)(t, x′; θ0) :=−
∑
ℓ∈O

πℓϕ1B1(F1f)

(
t+

1

vℓ,d
, x′ +

v′
ℓ

vℓ,d
; θ0 − ξℓ

)

−
∑
ℓ∈O

1

vℓ,d

∫ 1

xd

πℓf

(
t+

y

vℓ,d
, x′ + y

v′
ℓ

vℓ,d
, y; θ0

)
dy

We have the following lemma

Lemma 3.2 � If the sources f ∈ L2
♭ (ΩT × T) and g0 ∈ L2

♭ (∂Ω0,T × T), then the terms Ff and Gg0 are
in L2

♭ (∂Ω0,T × T). Moreover for all T > 0, and for all g ∈ L2
♭ (∂Ω0,T × T), the equation

(I −T)u = g,

has a unique solution u ∈ L2
♭ (∂Ω0,T × T). Such a solution satisfies

∥u∥L2(∂Ω0,T×T) ≤ C∥g∥L2(∂Ω0,T×T). (47)

� The above result also holds in high order Sobolev spaces. More precisely, for all s ∈ N, for all T > 0, if
the sources f ∈ Hs

♭ (ΩT ×T) and g0 ∈ Hs
♭ (∂Ω0,T ×T), then the terms Ff and Gg0 are in Hs

♭ (∂Ω0,T ×T).
Moreover for all T > 0, and for all g ∈ Hs

♭ (∂Ω0,T × T) the equation

(I −T)u = g,

has a unique solution u ∈ Hs
♭ (∂Ω0,T × T). It satisfies

∥u∥Hs(∂Ω0,T×T) ≤ C∥g∥Hs(∂Ω0,T×T).

Let us postpone the proof of this lemma and conclude the proof of Proposition 3.2. We inject the expression
of I ∈ Hs(∂Ω0,T × T) given in the explicit formulas defining the amplitudes σ0,j , namely (41) for incom-
ing modes and (44). It is then clear that the contribution of I in such formulas gives rise to a term in
Hs(∂Ω0,T × T). For the other contributions, namely the ones depending on the sources f and g0, we can
show that they also give rise to Hs(∂Ω0,T ×T) terms (we refer to the proof of Lemma 3.2 for more details).
As a consequence, we have justified the existence and the regularity of the amplitudes σ0,j ∈ Hs(ΩT × T).
From the explicit formulas (41) and (44), such amplitudes are flat at the origin if the sources are. Finally,
the energy estimate (40) can be shown by hand by using the explicit formulas (41) and (44) or by repeating
the kind of energy estimates of Paragraph 2.1 in the simpler setting of transport equations.

Consequently, with Proposition 3.2 in hand to estimate the amplitudes σµ0,j and Theorem 2.1 to estimate
uµ0 , we can reproduce the convergence analysis of Paragraph 2.2 to the scheme (37) and it ends up the proof
of Proposition 3.1. It concludes the construction of the leading order term in the expansion.

We end up with the proof of Lemma 3.211

11Let us point here that the unique resolvability of (I−T)u = g in some regular functional space was assumed in [3] in order
to compute the expansion. Indeed for infinite time problems, such an invertibility condition is not automatic. However, here
we take advantage of the fact that we have a priori a finite time of resolution because we are dealing with non linear problems
and the result becomes automatic.
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Proof of Lemma 3.2 We start by justifying the regularity of the modifications of the sources. From the
explicit formulas (46), we have first for the boundary contribution:

∥Gg0∥L2(∂Ω0,T×T) ≤ C∥g0∥L2(∂Ω0,T×T)

by the simple change of variables t↭ t− 1
vk,d

+ 1
vℓ,d

, x′ ↭ x′ − v′
k

vk,d
+

v′
ℓ

vℓ,d
. Then the study of the interior

contribution follows the same lines thanks to Jensen’s inequality.

We then turn to the resolution of the equation (I −T)u = g. The source term g being flat at the time
origin, its extension to the whole time line by zero for negative times (still denoted by g) is regular. At the
formal level, let us consider the Neumann series expansion

u :=

∞∑
p=0

Tpg. (48)

The aim of the following is to justify that the above series simplifies into a finite sum when we consider
finite final time of resolution T <∞. Let us define α := mink∈I ,ℓ∈O

1
vk,d

− 1
vℓ,d

> 0 because of the kinds of

the group velocities. The real α corresponds to the minimal time of regeneration of the paths of phases by
reflections against ∂Ω0,T and ∂Ω1,T .

Then the time evaluation in Tg can be bounded by T −α. In particular, it vanishes for T < α, meaning
that in such a configuration the considered final time is too short to ensure that the phases have been
regenerated.

A simple induction then shows that the time variable in Tpg can be bounded by T − pα. Consequently

such a term is negative if p ≥
[
T
α

]
+1 and consequently for such p, Tpg vanishes because g ∈ L2

♭ (∂Ω0,T ×T).
As a consequence, the series in (48) simplifies into a finite sum, the associated solution u ∈ L2

♭ (∂Ω0,T × T)
is well-defined and the energy estimate (47) trivially holds.

The previous results can easily be extended to higher order Sobolev norms, because from the explicit
formulas (46) we have ∥Tu∥Hs(∂Ω0,T ) ≤ Cs∥u∥Hs(∂Ω0,T ) and analogous formulas for the other operators. The
details are left to the interested reader.

□

3.4 Higher order terms

Once the leading order term in the expansion has been constructed, because of our small divisor Assumption
3.3 such a method of construction can easily be adapted to determine as many correctors as required. On
the one hand the proof simplifies because the correctors now solve linear problems, on the other hand it
complicates because the correctors are not polarized any more. We here describe the modifications in the
determination of the first corrector, namely u1. The analysis can then be used without modifications for the
higher order correctors.

For convenience, let us recall that u1 appears in the two interior equations:{
Pu1 + L(∂)u0 = F(u0) in ΩT ,

Pu2 + L(∂)u1 = F′(u0)u1 in ΩT .
(49)

We first apply the pseudo-inverse Q to the first equation in (49). It gives the value of the unpolarized part
of u1. More precisely:

(I −E)u1 = Q [F(u0)− L(∂)u0] , (50)

where the right-hand side is known, regular and flat at the time origin because of the construction of
Paragraph 3.3. As a consequence, to conclude the construction of u1 it is sufficient to construct Eu1. In
order to do, we reproduce the construction of Paragraph 3.3. Let us write

Eu1(t, x; θ) := u1(t, x) +

M∑
j=1

σ1,j(t, x; θj)rj ,
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where the terms σ1,j are real value (unknown) functions. Reiterating the same kind of reasoning as the
one performed for the leading order term, we obtain that the quantities determining the polarized part Eu1
satisfy the three linear and uncoupled (in the interior) systems

L(∂)u1 + F′(u0)Eu1 = f in ΩT ,

B0u1|xd=0
= −E0B0(I −E)u1|xd=0

on ∂Ω0,T ,

B1u1|xd=1
= −E0B1(I −E)u1|xd=1

on ∂Ω1,T ,

u1|t=0
= 0 on Γ,

(51)

∀ k ∈ I ,


(∂t + vk · ∇x)σ1,krk +EkF

′(u0)Eu1 = Ekf in ΩT ,

σ1,k|xd=0
rk = g0,k − πkϕ0B0

∑
ℓ∈O σ1,ℓ|xd=0

on ∂Ω0,T ,

σ1,k|t=0
= 0 on Γ,

(52)

and

∀ ℓ ∈ O


(∂t + vℓ · ∇x)σ1,ℓrℓ +EℓF

′(u0)Eu1 = Eℓf in ΩT ,

σ1,ℓ|xd=1
rℓ = g1,ℓ − πℓϕ1B1

∑
k∈I σ1,k|xd=1

on ∂Ω1,T ,

σ1,ℓ|t=0
= 0 on Γ,

(53)

where we defined f := −L(∂)Q(I − E)u1, and similarly g0 := −EkB0(I − E)u1|xd=0
, g1,ℓ := −EℓB1(I −

E)u1|xd=1
. These three terms are regular and depends explicitly on u0 via the formula (50). So that we now

have to give some more details about the adding of the zero order terms in (51), (52) and (53). The classical
manner to deal with such terms is to consider the three above equations as a single one in the unknowns
U := (u1, (σ1,jrj)j∈I∪O . We here propose an other approach more in the spirit of the above in order to
deal with the coupling introduced by the zero order term. We treat it as a source term an we solve by using
a scheme of approximation which update this coupling at each step. With more details we solve (51), (52)
and (53) as the limit of the solutions (uν , (σνj )j∈I∪O) to the equations: for ν ≥ 1

L(∂)uν+ = f − F′(u0)Eu
ν−1 in ΩT ,

B0u
ν
|xd=0 = −E0B0(I −E)u|xd=0 on ∂Ω0,T ,

B1u
ν
|xd=1 = −E0B1(I −E)u|xd=1 on ∂Ω1,T ,

uν|t=0 = 0 on Γ,

∀ k ∈ I ,


(∂t + vk · ∇x)σ

ν
krk = Ekf −EkF

′(u0)Eu
ν−1 in ΩT ,

σνk|xd=0
rk = g0,k − πkϕ0B0

∑
ℓ∈O σ

ν
ℓ|xd=0

on ∂Ω0,T ,

σνk|t=0
= 0 on Γ,

and

∀ ℓ ∈ O


(∂t + vℓ · ∇x)σ

ν
ℓ rℓ = Eℓf −EℓF

′(u0)Eu
ν−1 in ΩT ,

σνℓ|xd=1
rℓ = g1,ℓ − πℓϕ1B1

∑
k∈I σνk|xd=1

on ∂Ω1,T ,

σνℓ|t=0
= 0 on Γ,

The first system is then solved by using the results of Section 3 (see Theorem 2.1). The two other systems
determining the (σj)j∈I∪O are then solved exactly as in Paragraph 3.3 (see Proposition 3.2). In particular
to deal with the coupling of the boundary conditions we can effectively reproduce the analysis of Paragraph
3.3 which gives the operator I −T and which essentially relies on explicit formula12.

It concludes the construction of the first corrector u1 and the one of all the higher order ones.

12The use of a scheme of approximation is not necessary here because the above explicit formula holds for the transport
equation with zero order term λ. Indeed, we can obtain an explicit formula for the σ1,k by multiplying the two first lines of

(41) by e
− 1

vk,d

∫ xd
0 λ(t,x′,y) dy

and the last line by e−
∫ t
0 λ(s,x) ds. Such factors being harmless and do not require some sign

properties on the zero order term λ, because xd and t are both bounded.
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3.5 Error analysis, proof of Theorem 3.2

The proof exposed here closely follows the one given in [[24]-Section 8.3] which simplifies the one of [8]. We
however reproduce the main lines here for a sake of completeness.

Let ũε be an approximate solution as in Theorem 3.2, we want to construct an exact solution to (17)
reading uε = ũε + wε. The second term in the right-hand side satisfies the system of equations

L(∂)wε = F(wε + ũε)− F(ũε)− εM1Rε in ΩT ,

B0w
ε
|xd=0 = −εM1rε0 on ∂Ω0,T ,

B1w
ε
|xd=1 = −εM1rε1 on ∂Ω1,T ,

wε|t=0 = 0 on Γ.

(54)

The existence of such a wε is obtained as the limit when ν ↑ ∞ of the sequence (wε,ν)0<ε<1,ν≥0 (ε fixed)
define iteratively as the solution to

L(∂)wε,ν+1 = F(wε,ν + ũε)− F(ũε)− εM1Rε in ΩT ,

B0w
ε,ν+1
|xd=0 = −εM1rε0 on ∂Ω0,T ,

B1w
ε,ν+1
|xd=1 = −εM1rε1 on ∂Ω1,T ,

wε,ν+1
|t=0 = 0 on Γ.

(55)

In order to establish the convergence of such a sequence, one needs to analyse the linear problem associated
to (55), namely 

L(∂)u = f in ΩT ,

B0u|xd=0 = g0 on ∂Ω0,T ,

B1u|xd=1 = g1 on ∂Ω1,T ,

u|t=0 = 0 on Γ.

(56)

Such a linearised problem has already been considered in Section 2. However here in order to compensate
the losses of powers with respect to ε appearing when one computes Hs-norm, we have to make more precise
the basic energy estimates, by using the weighted norms of Guès [8]. This motivates the definition: let
m ∈ N, γ > 0 and µ > 0 then we define for X ⊂ ΩT :

∥u∥m,µ,γ,X :=
∑

|α|≤m

µm−|α|∥e−γt∂αu∥L2(X). (57)

Because in terms of ε we have that ∂αu ∼ 1
ε|α| then for µ ∼ 1

ε , (µ)
m−|α|∂αu ∼ εm, so that the above loss

is compensated.
As already mentioned in the end of Paragraph 2.1 the basic L2 estimate for the linearised problem (56)

for γ-weighted norms reads: there exists C > 0 and γ0 > 0 such that for all γ ≥ γ0 and for all µ > 0 we have

∥u∥0,µ,γ,ΩT
+

1
√
γ

(
∥u|xd=0∥0,µ,γ,∂Ω0,T

+ ∥u|xd=1∥0,µ,γ,∂Ω1,T

)
(58)

≤ C

(
1

γ
∥f∥0,µ,γ,ΩT

+
1
√
γ

(
∥g0∥0,µ,γ,∂Ω0,T

+ ∥g1∥0,µ,γ,∂Ω1,T

))
Such an estimate is satisfied if one considers hyperbolic boundary value problems with boundary condi-

tions satisfying the uniform Kreiss-Lopatinskii condition of [13]. So that it is in particular satisfied under
our triplet of Assumptions (2.1, 2.2 and 2.3) ensuring strong well-posedness.

Let us note that from (55) the adding of the second source term on ∂Ω1,T will not create any troubles
because it has exactly the same size than the one on ∂Ω0,T .

With such a L2 estimate in hand, one can derive the following estimate (see Proposition 8.2 of [24]):
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Proposition 3.3 Let m1 >
d+1
2 and ϱ be as specified in Theorem 3.2. Let us assume that for some ν ≥ 0,

the solution wε,ν ∈ Hm1

♭ (ΩT ) satisfies the bound

∥wε,ν∥L∞(ΩT ) ≤ K

then we have the existence of two constants C = C(K, ϱ) > 0 and γ0 := γ0(K, ϱ) and of a positive function
θ such that:

∥wε,ν+1∥m1,
γ
ε ,γ,ΩT

≤ C

γ
∥wε,ν∥m1,

γ
ε ,γ,ΩT

+ εM1−m1θ(γ).

As a consequence, using the Sobolev inequality of [8]: for u ∈ Hm1

♭ (ΩT ) with m1 >
d+1
2 + δ, δ > 0 we have

∥u∥L∞(ΩT ) ≤ µ−δC(γ)∥u∥m1,µ,γ,ΩT
,

we deduce the following boundedness properties for the iterates (wε,ν)ν≥0: there exists γ1 := γ1(K, ϱ) and
ε1 := ε1(γ) such that if γ ≥ γ1 and if 0 < ε < ε1 we have that for all ν ≥ 0:

∥wε,ν∥m1,
γ
ε ,γ,ΩT

≤ 2εM1−m1θ(γ) (59)

∥wε,ν∥L∞(ΩT ) ≤ K. (60)

Clearly, the proof of Proposition 3.3 does not see the geometry. It is obtained by applying the tangential
operators of differentiation, namelty the ones involving ∂t and ∂j for 1 ≤ j < d, to (56), estimating the com-
mutators and then by using the basic L2 estimate (58). The normal derivative is then estimated in a second
time and takes advantage of the fact that the problem has non characteristic boundary (see Assumption
2.2). We refer the interested reader to the proof of Proposition 8.2 in [24] or to [8].

As a corollary of the uniform estimates (59) and (60) we obtain the concluding convergence result

Proposition 3.4 One can find γ2 := γ2(K, ϱ) ≥ γ1 and 0 < ε2 := ε2(γ) ≤ ε1 such that if γ ≥ γ2 and
0 < ε ≤ ε2, the sequence (wε,ν)ν∈N converges uniformly with respect to ε in the Guès norm ∥ · ∥m1,

γ
ε ,γ,ΩT

.
The limit w satisfies

∥w∥m1,
γ
ε ,γ,ΩT

≤ 2εM1−m1θ(γ),

so that, for the definition of ∥ · ∥m1,
γ
ε ,γ,ΩT

(see (57)) it is clear that (w,w|xd=0, w|xd=1) ∈ εM1Bm1

ϱ′,T,♭ ×
εM1Bm1

ϱ′,T,0,♭ × εM1Bm1

ϱ′,T,1,♭, for some ϱ′ ≥ ϱ.
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Norm. Sup. (4), 33(3):383–432, 2000.

[25] Mark Williams. Highly oscillatory multidimensional shocks. Commun. Pure Appl. Math., 52(2):0129–
0192, 1999.

27


	Introduction
	Well-posedness theory 
	Well-posedness of the linear problem 
	A simple L2 well posedness theory 
	Persistence of regularity

	Well-posedness of the non linear problem

	Geometric optics expansions 
	Preliminaries and main results
	Mandatory materials
	Main results.

	The ansatz and the cascade of equations
	The leading order term
	Analysis of the profiles equations
	Solving the two coupled non linear systems

	Higher order terms
	Error analysis, proof of Theorem 3.2


