
HAL Id: hal-04738942
https://hal.science/hal-04738942v1

Submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic function allocation in edge serverless
computing networks

Shuo Li, Ejder Baştuğ, Catello Di Martino, Marco Di Renzo

To cite this version:
Shuo Li, Ejder Baştuğ, Catello Di Martino, Marco Di Renzo. Dynamic function allocation in edge
serverless computing networks. GLOBECOM 2023 - 2023 IEEE Global Communications Conference,
Dec 2023, Kuala Lumpur, Malaysia. pp.486 - 491, �10.1109/globecom54140.2023.10436755�. �hal-
04738942�

https://hal.science/hal-04738942v1
https://hal.archives-ouvertes.fr

Dynamic function allocation in edge serverless
computing networks

Shuo Li∗†, Ejder Baştuğ∗, Catello Di Martino∗, Marco Di Renzo†
∗Nokia Bell Labs, 7 Route de Villejust, 91620 Nozay, France

†Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France
shuo.2.li@nokia.com, ejder.bastug@nokia-bell-labs.com,

lelio.di martino@nokia-bell-labs.com, marco.di-renzo@universite-paris-saclay.fr

Abstract—Edge serverless computing has been widely used in
mobile and web applications thanks to its simplicity and cost
efficiency of network resource management. Serverless functions,
event-driven and often stateless, are deployed on edge servers to
reduce the latency caused by data transfer and the workload
on cloud servers. However, in many edge serverless application
scenarios, such as in IoT networks, the network is usually hierar-
chical, with limited edge storage and computational capacity, and
requests received by different edge nodes might be heterogeneous
and time-varying. The function deployment policy becomes a
key issue in achieving guaranteed network performances. In this
paper, we focus on function allocation policy in edge serverless
computing networks to help edge nodes dynamically choose
the functions to deploy based on incoming requests, aiming
to reduce latency and minimize request outage rate. A Deep
Deterministic Policy Gradient (DDPG)-based function allocation
algorithm is proposed for a multi-tier edge-serverless computing
scenario where a set of functions are deployed to the edge nodes
strategically. Simulation results show that our proposed method
can reduce the latency of requests while also minimizing the
outage rate.

Index Terms—function allocation, edge serverless computing,
deep deterministic policy gradient, deep reinforcement learning.

I. INTRODUCTION

Since Amazon launched AWS lambda in 2014, serverless
computing has attracted a lot of attention from industry and
academia. While serverless computing is originally intended
for centralized cloud computing, it is quickly discovered that
its ease of function development, device management, and
operation was well suited for deployment in edge networks
[1]. In recent years, edge serverless computing platforms, such
as Microsoft Azure Serverless, AWS Lambda@Edge, Apache
Openwhisk, and others, have gained widespread adoption
and achieved great success, for instance, in the Internet of
Things (IoT) and content delivery applications. Edge serverless
computing aims to bring cloud computing capabilities closer
to where the data is generated by bringing serverless functions
partially or completely close to the network edge. It leverages
the advantages of edge and serverless computing to provide
high-quality and low-cost network services [2].

In the edge serverless computing paradigm, serverless func-
tions are triggered by events and often processed purely
by given input. These functions are typically stored in the

cloud server’s database and partially deployed across the edge
servers’ databases according to the function allocation policy.
Each node can only execute requests whose functions are
stored in its database [3]. Considering the heterogeneity of
edge servers and their limited database size and computing
capacity, the function allocation policy became one of the
main concerns in realizing more reliable and efficient network
services.

We have seen a lot of work on the optimization of edge
serverless computing networks. For example, in [4], the
authors formulated the task scheduling in edge serverless
computing networks as a partially observable stochastic game
problem and proposed a dueling double deep recurrent Q-
network (D3RQN) based task scheduling algorithm. In [5], a
novel platform is proposed, called NEMO, for realizing edge
serverless computing without dedicated edge servers. In [6],
the authors propose an adaptive function allocation algorithm
to minimize function execution cost while maximizing the
utility of servers, however without real-time tuning of function
allocation nor latency impact of warm/cold starts. Our focus
in this paper is to optimize function allocation using novel
methods from deep reinforcement learning (DRL) while taking
into account warm/cold start and other key aspects.

Modern communication and computing networks, such as
IoT networks, are indeed becoming increasingly large-scale,
decentralized, and autonomous, making it necessary for net-
work devices to make decisions in uncertain and stochastic
situations [7]. However, the computational complexity of mod-
eling and solving modern networks is often extremely high.
As an emerging optimization method, reinforcement learning
has achieved prominent success in solving decision-making
problems in both wired and wireless communication and
computing networks. For example, in [8], the author proposed
a multi-agent q-learning algorithm to solve the spreading
factor and transmission problem in LoRa networks, and in
[9], a multi-agent DRL algorithm with both Double Deep-Q
Network and Advantage Actor-Critic agents is proposed to
allocate transmit power to users.

The main contribution of this paper, based on the observa-
tions and explanations above, is to propose a novel dynamic
function allocation algorithm for edge serverless computing
networks using Deep Deterministic Policy Gradient (DDPG),

which has not been investigated earlier. It allows the edge
nodes to dynamically adjust their deployed serverless functions
according to request arrival patterns, taking into account the
latency introduced by cold start, thus improving the load
balancing and operational efficiency of the network. The rest
of this paper is organized as follows. Our edge serverless com-
puting model is defined in Section II. The proposed DDPG-
based function allocation algorithm is presented in Section III.
In Section IV, we show the performance of the algorithm with
respect to baselines. Finally, the paper is concluded in Section
V.

II. SYSTEM MODEL

A. Network model

In this paper, we consider an edge serverless computing
network consisting of three types of servers in a geographical
area, including one cloud server and two types of edge
servers, which we refer to as small edge servers (SEs) and
intermediate edge servers (IEs), respectively. We assume that
IEs have a larger database and higher processing speed than
SEs, but at the same time, the number of IEs is smaller.
Denote by I = {I1, I2, ..., INI

} the set of IEs and by
E = {E1, E2, ..., ENE

} the set of SEs. Each SE connects to
the nearest IE in addition to the cloud server, and IEs play
the role of regional coordinators in our network. They do not
receive data directly from users but are primarily responsible
for sharing workloads as regional low-cost data centers. Let d
define the distance between two network entities. Considering
that the transmission time of the network increases with
distance due to the number of hops and network traffic, we
model the transmission delay between two directly connected
network entities as 2αdβ , where α and β are constants [2].

Let F = {f1, f2, ..., fNF
} be the set of all serverless

functions in our edge serverless computing network. These
functions are stored in the database of cloud server with
sufficiently large storage. Meanwhile, serverless functions are
deployed to SEs and IEs according to the deployment policy to
accelerate data processing. To reflect the impact of the limited
storage space of the edge server on the network, we define the
maximum number of functions that the SE and IEs can store
as DE and DI, respectively. The number of functions actually
deployed on the edge server must not exceed this limit. We
define FE,i ⊂ F and FI,j ⊂ F as the set of cached functions
in SEs and IEs, where i ∈ [1, NI] and j ∈ [1, NE], respectively.

B. Service model

We define M = {m1, ...mNm
} as the set of function

requests and assume that the arrival of function requests for
each SE follows a Poisson process with an average arrival rate
of ϵ. Moreover, we model the function popularity distribution
with a Power law, which represents the ordered probability
that a function is requested by a client [10]:

p(fi) = (η − 1)i−η, (1)

where i denotes the index of functions, and η is the shape
factor of the distribution with lower values resulting in a

Fig. 1: An example of the service model.

uniform behavior, whereas higher values indicate a steeper
distribution. Note that a user request may contain multiple
function requests in a real network environment. After arrival
to the network, the user request is separated into multiple
function requests and sent to its target server for execution.
Therefore, in the following of this paper, all requests are
treated as function requests unless otherwise specified.

In our edge serverless computing network, every server
is deployed with a serverless computing platform. When a
function is invoked by request, the server initializes a con-
tainer and allocates computational resources to the container
according to the function’s requirements (cold-start) or reuses
previously executed containers (warm-start) if the function has
just been invoked [11]. In this paper, we model the service
resources as the maximum number of containers it can support
simultaneously in SEs, IEs, and cloud server, written as CE, CI
and CC, respectively. In addition, the cache capacity of pending
requests is limited in edge serverless computing nodes. We
model the pending requests in each server as a first-in-first-
out queue and define KE, KI and KC as the size of the queue
in SEs, IEs, and cloud server. For an incoming request, when
no container is available on the target server, the request will
be stored in its server queue. When this queue is overloaded,
the IEs and SEs pass the request to the cloud server. The cloud
server is in charge of handling forwarded requests from SEs
and IEs, due to function not being deployed locally or queue
overload. Newly arrived requests to the cloud server might be
dropped in case of queue fullness.

Due to hardware heterogeneity of servers, such as different
CPUs between tiers, the processing speed of requests might
vary depending on the scenario. We define µE, µI, and µC

as the service rate of SEs, IEs, and the cloud server, with
µE < µI < µC. Hence, the service time for a request m ∈M
can be written as:

ts,m =
1

µm
, (2)

where µm ∈ {µE, µI, µC} is the service rate of target server
of request m.

The cold-start problem has been a longstanding issue in
serverless computing frameworks, which makes the total pro-
cessing time of a function potentially much longer than the
intended time of execution [12]. Warm-start means that after
serving a request, the container is held for a period of time.
During this period, if another request with the same function
arrives, the processing time of the new request will be reduced
because the container initialization process is skipped. In our
scenario, we define that the processing time is reduced by
multiplying a reduction rate w in the warm-start case. An
example of our service model is illustrated in Figure 1.

C. Optimal Function Allocation
Based on the above system model, we choose the average

delay of requests and the outage rate of the system as our
target performance parameters. We aim to reduce the average
latency of requests while ensuring zero outage rate by properly
allocating the functions deployed in each server. According to
the service model, we define outage rate ξ as the ratio of
dropped requests by the cloud server due to overload and the
number of incoming requests, and the latency of a request
includes the transmission time tt, the waiting time tw as well
as the service time ts, written as l = tt + tw + ts. Therefore
the optimization problem can be stated as follows:

minimize
P

1

Nm

∑
m∈M

(tt,m + tw,m + ts,m)

subject to 0 < |FS,i| ≤ DE, 0 < |FI,j | ≤ DI,

ξ = 0,

(3)

where i ∈ [1, NI], j ∈ [1, NE] and P is the function allocation
policy. In this problem, the request’s latency and the network’s
outage rate are only related to the current function allocation
policy, and the problem can be described as a Markov process.
At the same time, the complexity of optimizing the network
using traditional methods is high due to the growing number of
functions in the network and the need for perfect knowledge,
which motivates us to solve this problem using DRL.

III. DDPG-BASED FUNCTION ALLOCATION
ALGORITHM

In recent years, we have seen significant success with DRL
in decision-making systems. A typical reinforcement learning
structure includes an environment, an agent, and an experience
reply buffer. During the algorithm’s running, an agent makes
decisions depending on the interaction with the environment.
Assume that S is the set of possible environment states. At the
time t, the RL agent observes st ∈ S from the environment.
According to the policy π, the agent takes action at ∈ A,
where A is the action space. As at is performed, the agent
earns a reward r, and the environment returns a new state
st+1. The action a is decided according to policy π. At state
s, we describe the choice of action as π(s) = a. A value
function q(s, a) is introduced in such a system to evaluate the
performance of policy π at current state s and time t, shown
as follows:

q(s, a) = E[Gt|st = s, at = a], (4)

where Gt is the discounted future cumulative reward,

Gt = rt + γrt+1 + γ2rt+2 + ...+ γn−trn, (5)

where γ is defined as the discount factor and is a constant and
γ ∈ [0, 1].

In our problem, our goal is to find the best function
allocation policy P to minimize the average latency lavg
while ensuring zero outage rate. The action a should include
the number as well as the type of functions deployed in
each server, and the reward r must consider both average
latency and outage rate. The following is our definition of
the environment and the agent.

A. Environment

Our environment consists mainly of an edge serverless net-
work and incoming function requestsM. Each request has its
access point, i.e., one of the SEs in the network, and an arrival
time. We divide the time into uniform time slots, denoted
by {0, 1, ..., T − 1}. In each time slot t ∈ {0, 1, ..., T − 1},
the network receives at chosen by the agent and observes
the average latency and outage rate in the current network
environment.

State: The state at each time slot consists of the average
latency of requests and the outage rate, shown as:

st = {lavg, ξ}, (6)

where ξ ∈ [0, 1] and lavg > 0.
Action: In our system, each edge server, whether IE or SE,

can determine the number and type of functions it stores upon
request. Therefore, the action of an edge server can be defined
as:

ak = {dk,Fk}, (7)

where {
0 < dk ≤ DI k ∈ I,
0 < dk ≤ DE k ∈ E ,

(8)

and Fk =
(
NF

dk

)
. Hence the action of time slot t can be defined

as the combination of the action of all edge servers, shown as:

at = [a1, ..., aNI+NE
]. (9)

In our system, the action space is dynamically evolving since
Fk is a function of dk. Meanwhile, considering that the
number of serverless functions in a network can be very large,
constructing such a discrete action space is extremely time-
consuming. To simplify the construction of action space while
keeping our action space static during the solving process
using reinforcement learning, we transform the action space
into a continuous action space where each action is represented
by a continuous value between 0 and 1.

Reward: At each time slot, the RL agent takes an action to
update the serverless function deployed on each server. The
environment will update the function allocation of each server
and provide feedback based on the average latency and outage
rate. Meanwhile, taking into account that in edge serverless

computing, requests are usually time-limited, our reward r is
defined as:

r =

{
max(cos(0.75lavg), 0) ξ = 0,

0 ξ > 0,
(10)

meaning that agents are rewarded only when the outage rate
is zero.

Algorithm 1 The DDPG-based function allocation algorithm

1: Parameters: Actor learning rate lra, critic learning rate
lrc, soft update coefficient τ , discount factor γ, reply
memory size B, mini-batch size b;

2: Initialize the critic network Qω(s, a) and actor network
µθ(s) with random network parameters ω and θ, respec-
tively;

3: Pass the same parameters ω → ω′ and θ → θ′ to initialize
the target critic network Qω′(s, a) and target actor network
µθ′(s), respectively;

4: Initialize experience replay memory D;
5: for episode = 1→ Nepisode do
5: Initialize random noise N for action exploration;
5: Observe the initial state st from the environment;
6: for time step Nsteps = 1→ Nmaxstep do
7: In actor network, choose continuous action at based

on current strategy µθ(st) and the random noise
perturbation N , at = µθ(st) +N ;

8: In environment, transform continuous action at to
deployed functions in each edge server;

9: In environment, simulate network performance with
requests RQ, calculate the reward rt, and the envi-
ronment state changes to st+1;

10: Store (st, at, rt, st+1) as a tuple in the experience
replay buffer D;

11: Sampling random mini-batches (Nb tuples of transi-
tions (st, at, rt, st+1) from the replay memory D;

12: For each tuple, use the target networks to calculate
yt = rt + γQω′ (st+1, µθ′ (st+1));

13: Update critic network by minimizing the target loss
L = 1

Nb

∑Nb

t=1 (yt −Qω (st, at))
2;

14: Update the actor network using the sampled policy
gradient,
∇θJ ≈ 1

Nb

∑Nb

t=1∇aQω (st, a)
∣∣∣
a=µθ(st)

∇θµθ (st);

15: Update the target critic network: ω′ ← τω+(1−τ)ω′

16: Update the target actor network: θ′ ← τθ+(1− τ)θ′

17: end for
18: end for

B. Agent

A large number of outstanding DRL algorithms have been
proposed for solving decision-making problems, such as Deep
Q-network [13], Dueling Double Deep Q-network [14], and
Rainbow Deep Q-network [15]. In this paper, we choose the
DDPG algorithm to design our agent. The reason for using

DDPG algorithm stems from the fact that they are well suited
to problems with continuous action and state space.

The DDPG algorithm is an off-policy DRL algorithm in the
Actor-Critic (AC) framework. A DDPG algorithm consists of
four neuronal networks, which are the actor network, the critic
network, the target actor network, and the target critic network.
The actor network takes the current state as input and outputs
the probability of taking each action in the current state. The
critic network is a value function network that takes the current
state and action as input and outputs the Q value obtained by
performing that action in the current state. Target networks
are implemented to improve the stability of actor and critic
networks [16]. The structure of DDPG algorithm is illustrated
in Figure 2, and the procedure of training a function allocation
algorithm is illustrated in Algorithm 1.

Fig. 2: The structure of DDPG algorithm.

IV. NUMERICAL RESULTS

We conducted extensive simulations to evaluate the per-
formance of the proposed DDPG-based function allocation
strategy. We built our deep neural network (DNN) agent with
two fully connected layers made of 128 neurons, and chose
tanh as the activation function of each layer for both actor
and critic networks. At the same time, we use Ornstein-
Uhlenbeck noise as the random noise. In this section, we
analyze the convergence of our algorithm and compare it with
baseline algorithms to demonstrate the performance. Some of
the parameters of our simulation are shown in Table I.

A. Convergence

Convergence is an important measure of the DRL algorithm,
which reflects the design of neuronal network design and the
selection of hyperparameters.

Figure 3, 4, and 5 shows the performance of the algorithm
when the average arrival rate of function requests ϵ = 15
requests per second. In the simulation, we set the shape
factor of the function popularity distribution η of function
requests received by the four SEs as 1.01, 1.51, 2.01, and
2.51, respectively. Meanwhile, considering that in practical
applications, we are more interested in the highest reward in
the whole training process and take the corresponding policy
as the actual function deployment policy. Hence, besides

Parameters valueSymbol

Actor learning rate lra 5× 10−5

Critic learning rate lrc 5× 10−5

Soft update coefficient τ 0.001

Discount factor γ 0.95

Reply memory size B 1000000

Mini-batch size b 256

Step per episode Nmaxstep 200

Number of servers NE, NI, NC 4, 2, 1
Number of

serverless functions NF 20

Maximum number
of deployed functions DE, DI 3, 5

Number of containers CE, CI, CC 2, 4, 8

Queue size KE, KI, KC 8, 10, 20

Service rate µE, µI, µC 1, 2, 4 (request/sec)

Number of requests per step |M| 8000

Warm start reduction rate w 0.5

TABLE I: List of simulation parameters.

Highest reward per episode

Average reward per episode

global highest reward: (54,0.89193)

*

re
w

a
rd

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

episodes

0 20 40 60 80 100 120 140 160 180 200

Fig. 3: Average reward and highest reward per episode.

the average value of reward and latency in each episode,
the best result is also presented. Figure 3 showcases the
maximum and average reward for each episode, and Figure
4 illustrates the corresponding optimal and average delay for
each episode. The average outage rate of each episode is
presented in Figure 5. The reason for the non-zero outage
rate after algorithm convergence is that in each episode, the
algorithm is still exploring new policies. We can see that our
algorithm stabilizes after 40 episodes, and the optimal solution
appears in the 54th episode. However, the difference between
the best reward after 40 episodes and the best reward across
the board is less than 0.01.

la
te

n
c
y
 (

s
e

c
)

0.7

0.69

0.68

0.67

0.66

0.65

0.64

0.63

0.62

episodes

0 20 40 60 80 100 120 140 160 180 200

Fig. 4: Average latency and best latency per episode.

o
u

ta
g

e
 r

a
te

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

episodes

0 20 40 60 80 100 120 140 160 180 200

Fig. 5: Average outage rate per episode.

B. Performance Analysis

In order to further analyze the performance of the DDPG-
based function allocation algorithm, we compare our proposed
method with two baseline algorithms.

1) Greedy: The greedy algorithm is an online optimization
algorithm with partial or no knowledge of the environ-
ment. In the greedy algorithm, the intelligence makes
a decision with κ probability of randomly selecting an
unknown action, leaving 1 − κ probability of selecting
the action with the largest action value among the
existing actions. It is widely used in action selection
for reinforcement learning to balance exploration and
exploitation. In our simulation, we set the probability
κ = 0.6 and the reward discount factor γ = 0.9.

2) Global popularity: Inspired by [2], we propose a static
function allocation algorithm based on the global func-
tion popularity, where the SEs cache the most popular
functions and the IEs cache the following popular func-
tions. It is an offline algorithm with perfect knowledge
of the network as well as the incoming requests. The
number of functions deployed is fixed at the maximum

low workload medium workload heavy workload

Global popularity outage

reedy outageG

DDPG outage

lobal popularity best latencyG

Greedy best latency

DDPG best latency

o
u

ta
g

e
 r

a
te

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

la
te

n
c
y
 (

s
e

c
)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Average arrival rate

5 10 15 20 25 30 35 40

Fig. 6: Performance comparison of three algorithms.

number of functions that can be deployed.
We analyzed the average latency and outage rate of the three
algorithms for different request arrival rates. Since the DDPG
and greedy algorithms must be trained to obtain the desired
solution, we compare the performance of these two algorithms
after 30, 000 training steps and take the results achieved by
the best of these strategies for comparison. Figure 6 shows
the performance achieved by the three algorithms at an arrival
rate of ϵ = [5, 10, 15, 20, 25, 30, 35, 40] per second. For the
purpose of analysis, we divide the figure into three regions,
low workload region, medium workload region, and heavy
workload region, based on the outage rate of the greedy
algorithm and the global popularity algorithm. In the first
region, the workload is low with an average request arrival
rate ϵ = [5, 10, 15] per second, and all three algorithms achieve
zero outage rate. The dropped requests are observed for greedy
and global popularity algorithms in the second region with
average request arrival rate ϵ = 20 and 25. Moreover, when the
average request arrival rate ϵ is greater than 25, the function
deployment policy based on both baseline algorithms leads
to a large number of dropped requests due to overload, even
though the global popularity algorithm has global knowledge
of the network. On the contrary, our DDPG-based function
allocation algorithm guarantees zero outage rate and provides
lower average request latency in all three regions. Meanwhile,
at ϵ = 35, we observe an unexpected decrease in latency. The
main reason for this is that in this simulation case, the arrival
rate of requests with the same function is approximately equal
to its service rate. A large number of requests were served in
the warm-start.

V. CONCLUSION

In this paper, we proposed a dynamic serverless function
allocation algorithm based on DDPG. We provided a detailed
description of the algorithm and analyzed its convergence.
In addition, we compared the performance of the DDPG-
based function allocation algorithm in terms of average re-
quest latency and outage rate with the baseline algorithms.

In the next step, on one hand, we will further optimize
our function allocation algorithm, including experimenting
with other reinforcement learning algorithms and optimizing
hyperparameters. At the same time, we are going to use DRL
algorithms to jointly optimize the parameters of the edge
nodes to achieve deterministic networking in terms of network
computation, i.e., to achieve very low outage, very low jitter,
and bounded latency.

REFERENCES

[1] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing: ex-
tending serverless computing to the edge of the network,” in Proceedings
of the 10th ACM International Systems and Storage Conference, 2017,
pp. 1–1.

[2] S. Li, E. Baştuğ, and M. Di Renzo, “On the modelling and analysis of
edge-serverless computing,” in 2022 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom), 2022, pp.
250–254.

[3] C. Cicconetti, M. Conti, and A. Passarella, “A decentralized framework
for serverless edge computing in the internet of things,” vol. 18, no. 2,
2021, pp. 2166–2180.

[4] Q. Tang, R. Xie, F. R. Yu, T. Chen, R. Zhang, T. Huang, and Y. Liu,
“Distributed task scheduling in serverless edge computing networks for
the internet of things: A learning approach,” vol. 9, no. 20, 2022, pp.
19 634–19 648.

[5] L. Zhang, W. Feng, C. Li, X. Hou, P. Wang, J. Wang, and M. Guo,
“Tapping into nfv environment for opportunistic serverless edge function
deployment,” vol. 71, no. 10, 2022, pp. 2698–2704.

[6] D. Xu and Z. Sun, “An adaptive function placement
in serverless computing,” vol. 25, no. 5. USA: Kluwer
Academic Publishers, oct 2022, p. 3161–3174. [Online]. Available:
https://doi.org/10.1007/s10586-021-03506-x

[7] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” vol. 21, no. 4, 2019, pp.
3133–3174.

[8] Y. Yu, L. Mroueh, S. Li, and M. Terré, “Multi-agent Q-learning
algorithm for dynamic power and rate allocation in LoRa networks,” in
2020 IEEE 31st Annual International Symposium on Personal, Indoor
and Mobile Radio Communications, 2020, pp. 1–5.

[9] N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource
management in wireless networks via multi-agent deep reinforcement
learning,” vol. 20, no. 6, 2021, pp. 3507–3523.

[10] E. Baştuğ, M. Kountouris, M. Bennis, and M. Debbah, “On the delay of
geographical caching methods in two-tiered heterogeneous networks,” in
2016 IEEE 17th International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), 2016, pp. 1–5.

[11] L. Baresi and D. Filgueira Mendonça, “Towards a serverless platform
for edge computing,” in 2019 IEEE International Conference on Fog
Computing (ICFC), 2019, pp. 1–10.

[12] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “{SAND}: Towards high-performance serverless
computing,” in 2018 Usenix Annual Technical Conference 18), 2018,
pp. 923–935.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013.

[14] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning, 2016, pp. 1995–2003.

[15] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 2015.

