

UNIVERSITE # FRANCHE-COMTĕ

ECOPOLIS project: The transformation of a contaminated industrial wasteland into a living-lab based on a phytomanagement approach

21-25 Nov 2022, Metz (France), "Ecology and Evolution: New perspectives and societal challenges"

Jordan Collot

General objective

Rehabilitation of the industrial wasteland of Vieux-Charmont by phytomanagement

General objective

Rehabilitation of the industrial wasteland of Vieux-Charmont by phytomanagement

Specific objectives

Characterize spatially and quantitatively the contents of trace elements (TE) and its health and environmental impacts

General objective

Rehabilitation of the industrial wasteland of Vieux-Charmont by phytomanagement

Specific objectives

Characterize spatially and quantitatively the contents of trace elements (TE) and its health and environmental impacts

To set-up a living-lab to test different pollution management scenarios based on phytomangement

General objective

Rehabilitation of the industrial wasteland of Vieux-Charmont by phytomanagement

Specific objectives

Characterize spatially and quantitatively the contents of trace elements (TE) and its health and environmental impacts

To set-up a living-lab to test different pollution management scenarios based on phytomangement

Assess the potential for reproducibility on other industrial wasteland in the territory

The industrial wasteland of Vieux-Charmont

• Study site: Close to a factory in operation since 1871.

The industrial wasteland of Vieux-Charmont

- Study site: Close to a factory in operation since 1871.
- Several activities such as watchmaking and fabrication of car pieces took place in the factory.

The industrial wasteland of Vieux-Charmont

- Study site: Close to a factory in operation since 1871.
- Several activities such as watchmaking and fabrication of car pieces took place in the factory.
- Industrial and domestic wastes found on soil.

TE contents in soil

Zinc 194 – 114 000 mg/kg

Lead

<u>Other contaminants:</u> Sn: 2 – 13 600 mg/kg Hg: 0.12 – 4.5 mg/kg Ni: 16 – 1 645 mg/kg As: 11 – 105 mg/kg

TE	World-soil average contents (mg/kg)	TE	World-soil average contents (mg/kg)
Zn	70	Hg	0.07
Pb	27	Ni	29
Cd	0.41	As	6.83
Sn	2.5		

World-soil average contents values from Kabata-Pendias (2010)

Cadmium

TE transferts from soil

TE contents in leaves of accumulative species on highly contaminated localization.

Betula, Populus and *Salix* are well known genera that are accumulating Zn and/or Cd (Ciadamidaro et al., 2019).

- *Betula, Populus* and *Salix* are well known genera that are accumulating Zn and/or Cd (Ciadamidaro et al., 2019).
- Alliaria petiolata is an edible biannual plant from the Brassicaceae

1st year plant

2nd year plant 6

- *Alliaria petiolata* is accumulating large amounts of Zn in leaves.
- Its a fast growth rate and high biomass production plant (Grabner et al., 2010).

→ Alliaria petiolata is suitable for phytoremediation.

Relation between CaCl₂ extractable Zn contents and Alliaria petiolata leaf Zn contents.

- *Alliaria petiolata* is accumulating large amounts of Zn in leaves.
- Its a fast growth rate and high biomass production plant (Grabner et al., 2010).

→ Alliaria petiolata is suitable for phytoremediation.

Relation between CaCl₂ extractable Zn contents and Alliaria petiolata leaf Zn contents.

- *Alliaria petiolata* is accumulating large amounts of Zn in leaves.
- Its a fast growth rate and high biomass production plant (Grabner et al., 2010).

→ Alliaria petiolata is suitable for phytoremediation.

- The leaf contents are related to the CaCl₂ extractable soil contents.
- It is also one of the dominant plant of the site.

 \rightarrow Alliaria petiolata is a relevant species for **Zn bioindication**.

- All zones have SET index > 1
 → Excessive transfert to
 environment.
- TE contributions : Pb > As > Sb
 > Cd > others.

• Measurement of hazard indices : HI = DI/TRV.

DI : Daily intake of studied TE (mg/kg/d). TRV : Toxicity reference value (mg/kg/d) (INERIS).

• Measurement of hazard indices : HI = DI/TRV.

DI : Daily intake of studied TE (mg/kg/d). TRV : Toxicity reference value (mg/kg/d) (INERIS).

Parameters	Scenario 1 ingestion of soil	Scenario 2 Ingestion of edible plant
Number of day of exposition per year	104 d	26 d
Daily ingestion of contaminated material	91 mg/d	100 g/d
Duration of exposure	6 у	15 y
Weight of the person	15 kg	70 kg

 Scenario 1 : Soil HI > 1 are mainly due to Pb contents in soil.

→ Explained by total soil contents.

 Scenario 1 : Soil HI > 1 are mainly due to Pb contents in soil.

→ Explained by total soil contents.

 Scenario 2 : Plant HI > 1 are mainly due to Cd and As contents in leaves.

→ Explained by bioavailable soil contents and soil parameters (pH).

Conclusions

Key points

The analyses and index measurements carried out highlight environmental and human risks on the site.

Conclusions

Key points

The analyses and index measurements carried out highlight environmental and human risks on the site.

The TE contents in plants reveals interesting species for phytoremediation methods, especially *Alliaria petiolata*.

Conclusions

Key points

The analyses and index measurements carried out highlight environmental and human risks on the site.

The TE contents in plants reveals interesting species for phytoremediation methods, especially *Alliaria petiolata*.

The setting up of a living-lab on the site will allow the communication of the research conducted on the site to the public.

ECOPOLIS

femto-st

Sesora

SCIENCES &

TECHNOLOGIES

REGION BOURGOGNE FRANCHE COMTE

THEAN

Collègues :

201ET FINANCÉ Pa

C Bertheau, G Bertrand, P Binet, M Chalot, L Ciadamidaro, J Parelle, F Tatin-Froux, ML Toussaint (Chrono) B Pauget (TESORA) N Kieffer (PMA) S Domas, C Guyeux (FEMTO) C Kuhn (ADU-PMA)

Bibliography

ADEME. 2017. « Les bio-indicateurs de l'état des sols, Principe et exemples d'utilisation ». 30 p. Cavers P.B., Heagy M.I. & Kokron R.F. 1979. « The biology of Canadian weeds. 35. Alliaria petiolata (M.Bieb.) Cavara and Grande ». Canadian journal of plant science. Vol 59. p 217-229.

Ciadamidaro L., Parelle J., Tatin-Froux F., Moyen C., Durand A., Zappelini C., Morin-Crini N., Soupe D., Blaudez D. & Chalot M. 2019. « Early screening of new accumulating versus non-accumulating tree species for the phytomanagement of marginal lands ». Ecological Engineering 130. p 147-156. Grabner B., Ribaric-Lasnik C., Romih N., Pfeifhofer H.W. & Batic F. 2011. « Bioaccumulation capacity for Pb, Cd and Zn from polluted soil in selected species of the Brassicaceae family growing in different vegetation types ». Phyton. Vol 50, N°2. p 287-300.

- Bioindicator snails (*Cantareus aspersus*) have been set up in zones with equivalent TE contents.
- After 28 days on site, TE contents in snails are analysed by ICP for measurement of the sum of excessive transferts (SET index).

Microcosms with several snails are set up in each determined zones during 28 days.

Snails are analysed with ICP MS after acid digestion