
HAL Id: hal-04738931
https://hal.science/hal-04738931v1

Submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Automatic Inbetweening for Stroke-Based Painterly
Animation

Nicolas Barroso, Amélie Fondevilla, David Vanderhaeghe

To cite this version:
Nicolas Barroso, Amélie Fondevilla, David Vanderhaeghe. Automatic Inbetweening for Stroke-Based
Painterly Animation. Computer Graphics Forum, inPress, �10.1111/cgf.15201�. �hal-04738931�

https://hal.science/hal-04738931v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

DOI: 10.1111/cgf.15201 COMPUTER GRAPHICS forum
Volume 0 (2024), number 0, e15201

Automatic Inbetweening for Stroke-Based Painterly Animation

Nicolas Barroso,1 Amélie Fondevilla2 and David Vanderhaeghe1

1IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France
{nicolas.barroso, david.vanderhaeghe}@irit.fr

2Les Fées Spéciales, Montpellier, France
afondevilla@laposte.net

Abstract
Painterly 2D animation, like the paint-on-glass technique, is a tedious task performed by skilled artists, primarily using tradi-
tional manual methods. Although CG tools can simplify the creation process, previous works often focus on temporal coherence,
which typically results in the loss of the handmade look and feel. In contrast to cartoon animation, where regions are typically
filled with smooth gradients, stroke-based stylized 2D animation requires careful consideration of how shapes are filled, as each
stroke may be perceived individually. We propose a method to generate intermediate frames using example keyframes and a
motion description. This method allows artists to create only one image for every five to 10 output images in the animation, while
the automatically generated intermediate frames provide plausible inbetween frames.

Keywords: animation, 2D techniques, rendering, non-photorealistic rendering

CCS Concepts: • Computing methodologies → Non-photorealistic rendering; Animation

1. Introduction

Stylized animation is widely used by artists to convey expressive
stories. Computer graphics tools have greatly enhanced productivity
and have been utilised by artists for many years to create 2D anima-
tions. Most of these tools are tailored for cartoon rendering and as-
sist in creating animations using the keyframe approach, which typ-
ically features smooth colour gradients and simple strokes for con-
tours and details. In this paper, we focus on stroke-based styles, such
as paint-on-glass, pastels and charcoal, which havemore texture and
where each individual stroke might be noticeable. These styles ben-
efit from explicit stroke modeling, allowing for fine user control.
Our implementation specifically addresses stroke-based painterly
rendering. Recent hand-made animations that inspire our work in-
clude Loving Vincent [KW17] and La Traversée [Mia21].

The keyframe approach is the de facto standard for cartoon an-
imation creation. First, the artist draws the keyframes of the ani-
mation, and then the inbetweening process involves creating the in-
termediate frames between each pair of keyframes. This process is
facilitated by the use of motion interpolation and skeletal animation
in 2D for automatic intermediate frame synthesis. In contrast, paint-
on-glass styles are traditionally created by hand using the so-called
under-the-camera setup, where the artist draws under an acquisition

device. Each frame of the animation is drawn sequentially, using the
previous frame as a starting point. This method requires the artist to
have the entire animation sequence in mind and lacks the flexibility
of keyframe or skeletal animation.

We propose an automatic inbetweeningmethod that combines the
look and feel of the paint-on-glass style with the ease of control pro-
vided by keyframe approaches. Our work follows an example-based
approach, capturing the style from examples drawn by the artist
(Figure 1). This type of control aligns with what professional artists
excel at: drawing efficiently to convey their unique style. The pro-
posed method does not require additional skills from professional
artists and integrates seamlessly into the production pipeline.

We propose generating intermediate frames by replicating the
drawing process, with strokes rendered in the same manner as the
keyframes. The artist retains fine control over the generated frames,
as the frame description includes each stroke’s curve path. This
contrasts with other approaches that directly generate image pixels,
such as those using neural networks [JYF*20, HTT*20].

To drive the generation of an intermediate frame, a user-provided
motion field is required. We demonstrate three examples of motion
field sources: motion rendered from a 3D scene that roughly cap-
tures the intended animation motion which is then extrapolated to

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

1 of 12

https://orcid.org/0009-0002-1900-9809
https://orcid.org/0000-0002-9335-1189
https://orcid.org/0000-0003-0506-6036
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.15201&domain=pdf&date_stamp=2024-10-08

2 of 12 N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation

Figure 1: Our method generates inbetween frames using the propagation of strokes from keyframes. A motion field, given as input, drives the
propagation process. The high-level description of the generated strokes enables the artist to edit the resulting frames if desired.

allow keyframe strokes to extend beyond 3D object boundaries; mo-
tion field extracted from video and sketched motion field defined by
a set of curves drawn by the artist.

We implement our method for painterly rendering [VC12], in-
cluding brush and paint simulation. Our method is built on a paint
simulator that accurately renders the bi-directional paint exchange
between a virtual brush and the canvas. Keyframes are painted using
brushes and strokes, describing how the paint is applied to the can-
vas along a path. The artist has the ability to edit the stroke curves
and brush properties to modify a frame.

Our method preserves the natural hand-made look of animated
painted frame sequences and does not prioritize temporal coherence,
as traditional hand-made stroke-based style animations are not tem-
porally coherent.

Our contributions are as follows:

• The extrapolation of motion field to obtain a 2Dmotion field suit-
able for stroke propagation (Section 6).

• An optimization scheme for stroke propagation that preserves ge-
ometric features of keyframe strokes (Section 4),

• An intermediate frame generator that leverages candidate strokes
from the propagation (Section 5),

• Stroke grouping and mixing to create intermediate frames from
two candidate stroke sets (Section 5.1),

A preliminary version of our approach was previously presented at
a non-peer-reviewed national conference [BFV21], featuring a sim-
pler stroke optimization step and lacking stroke grouping and mix-
ing, which resulted in an excessive quantity of paint in the generated
inbetweens.

2. Related Works

Synthesis of intermediate frames. The automatic synthesis of in-
termediate frames, also known as inbetweening, plays a significant
role in computer-assisted creation of 2D animations. Most meth-
ods operate in image space [BCK*13, JST*19], using texture syn-
thesis [BSFG09, SJT*19] and depicting as-rigid-as-possible defor-
mations [SDC09, DBB*17]. Other approaches use triangulation of
the image space and apply deformation directly to this triangulated
mesh, employing 2D skinning techniques [BKLP16]. These texture

synthesis methods are agnostic to the tools used to produce the ex-
amples. While they offer parameters to control the generated raster
images, they do not allow the result to be edited beyond the direct
pixel modifications. In contrast, our approach generates interme-
diate frames composed of parametric strokes. This representation
provides the artist with high-level control, enabling efficient post-
editing.

Other approaches operate at the stroke level, either by directly
using the motion of an underlying 3D animation [WDK*12], or
by deducing the deformation between two frames through raster-
ized [MFXM21] or vectorized stroke pairing [WNS*10, YSC*18,
JSL22]. Even et al. [EBB23] propose using transient embeddings
to match groups of strokes that share similar motion, addressing
rough sketches where keyframes present highly dissimilar number
of strokes.While most stroke-based approaches focus on sketches, a
few address the filling of regions. In the latter case, the inbetweening
problem can be addressed by embedding the strokes in a 3D space
where the strokes follow 3D surface’s motion [SSGS11, BBS*13].
These approaches produce strong motion coherence between the
strokes and the underlying animated 3D scene. This strong coher-
ence suggests that the scene objects are not merely painted onto a
2D canvas but the animation is a 3D drawing. Our primary focus is
to reproduce the look and feel of a hand-drawn animation in 2D. To
achieve this style, we generate strokes directly in 2D from exam-
ple keyframes.

O’Donovan et al. [OH11] propose to generate intermediate
frames by energy minimization, controlling the size, the shape and
the density of strokes. The generated animation is refined by the
artist with special orientation strokes in keyframes. The refinements
are propagated on next frames using an optical flow. In contrast, we
define the style of the keyframes by the artist drawn inputs and our
approach reproduces this style in the generated intermediate frames.

Generation of strokes by example. Example-based style transfer
was widely discussed in literature, and covers a large panel of topics,
among which stroke-based rendering methods. Haeberli [Hae90]
and Hertzmann [Her98] have set the basis for painterly rendering
by representing strokes by attributes such as width, colour or
orientation. They generate strokes by computing their attributes
from the local characteristics of an underlying image. This principle
is re-used for example-based methods to compute stroke attributes
from real paintings. Early example-based methods compute strokes

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation 3 of 12

attributes by establishing dictionaries from real examples [ZZ11]
or by learning [WCHG13]. In Lu et al.[LYFD12], parts of stroke
are real-time predicted and refined by energy minimization to
match perfectly a stroke in a dataset. These methods cannot be
used for keyframes interpolation and rely on large datasets, mak-
ing it challenging to obtain the necessary data from keyframes
alone. Strokes are predicted frame by frame by establishing fuzzy
correspondences through similarity analysis between the current
and previous frames [XWSY15]. We introduce a fully automatic
approach, where the artist only needs to draw keyframes.

Todo et al.[TKK*22] de-couple style-specific elements related to
the 3D scene’s geometry, illumination and view from user examples
and transform them into stroke attributes that vary in image space.
Their method builds a stroke field that handles temporal coherence
through an optimization penalizing spatial and temporal variation.
Once stroke positions are determined, strokes are synthesized us-
ing a texture and attributes queried from the generated stroke field.
Our approach uses 2D motion field and keyframe interpolation to
generate intermediate frames. This allows us to provide a suitable
pipeline without the dependency on any 3D data which are complex
to provide for 2D artists.

Closer to our method, Chen et al.[CZBB20] use rigid transforma-
tion on strokes given as examples in keyframes to compose interme-
diate frames. These intermediate frames are built by filling a target
density map with selected and modified strokes. The density map is
estimated by interpolating keyframes densities with the image reg-
istration method [SDC09]. Combined with transformed strokes, the
animation sequence shows a hand-drawn look. We share the same
approach, but in our case, the transformation of strokes is guided by
an underlying motion field as Ellsworth [Ell18]. In addition, our ap-
proach modifies the curve shape using an optimization scheme that
preserves geometric properties from the keyframes.

Stroke ordering. Hays et al.[HE04] and Northam et al.[NIK10]
discuss how strokes should be distributed on the canvas to preserve
details or salient edges. Yang et al.[YXD*20] order strokes in a way
that produces a natural result for medium synthesis, such as Chi-
nese ink. However, these approaches have not been applied to in-
betweening, which poses new challenges for stroke ordering, espe-
cially when keyframes have different numbers of strokes and differ-
ent stroke orders. Our inbetweening process involves mixing strokes
from two keyframes while accounting for the colour blending inher-
ent in the rendering process.

3. Overview

Starting with two hand-drawn keyframes and corresponding mo-
tion field, our method automatically generates all the intermediate
frames in the sequence. When the artist draws a keyframe, our sys-
tem captures an ordered list of strokes. Each stroke is recorded as
a polyline, along with brush information, including brush radius,
paint colour and initial paint amount. Each point of the polyline also
captures tool pressure and orientation, if the input device provides
this data.

The provided motion field describes how the keyframe’s content
should move from one frame to another. Each motion field frame

is defined in image space, independent of the actual keyframe’s
strokes. Since our intermediate frame generation relies on strokes
from keyframes both before and after on the timeline, we need for-
ward and backward motion vectors. We present various examples of
motion field sources that depict the motion between keyframes: mo-
tion from animated 3D scenes, optical flows extracted from videos
and 2D motion curves drawn by the artist (Section 7). In the spirit
of paint-on-glass animation, we assume that complex motions, such
as overlapping objects, are decomposed into layers. Each layer is
animated independently, using its own keyframes and motion field.

We model the style of a frame based on the low-level character-
istics of its strokes: location, curve shape and brush information.
Our algorithm is designed to generate frames whose strokes exhibit
characteristics similar to those in the keyframes andwhose locations
follow the motion field.

Intermediate frame generation algorithm consists in three main
parts. First, it advects and regularises the keyframes’ strokes to gen-
erate candidate strokes (Section 4). Second, it builds an expected
density of strokes, represented by a target paint amount map (Sec-
tion 4.2). Finally, it computes the intermediate frame stroke list
(Section 5), keeping only relevant pieces of each candidate strokes.

The generated frames use the same data structure as the
keyframes, specifically a polyline representation of the strokes. Al-
though generating intermediate frames can be time-consuming (tak-
ing up to several minutes per frame) and may not provide interactive
user control, the artist can modify these frames with the same tools
and level of control as the keyframes. Additionally, any generated
frame can serve as a new keyframe and be modified by the artist to
create further refined intermediate frames.

4. Keyframe Propagation

The generation of an intermediate frame takes as input a set of can-
didate strokes and a target paint amount map. This section presents
how these two inputs are computed from the input keyframes.

Each intermediate frame is situated between two keyframes in the
timeline, referred to as the previous keyframe and the next keyframe.
To generate candidate strokes for an intermediate frame, the strokes
from the previous keyframe are advected using the forward motion
field, while the strokes from the next keyframe are advected using
the backward motion field. Each advection step moves the polyline
points of the strokes from one frame to the adjacent frame, result-
ing in candidate strokes for the intermediate frame. To control the
curve shape of the advected stroke, we propose a stroke shape regu-
larisation algorithm. Slight divergences in the motion field can sig-
nificantly impact the stroke curve, potentially distorting its origi-
nal shape. However, the artist may wish to maintain the original
stroke curve shape throughout the animation, allowing for nearly
rigid transformations only.

4.1. Stroke advection and regularisation

The regularisation allows stroke curve shape to roughly follow the
motion while preserving the overall shape of the stroke drawn in
the keyframe. For the remainder of this section, we consider the

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 12 N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation

previous keyframe and the forward motion field. Each stroke of the
keyframe is transformed into one candidate stroke for each interme-
diate frame. These candidate strokes for an intermediate frame are
computed iteratively from the candidate strokes of the previous in-
termediate frame in the timeline, or from the keyframe for the first
intermediate frame.

We denote a stroke curve as a function f (x), with x ∈ [0, 1] the
curve parameter. The jth point of the polyline curve is f (x j) and x j
the corresponding parameter.

To compute the candidate stroke regularised curve fn in interme-
diate frame ti, of a stroke curve fp coming from the previous frame
ti−1, we consider two other curves: the advected curve fa and the
reference curve fr.

The advected curve fa is defined as

fa(x j) = fp(x j)+M(ti−1 → ti, fp(x j))

where M(ti−1 → ti, p), the motion vector from ti−1 to ti at pixel po-
sition p.

The regularisation process is controlled by a blending weight
that blends the shape between the advected curve and the reference
curve. The blending weight of a stroke is defined as the function
σ (x) ∈ [0, 1], where x ∈ [0, 1] is the parametric value of the poly-
line curve. σ (x) equals zero, respectively, one, corresponds to stroke
location where we expect rigid transformation, respectively, advec-
tion, of the curve. σ (x) is automatically computed along fp accord-
ing to the motion field (see Section 6). Additionally, we allow the
artist to edit the blending weight at the stroke level to enable fine-
grained control of the regularisation process.

The reference curve fr is computed by applying a 2D rigid trans-
formation Y ∗ to fp:

fr(x j) = Y ∗(fp(x j))

We define Y ∗ by the least-squares rigid motion using SVD ap-
proach [SHR17] as

Y ∗ = argmin
Y

∑
j

w j

∥∥Y (fp(x j))− fa(x j)
∥∥2

where the weights w j = �σ (x j)�, such that only points where we
expect advection are used to defineY ∗ so fr will follow these points.
If no such point exists, we usew j = 1 for all points so that fr follows
fa, still using rigid transform.

We compute fn through an optimisation to obtain a mix between
fa and fr according to the blending weights σ (x). Since the curve is
represented by a polyline that may contain hundreds of points, we
first fit a piecewise cubic Bézier curve onto the polyline [DP73] to
reduce the number of variables to optimise. We formulate the prob-
lem as an optimisation on the control points of the Bézier curve
and we use a combination of three energy functions for minimisa-
tion. These energies are measured along the piecewise cubic Bézier
curve for K evenly distributed sample points xk, k ∈ [1,K].

The first energy function, Ef , corresponds to the data fidelity
term, which ensures that, without other constraints, the optimisa-
tion will spatially converge to the linear interpolation fb between

Figure 2: An example of four strokes and the curves involved dur-
ing the regulation process: (a) advected curve fa, (b) the reference
curve fr, (c) linear blended curve fb and (d) regularised curve fn.
The motion field is the one of Figure 3. Background intensity corre-
sponds to blending weight σ (x) and varies from zero to one. Linear
blended curve artifacts are emphasized in (c) with cracks (1, 4), col-
lapse (2) and elongation (3).

the advected curve and the rigid curve, according to σ (x):

fb(x) = fr(x)+ σ (x)(fa(x)− fr(x))

Ef = 1

K

K∑
k=1

‖ fb(xk)− fn(xk)‖2

While it provides a good initialization, the linear blended curve
might exhibit artifacts, such as introducing sharp corners that are
not present in the reference stroke curve (see Figure 2c).

The next two energy functions, Ec and El , penalize variations be-
tween the reference and the regularised curve by minimizing, re-
spectively, the difference in curvature and the difference in distance
between every consecutive sample pairs.

Ec = 1

K

K∑
k=1

(1− σ (xk))(γr(xk)− γn(xk))
2

where γλ is the curvature of fλ, λ ∈ {r, n} and

El = 1

K − 1

K−1∑
k=1

(
1 − σ (xk)+ σ (xk+1)

2

)
(δr − δn)

2

where

δλ = ‖ fλ(xk)− fλ(xk+1)‖
We use the Levenberg–Marquardt algorithm [Mar63] to solve the
optimization problem. The control points of the advected curve fa
serve as the initialization, as they provide an initial approximation

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation 5 of 12

Figure 3: When strokes (in purple) from a keyframe (left) are advected by a motion field, forward advected strokes (middle) exhibit strong
deformations, assuming that the strokes extend slightly beyond the shape they depict, and thus are deformed by the counterclockwise motion.
Our regularisation of strokes (right) captures the motion while maintaining strokes shape from the keyframe, according to a blending weight.
The underlying motion field (shown as background colour and arrows) depicts a central clockwise rotation and an external counterclockwise
rotation. The blending weights (shown in Figure 2) are zero in the transitional region between the two rotation.

of the regularised curve. The minimized energy is a weighted com-
bination of the three energies functions:

E = Ef + αEc + βEl

In our results, we use α = 25 and β = 50. Figure 3 illustrates how
the regularisation process handles strokes that are highly deformed
by the advection.

Similarly, regularised strokes are computed from the next
keyframe using the backward motion field. After stroke advection
and regularisation, we have two lists: one from each keyframe, con-
taining candidate strokes for each intermediate frame. Each stroke
list maintains the stroke order of its originating keyframe.

4.2. Paint amount propagation

The rendering process of a keyframe involves a media simulation.
Our implementation utilises a paint simulator which mixes paint
colour onto a virtual canvas (see Section 7). The canvas also rep-
resents paint amount for mixing paint computations and for render-
ing (e.g. to render paint thickness). We leverage this paint amount
to drive the intermediate frame generation, such that once rendered
the paint amount of the intermediate frame is similar to the one in
the keyframe, without paint accumulation or missing paint.

First, the process advects paint amount map from the two
keyframes to each intermediate frame by applying successive mo-
tion field frame. To this end, we define an inverse mapping to ensure
that every pixel of the intermediate frame receives a paint amount,
unless the motion field moves outside the domain defined by the
previous frame:

A0i (p) = A0i−1 (p+M(ti → ti−1, p))

ANi (p) = ANi+1(p+M(ti → ti+1, p))

where A0i and A
N
i which are, respectively, the advected paint amount

from the previous keyframe t0 and next keyframe tN , to the interme-
diate frame ti. We define the target paint amount map Ti as the pixel-
wise maximum of both paint amount, where the maximum function

acts as a union operator:

Ti = max
(
A0i ,A

N
i

)

At the end of paint amount propagation, we have a target paint
amount map for each intermediate frame.

5. Intermediate Frame Generation

The final step of our algorithm involves selecting strokes from the
candidate stroke lists to compose a frame that best matches the target
paint amount map. Each candidate stroke is rated using a scoring
system (Section 5.2), and strokes that score above an artist-defined
threshold are selected.

The score associated with a stroke must consider the strokes al-
ready selected for the intermediate frame. This is because the final
colour is determined by a blending process from the paint simulator.
Therefore, the order of strokes is important, and a stroke cannot be
evaluated on its own. Typical animations in our tests contain more
than 100 strokes. Exhaustively testing all possible stroke combina-
tions, which involves exploring all subsets of candidate strokes, is
intractable. We design the intermediate frame generation algorithm
to select a subset of candidate strokes in a greedy fashion. The algo-
rithm randomly picks a candidate stroke and selects pieces of this
stroke to add to the intermediate frame according to the score along
its curve. The process endswhen there are nomore candidate strokes
for the current intermediate frame.

5.1. Stroke ordering

To define the intermediate frame candidate stroke list, we merge the
two candidate stroke lists and define a total order on the resulting
list. When mixing strokes from different keyframes, stroke ordering
has a strong impact on the output appearance, as the colour blending
between strokes can produce unexpected results (see Figure 4 for
example). Therefore, special care needs to be taken to define the
order of strokes during intermediate frame generation.

The way each stroke acts on the canvas depends on the amount
and colour of paint in the brush before drawing the stroke. A stroke

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 12 N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation

Figure 4: A comparison between the ordering of candidate strokes based on their individual drawing positions (left) versus the ordering of
stroke groups based on their group positions (right). Sorting strokes by their drawing positions can impact the tool state used for painting,
resulting in differences in colour and paint amount during the simulation. Keyframes are shown at time t10 and t20, and the intermediate frame
is shown at time t11.

can start with a tool that is freshly refilled with colour, freshly
cleared for smudges or keeping its state from the end of the previous
strokes. In the latter case, the tool’s colour depends on the previous
brush/canvas interaction during the paint simulation. We refer to the
‘clear’, ‘refill’ or ‘keep’ state as the tool state of the stroke.

Each stroke of a keyframe has a drawing order index, which cor-
responds to its index in the list of stroke. To ease the mixing of two
stroke list, the stroke ordering process assigns a drawing position by
mapping the drawing indices to [0,1], independently in each stroke
list. Sorting candidate strokes by drawing positions is not sufficient
to merge the two lists since strokes with a ‘keep’ tool state have
their colour changed (Figure 4a). Hence, we define stroke groups to
create coherent drawing batches within each list, and merge the two
lists while preserving the groups and their order. To achieve this, we
assign each group a unique ordering index based on the drawing or-
der position of the first stroke within the group, considering groups
from both candidate stroke lists. The drawing order of strokes within
a group follows that of the keyframe, and the tool state of these
strokes acts in the same way as in the keyframe (Figure 4b). This
process defines the merged list of candidate strokes and establishes
the drawing order for the intermediate frame.

We provide an auto-grouping mechanism based on the tool state
of the strokes. Each stroke with a tool state of ‘clear’ or ‘refill’ starts
a new group, whereas strokes with a ‘keep’ state do not. If necessary,
the artist can manually adjust the auto-grouping and group indices
to finely tune how the keyframe groups are interleaved, although
none of the examples shown in the paper utilise this feature.

During candidate stroke evaluation, strokes are randomly selected
from the merged list and inserted in the intermediate frame list of
strokes for evaluation. Stroke insertion follows the established draw-
ing order, and the tool state of the first stroke of a group within the
intermediate frame list is set to match the state of the first stroke of
the corresponding group from the merged list. Consider the picked
stroke S: If S is inserted as the first stroke in its group within the in-
termediate frame list, its tool state is set to the state of the first stroke
in its group from the merged list. If any other stroke is inserted in

the first position of this group thereafter, the tool state of S is reset to
its initial value. The algorithm then evaluates S as described in the
following section. If S is rejected, we revert the tool state of the first
stroke in its group within the intermediate frame list. This process
is detailed in Algorithm 1.

5.2. Candidate stroke evaluation

Let us consider a stroke, randomly picked from the merged list of
candidate strokes.We define a score to represent howwell the stroke
improves the current intermediate frame’s paint amount, taking into
account the target paint amount map.

Stroke evaluation. To determine the stroke’s score, the evaluation
process first computes the score of each pixel whose paint amounts
have been modified by the addition of the picked candidate stroke.
The distance to the expected paint amount T (p) before and after
picking the candidate stroke is computed using current paint amount
C(p) and new paint amountU(p):

�C(p) = |C(p)− T (p)|
�U (p) = |U (p)− T (p)|

Then the variation to the expected paint amount gives the pixel
score:

�(p) = �C(p)− �U (p)+ λ

A positive score means that the changes in paint amount betweenC
andU get closer to the target paint amount map T . We add a bonus
λ to the score if the pixel is not covered yet while paint is expected,
i.e.C(p) = 0 ∧ T (p) > 0. The value of λ depends on the underlying
paint system, we set it empirically to two times the typical paint
amount of covered pixels in our paint simulator.

Stroke cutting. Computing the stroke score as the sum of pixel
scores to accept strokes with a positive score and reject others can
lead to excessive paint overflow in the results (Figure 5c). A stroke

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation 7 of 12

Algorithm 1. Intermediate frame stroke insertion.

Input/Output:

vector<Stroke> pool; // Merged list of candidate

strokes

vector<Stroke> c; // Intermediate frame list of

strokes

begin

// Pick a stroke and remove it from merged

list

Stroke s = randomPick (pool);
Group g = getGroup (s);
Stroke fp← getFirstStrokeInGroup (pool, g);
// Get the first stroke in c if g is already

present, return an invalid stroke if not.

Stroke fc← getFirstStrokeInGroup (c, g)// Save tool

state, if reset needed anytime

s.oldToolState← s.toolState;
// If picked stroke is inserted at first

position of its group in c

if (¬ valid (fc)) ∨ (valid (fc) ∧ fc.drawOrder >

s.drawOrder) then

if valid (fc) then
// Reset fc tool state since it isn’t

the first anymore

fc.toolState← fc.oldToolState;

s.toolState← fp.toolState;

c.insert (s);
// Evaluate new frame list of strokes, and

reset the list and state if the score is

not improved

c.newScore← evaluate (c);
if c.newScore < c.oldScore then

c.remove (s);
if valid (fc) then

// fc returns to the first position of

the group, set its state from fp
fc.toolState← fp.toolState;

else
c.oldScore← c.newScore

may have some pieces with a high score while others have a low
score. To better match the target paint amount of the canvas, we pro-
pose a mechanism to cut a stroke into pieces according to the scores
of pixels that belong to the rendered surface of the stroke. Cutting
strokes has no perceptible impact on uniformly painted regions, as
shown in Figures 5(a) and (b). This is not the case for regions painted
with different colours (Figure 6).

We associate per-pixel scores to the curve parameters of the
stroke. The stroke curve is then divided into a fixed number of
segments (i.e. 100) corresponding to evenly distributed parameter
ranges along the curve. Each segment represents a quadrilateral re-
gion of the stroke on the canvas. We compute the score of each seg-
ment as the sum of all pixel scores within its quadrilateral region
and retain only those segments with a positive score.

Figure 5: A comparison of the frame generation with and without
stroke cutting. (a) shows one of the two inputs keyframes used for
stroke generation, while (b) and (c) show the results of stroke gen-
eration for the same intermediate frame. In (b), with stroke cutting
enabled, the paint amount is more consistent with the keyframe. In
(c), with stroke cutting disabled, there is an overflow of paint in some
regions.

Figure 6: Impact of stroke cutting on the appearance of generated
frames when using keyframes with complex coloured regions. For
illustration purpose, the two keyframes are the same.

The selected stroke segments are added to the stroke list of the
intermediate frame as new strokes. The first segment takes the tool
state of the stroke, while the tool state of subsequent segments is set
to ‘keep’ state.

Smudge effects. Smudge strokes are used by the artist to mix
colours and smooth out colour changes on the canvas. These strokes
correspond to a tool state set to ‘clear’ and do not add additional
paint to the canvas, unlike filled strokes. Therefore, it is not

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 12 N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation

necessary to cut them in order to ensure a consistent distribution of
paint on the canvas. While cutting filled strokes can enhance overall
paint distribution, cutting smudge strokes offers limited benefits
and may introduce more visible discontinuities on the canvas.

Nevertheless, our experiments show that accepting all smudge
strokes from both keyframes leads to excessive smoothing in the
intermediate frames. Therefore, we have designed a specific selec-
tion mechanism for smudge strokes that avoids cutting. We filter
candidate smudge strokes to consider as candidate only a subset of
them from the previous and next keyframe, based on the timeline
position of the intermediate frame being generated. To ensure that
the closer the intermediate frame is to a keyframe the more smudge
strokes from this keyframe are likely to be considered as candidates,
we select smudge strokes according to the ratio ρ:

ρ = t

N

and take (1 − ρ) · κ0 smudge strokes from the previous keyframe
and ρ · κN smudge strokes from the next keyframe. κi is the number
of smudge strokes in the keyframe at time ti.

6. Extrapolation of Motion Field

In the examples presented in this paper, we demonstrate three differ-
ent sources of motion fields for generating painted animations using
our method: video, 3D scenes and artist-drawn motion field.

Dense optical flow extraction from a video defines the motion of
each pixel in the image domain. This motion field can be directly
used in our method. It provides information about the motion of the
entire scene, though splitting this motion into layers can be chal-
lenging.

The motion field from a 3D scene only defines motion within the
rendered area of the animated objects, making it easy to split into
layers. However, strokes that extend beyond the objects’ area may
not be properly advected, requiring the motion field to be extrapo-
lated as explained later.

We propose a simple method to obtain a motion field by using
parametric curves drawn by the artist to represent motion across
frames. Each parametric curve is divided into segments by match-
ing their parameters to the timestamps of the intermediate frames
in the sequence. Each segment defines the motion of the underly-
ing pixels, but this sparse motion field also requires extrapolation.
Authoring complex motion field from drawings and annotations is
beyond the scope of this paper. Motion field authoring approaches
such as Hu et al.[HXF*19] could be directly integrated into our ap-
proach.

A sparse or incomplete motion field needs to be extrapolated to
provide a motion vector for every pixel, ensuring proper advection
of painted strokes even in regions without initial motion informa-
tion. To this end, we use a bi-harmonic diffusion method adapted
from Baster et al.[BBA09]. The bi-harmonic diffusion is based on
minimizing gradient differences within a mesh that discretizes the
sparse motion field, producing a smooth extrapolation of known
vectors. First, the extrapolation process builds a triangular 2D mesh
T that tessellates the image plane. Then, it assigns known motion

Figure 7: Extrapolating a partial motion field (right) results in a
global motion field where each pixel is assigned a motion vector
(middle) along with a confidence value (right).

vectors to the nearest vertices. To compute the motion vectors for
the unassigned vertices, the process minimizes the Jacobian of the
motion vectors of adjacent triangles in the mesh. This corresponds
to minimizing the following energy:

∑
j,k∈ζ (T)

‖J(j)− J(k)‖2 + ε
∑
i∈F

‖J(i)‖2,

where

J(f) =
[
V (fa)−V (fc)
V (fb)−V (fc)

]−1 [
1 0 −1
0 1 −1

] ⎡
⎣ω(fa)

ω(fb)
ω(fc)

⎤
⎦

with F the set of faces, V the vertices and ω the motion vectors of
the vertices, i.e. the variables of the optimization. Each face f has
three indices, fa, fb and fc, which index V and ω. ζ (T) represents
the pairs of all faces in T that share an edge.

The motion vector for each pixel in the image plane is computed
using barycentric interpolation from the motion vectors of the ver-
tices of T . In addition, we define a confidence value for each motion
vector. To compute this value, the process first creates a binary mask
where each pixel is set to one if it corresponds to an input motion
vector in the motion field and zero if it was extrapolated. Then, a
Gaussian filter is applied to smooth the transition between the orig-
inal and extrapolated areas (see Figure 7). This confidence value
is used as blending weights σ in the stroke regularisation process
(Section 4.1).

7. Implementation and Results

We implemented our prototype in C++/OpenGL using Radium-
Engine [MRB*21]. All of our illustrations are rendered using
our own implementation of a paint simulator inspired by Bax-
ter et al.[BWL04] and Chu et al.[CBWG10]. This paint simulator
computes bi-directional paint exchanges between the brush and the
canvas, on the GPU.

We extract the rendered motion field using Blender’s AOV
rendering [Com18], employ the Triangle library’s Python wrap-
per [She96, R*20] and use our implementation of bi-harmonic diffu-
sion to obtain the interpolated motion field as a pre-processing step.

Regarding the propagation of keyframe strokes, we advect them
on the GPU using compute shaders. The rigid transform registration
and the Levenberg–Marquardt optimisation are implemented using
the Eigen library [GJ*10].

The computational cost of our method is directly proportional to
the number of candidate strokes used. Our method utilises a greedy

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation 9 of 12

Table 1: Measurements in seconds taken when generating the beach-ball
animation (see supplemental data) using keyframes at t10 and t20, generat-
ing nine intermediate images consisting of approximately 600 strokes each.
Computation times were measured from a workstation equipped with an
Intel® Xeon® CPU E5-1630 v4@3.70GHz and an NVIDIA GeForce GTX
1080.

Step Per image (s) Per stroke (s)

Generation �1140
- Propagation �1.4
* Stroke advection �0.0839
* Regularisation �0.6 �0.0007
* Paint advection �0.0182
- Ordering <0.0000
- Evaluation �1122
* Paint simulation �1026 �1
* Score �84 �0.0889
* Cutting �6.5 �0.0068

stroke-picking algorithm, which involves rendering a list of strokes
that expands at each step of the evaluation process. As a result, the
simulation cost increases linearly with each accepted evaluation of
a candidate stroke. For instance, keyframes composed of about 100
strokes require only a few minutes per intermediate frame to ren-
der. However, for more complex keyframes consisting of a thou-
sand strokes, the rendering time can extend to several minutes per
intermediate frame (Table 1).

We provide examples of generated animations in the supplemen-
tal data accompanying this paper. Depending on the scene’s com-
plexity, the artist decomposes the scene into multiple layers, which
reduces the number of strokes required per keyframe and signifi-
cantly improves computational efficiency. Each layer has its own
keyframes and motion field. To guide the drawing of keyframes, the
artist typically uses a background animation, either from 3D ren-
dering, from video or from an animated storyboard. To ensure com-
pelling intermediate frames, the advection from one keyframe to
the next should align their content. In practice, relying solely on a
pose-to-pose approach can make achieving this alignment challeng-
ing, as the artist must anticipate the motion applied during advec-
tion. To assist with motion anticipation, we find useful to advect the
first keyframe to predict where its content will appear on the second
keyframe. The advected result can then serve as a guide for the artist
when drawing the second keyframe.

Our method exhibits a level of temporal coherence comparable to
paint-on-glass animations, such as Loving Vincent [KW17]. How-
ever, this temporal in-coherence have fuzzy contours, with strokes
only following the motion of the scene, and some frame to frame
flickering. However, the main difference between our approach and
traditional under-the-camera technique is that our method utilises
keyframes whilst manual approaches typically involve repainting
only the moving parts of the frame over the previous frame. Our
generative scheme uses random stroke picking to create slight vari-
ations in each intermediate frame. This is useful for breaking tempo-
ral continuity and enforcing the flatness described by Bénard et al.
[BBT11], which breaks the perception of synthetic moving strokes.

Our method was tested on a variety of scenes with challenging
animation, such as occlusions, camera zoom and boil line effect. As

Figure 8: This intermediate frame was generated using dense opti-
cal flow from the Sintel video, employing the OpenCV’s Farnebäck
implementation [Far03]. Due to the low quality of the motion field,
strokes around the character are distorted by its movement.

stated in Section 3, we assume that animations involving multiple
objects, and occlusions, are decomposed into layers. We evaluated
our method on a scene involving a zoom effect, which typically
presents challenges due to rapid changes in scale and perspective
that can lead to unfilled areas. Our approach leverages strokes from
keyframes to ensure shape consistency in each intermediate frame.
While this approach assumes that the keyframes capture the neces-
sary scaling information, it aligns with the fundamental principles
of pose-to-pose animation, where keyframes are defined by key po-
sitions and extreme poses [Wil09]. Our algorithm effectively adapts
to the changing scale of the scene, leveraging the bi-directional mo-
tion field to handle zooming in and out seamlessly. Our method can
also handle animations with no explicit motion between the frames,
resulting in line boil effects. In this case, our algorithm generates in-
termediate frames based on two keyframes that represent the same
state of the scene. By using random stroke picking, our algorithm
creates slight variations of these keyframes for each intermediate
frame. This produces line boils, similar to what we observe in tra-
ditional hand-drawn animation.

8. Limits and Perspectives

The quality of our results largely depends on the motion field pro-
vided as input. Rendered motion fields capture instantaneous speed
motion vectors accurately but result in non-invertible motion fields
as they do not account for acceleration. The problem can be over-
come by using Runge–Kutta differential equations [But87] to get
a better approximation of the rendered motion [Ell18]. Moreover,
the motion field only capture the motion within object shapes, ne-
cessitating extrapolation for regions outside these shapes. Optical
flows extracted from video can have poor quality depending on the
extraction method used (Figure 8). Our method is compatible with
approaches that enhance optical flow to improve the resulting video
animation [DBH19].

Intermediate frames generated by our system may contain empty
regions where paint is missing. While our paint advection scheme
effectively preserves the paint distribution from the corresponding

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 12 N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation

keyframes, the advection of strokes can sometimes lead to areas that
lack candidate strokes to fill them.

The performance of our method is currently not suitable for real-
world usage, primarily due to the greedy algorithm that requires
numerous paint simulations, which cannot be cached in memory.
While keyframe creation is performed in real time by the artist, the
computation of intermediate frames is still an offline process in its
current form. We believe that achieving generation times on the or-
der of seconds, while maintaining the same level of quality in re-
sults, will greatly benefit our workflow and the animation industry
as a whole. We describe some avenues for improvement.

Genetic algorithms could potentially provide improved perfor-
mance compared to greedy approaches. The intermediate frames
generation could work as follows: First, the algorithm selects a sub-
set of candidate strokes, which defines a solution for the interme-
diate frame, and computes associated costs according to the target
paint amount. Then, the subset undergoes a mutation step, and the
subset is re-evaluated. We anticipate convergence after a few mu-
tations. This approach would allow the evaluation of the state of
intermediate frames at each mutation step instead of at each stroke
selection, significantly reducing the cost of the paint simulation.

To improve our method, a more advanced approach to mixing
and grouping keyframe strokes could be explored. One potential
lead is to use machine learning techniques to identify strokes that
share similar semantic properties, such as those depicting shape con-
tours or elements in the foreground or background. This could allow
strokes to be processed differently depending on the groups they be-
long to, leading to more accurate and efficient animation.

9. Conclusion

The proposedmethod offers the flexibility of the pose-to-pose work-
flow combined with the look and feel of paint-on-glass animations.
The approach is compatible with both full 2D and mixed 2D-3D
animation workflows. We demonstrate that motion fields require
specific processing to be usable for interpolating keyframes in a
painterly style. The necessary processing depends on whether the
motion field is rendered, estimated or hand-drawn, to be readily
usable by the artist. Our method also includes a novel approach
to frame interpolation that considers filling constraints. This rep-
resents a step forward in bringing the traditional animation style
to computer-generated animation, and opens up new possibilities
for artists.

Acknowledgements

This work was funded by the Grant ANR-19-CE38-0009-01 (ANR
project Structures). We thank Pascal Barla, Mathias Paulin and
Nicolas Mellado for their valuable comments.

References

[BBA09] Baxter W., Barla P., Anjyo K.: N-way morphing for
2D animation. Computer Animation and Virtual Worlds 20, 2-3
(2009), 79–87. https://doi.org/10.1002/cav.310.

[BBS*13] BassettK., Baran I., Schmid J., GrossM., SumnerR.
W.: Authoring and animating painterly characters. ACM Trans-
actions on Graphics 32, 5 (Oct. 2013). https://doi.org/10.1145/
2484238.

[BBT11] Bénard P., Bousseau A., Thollot J.: State-of-the-art
report on temporal coherence for stylized animations. Computer
Graphics Forum 30, 8 (2011), 2367–2386. https://doi.org/10.
1111/j.1467-8659.2011.02075.x.

[BCK*13] Bénard P., Cole F., Kass M., Mordatch I., Hegarty
J., Senn M. S., Fleischer K., Pesare D., Breeden K.: Styliz-
ing animation by example. ACM Transactions on Graphics 32, 4
(July 2013). https://doi.org/10.1145/2461912.2461929.

[BFV21] Barroso N., Fondevilla A., Vanderhaeghe D.: Au-
tomatic intermediate frames for stroke-based animation. In
Journées Françaises d’Informatique Graphique (JFIG 2021)
(Sophia Antipolis, France, Nov. 2021). https://hal.science/hal-
03454288.

[BKLP16] Bai Y., Kaufman D. M., Liu C. K., Popović J.:
Artist-directed dynamics for 2D animation. ACM Transactions
on Graphics 35, 4 (July 2016). https://doi.org/10.1145/2897824.
2925884.

[BSFG09] Barnes C., Shechtman E., Finkelstein A., Gold-
man D. B.: PatchMatch: A randomized correspondence algo-
rithm for structural image editing. ACM Transactions on Graph-
ics 28, 3 (July 2009). https://doi.org/10.1145/1531326.1531330.

[But87] Butcher J. C.: The Numerical Analysis of Ordinary Dif-
ferential Equations: Runge-Kutta and General Linear Methods.
Wiley-Interscience, Chichester, 1987.

[BWL04] BaxterW., Wendt J., LinM. C.: IMPaSTo: A realistic,
interactive model for paint. In NPAR’04: Proceedings of the 3rd
International Symposium on Non-Photorealistic Animation and
Rendering (New York, NY, USA, 2004), Association for Com-
puting Machinery, pp. 45–148. https://doi.org/10.1145/987657.
987665.

[CBWG10] Chu N., Baxter W., Wei L.-Y., Govindaraju N.:
Detail-preserving paint modeling for 3D brushes. In NPAR’10:
Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering (New York, NY, USA,
2010), Association for Computing Machinery, pp. 27–34. https:
//doi.org/10.1145/1809939.1809943.

[Com18] CommunityB. O.:Blender—a 3Dmodelling and render-
ing package. Blender Foundation, Stichting Blender Foundation,
Amsterdam. (2018).

[CZBB20] Chen J., Zhu X., Bénard P., Barla P.: Stroke synthe-
sis for inbetweening of rough line animations. In Pacific Graph-
ics Short Papers, Posters, and Work-in-Progress Papers (2020),
S.-H. Lee, S. Zollmann, M. Okabe and B. Wuensche (Eds.), The
Eurographics Association. https://doi.org/10.2312/pg.20201233.

[DBB*17] Dvorožňák M., Bénard P., Barla P., Wang O.,
Sýkora D.: Example-based expressive animation of 2D rigid

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/cav.310
https://doi.org/10.1145/2484238
https://doi.org/10.1145/2484238
https://doi.org/10.1111/j.1467-8659.2011.02075.x
https://doi.org/10.1111/j.1467-8659.2011.02075.x
https://doi.org/10.1145/2461912.2461929
https://hal.science/hal-03454288
https://hal.science/hal-03454288
https://doi.org/10.1145/2897824.2925884
https://doi.org/10.1145/2897824.2925884
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1145/987657.987665
https://doi.org/10.1145/987657.987665
https://doi.org/10.1145/1809939.1809943
https://doi.org/10.1145/1809939.1809943
https://doi.org/10.2312/pg.20201233

N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation 11 of 12

bodies. ACM Transactions on Graphics 36, 4 (July 2017). https:
//doi.org/10.1145/3072959.3073611.

[DBH19] Delanoy J., Bousseau A., Hertzmann A.: Video mo-
tion stylization by 2D rigidification. In Expressive’19: Proceed-
ings of the 8th ACM/Eurographics Expressive Symposium on
Computational Aesthetics and Sketch Based Interfaces and Mod-
eling and Non-Photorealistic Animation and Rendering (Goslar,
DEU, 2019), Eurographics Association, pp. 11–19. https://doi.
org/10.2312/exp.20191072.

[DP73] Douglas D. H., Peucker T. K.: Algorithms for the re-
duction of the number of points required to represent a dig-
itized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization 10,
2 (1973), 112–122. https://doi.org/10.3138/FM57-6770-U75U-
7727.

[EBB23] EvenM., Bénard P., Barla P.: Non-linear rough 2D an-
imation using transient embeddings. Computer Graphics Forum
42, 2 (2023), 411–425. https://doi.org/10.1111/cgf.14771.

[Ell18] Ellsworth T. S.: The Bird and The Fish: Motion Field-
Based Frame Interpolation in the Context of a Story. Brigham
Young University, 2018.

[Far03] Farnebäck G.: Two-frame motion estimation based on
polynomial expansion. In Image Analysis: 13th Scandinavian
Conference, SCIA 2003 Halmstad, Sweden, June 29–July 2, 2003
Proceedings 13 (2003), Springer, pp. 363–370. https://doi.org/
10.1007/3-540-45103-X_50.

[GJ*10] Guennebaud G., Jacob B.: Eigen v3. http://eigen.
tuxfamily.org (2010).

[Hae90] Haeberli P.: Paint by numbers: Abstract image represen-
tations. In SIGGRAPH’90: Proceedings of the 17th Annual Con-
ference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1990), Association for Computing Machinery,
pp. 207–214. https://doi.org/10.1145/97879.97902.

[HE04] Hays J., Essa I.: Image and video based painterly ani-
mation. In NPAR’04: Proceedings of the 3rd International Sym-
posium on Non-Photorealistic Animation and Rendering (New
York, NY, USA, 2004), Association for Computing Machinery,
pp. 113–120. https://doi.org/10.1145/987657.987676.

[Her98] Hertzmann A.: Painterly rendering with curved brush
strokes of multiple sizes. In SIGGRAPH’98: Proceedings of the
25th Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 1998), Association for Com-
puting Machinery, pp. 453–460. https://doi.org/10.1145/280814.
280951.

[HTT*20] Hauptfleisch F., Texler O., Texler A., Krivánek J.,
Sýkora D.: StyleProp: Real-time example-based stylization of
3D models. Computer Graphics Forum 39, 7 (2020), 575–586.
https://doi.org/10.1111/cgf.14169.

[HXF*19] Hu Z., Xie H., Fukusato T., Sato T., Igarashi T.:
Sketch2VF: Sketch-based flow design with conditional gen-

erative adversarial network. Computer Animation and Virtual
Worlds 30, 3-4 (2019), e1889. https://doi.org/10.1002/cav.1889.

[JSL22] Jiang J., Seah H. S., Liew H. Z.: Stroke-based draw-
ing and inbetweeningwith boundary strokes.Computer Graphics
Forum 41, 1 (2022), 257–269. https://doi.org/10.1111/cgf.14433.

[JST*19] Jamriška O., Sochorová V., Texler O., Lukáč M.,
Fišer J., Lu J., Shechtman E., Sýkora D.: Stylizing video
by example. ACM Transactions on Graphics 38, 4 (July 2019).
https://doi.org/10.1145/3306346.3323006.

[JYF*20] JingY., YangY., FengZ., Ye J., YuY., SongM.: Neural
style transfer: A review. IEEE Transactions on Visualization &
Computer Graphics 26, 11 (Nov. 2020), 3365–3385. https://doi.
org/10.1109/TVCG.2019.2921336.

[KW17] Kobiela D., Welchman H.: Loving vincent. BreakThru
Productions, Trademark Films. (2017).

[LYFD12] Lu J., Yu F., Finkelstein A., DiVerdi S.: Helping-
Hand: Example-based stroke stylization. ACM Transactions on
Graphics 31, 4 (July 2012). https://doi.org/10.1145/2185520.
2185542.

[Mar63] Marquardt D. W.: An algorithm for least-squares esti-
mation of nonlinear parameters. Journal of the Society for In-
dustrial and Applied Mathematics 11, 2 (1963), 431–441. https:
//doi.org/10.1137/0111030.

[MFXM21] Miyauchi R., Fukusato T., Xie H., Miyata K.:
Stroke correspondence by labeling closed areas. In 2021 Nico-
graph International (NicoInt) (2021), pp. 34–41. https://doi.org/
10.1109/NICOINT52941.2021.00014.

[Mia21] Miailhe F.: La traversée. Gebeka Films. (2021).

[MRB*21] Mourglia C., Roussellet V., Barthe L., Mellado
N., Paulin M., Vanderhaeghe D.: Radium-engine. Apache-
2.0 license. https://doi.org/10.5281/zenodo.5101334 (2021).

[NIK10] Northam L., Istead J., Kaplan C. S.: Brush Stroke
Ordering Techniques for Painterly Rendering. In Computa-
tional Aesthetics in Graphics, Visualization, and Imaging (2010),
P. Jepp and O. Deussen (Eds.), The Eurographics Associ-
ation. https://doi.org/10.2312/COMPAESTH/COMPAESTH10/
059-066.

[OH11] O’Donovan P., Hertzmann A.: AniPaint: Interactive
painterly animation from video. IEEE Transactions on Visual-
ization and Computer Graphics 18, 3 (2011), 475–487. https:
//doi.org/10.1109/TVCG.2011.51.

[R*20] Rufat D.: Triangle. https://rufat.be/triangle/ (2020).

[SDC09] Sýkora D., Dingliana J., Collins S.: As-rigid-as-
possible image registration for hand-drawn cartoon animations.
In NPAR’09: Proceedings of the 7th International Symposium on
Non-Photorealistic Animation and Rendering (New York, NY,
USA, 2009), Association for Computing Machinery, pp. 25–33.
https://doi.org/10.1145/1572614.1572619.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1145/3072959.3073611
https://doi.org/10.1145/3072959.3073611
https://doi.org/10.2312/exp.20191072
https://doi.org/10.2312/exp.20191072
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1111/cgf.14771
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/3-540-45103-X_50
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1145/97879.97902
https://doi.org/10.1145/987657.987676
https://doi.org/10.1145/280814.280951
https://doi.org/10.1145/280814.280951
https://doi.org/10.1111/cgf.14169
https://doi.org/10.1002/cav.1889
https://doi.org/10.1111/cgf.14433
https://doi.org/10.1145/3306346.3323006
https://doi.org/10.1109/TVCG.2019.2921336
https://doi.org/10.1109/TVCG.2019.2921336
https://doi.org/10.1145/2185520.2185542
https://doi.org/10.1145/2185520.2185542
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1109/NICOINT52941.2021.00014
https://doi.org/10.1109/NICOINT52941.2021.00014
https://doi.org/10.5281/zenodo.5101334
https://doi.org/10.2312/COMPAESTH/COMPAESTH10/059-066
https://doi.org/10.2312/COMPAESTH/COMPAESTH10/059-066
https://doi.org/10.1109/TVCG.2011.51
https://doi.org/10.1109/TVCG.2011.51
https://rufat.be/triangle/
https://doi.org/10.1145/1572614.1572619

12 of 12 N. Barroso et al. / Automatic Inbetweening for Stroke-based Painterly Animation

[She96] Shewchuk J. R.: Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator. In Applied Com-
putational Geometry: Towards Geometric Engineering. Lecture
Notes in Computer Science (May 1996), M. C. Lin and D.
Manocha (Eds.), Springer-Verlag, vol. 1148, pp. 203–222. From
the First ACM Workshop on Applied Computational Geometry.
https://doi.org/10.1007/BFb0014497.

[SHR17] Sorkine-Hornung O., Rabinovich M.: Least-Squares
Rigid Motion Using SVD. Tech. Rep., ETH Department of Com-
puter Science, Zürich, Switzerland, 2017.

[SJT*19] Sýkora D., Jamriška O., Texler O., Fišer J., Lukáč
M., Lu J., Shechtman E.: StyleBlit: Fast example-based styliza-
tionwith local guidance.ComputerGraphics Forum 38, 2 (2019),
83–91. https://doi.org/10.1111/cgf.13621.

[SSGS11] Schmid J., Senn M. S., Gross M., Sumner R. W.:
Overcoat: An implicit canvas for 3D painting. In SIGGRAPH’11:
ACM SIGGRAPH 2011 Papers (New York, NY, USA, 2011),
Association for Computing Machinery. https://doi.org/10.1145/
1964921.1964923.

[TKK*22] Todo H., Kobayashi K., Katsuragi J., Shimotahira
H., Kaji S., Yue Y.: Stroke transfer: Example-based synthe-
sis of animatable stroke styles. In SIGGRAPH’22: ACM SIG-
GRAPH 2022 Conference Proceedings (New York, NY, USA,
2022), Association for ComputingMachinery. https://doi.org/10.
1145/3528233.3530703.

[VC12] Vanderhaeghe D., Collomosse J.: Stroke based
painterly rendering. In Image and Video-Based Artis-
tic Stylisation. Computational Imaging and Vision. P.
Rosin and J. Collomosse (Eds.). Springer, London (2012),
vol. 42, pp. 3–21. https://doi.org/10.1007/978-1-4471-
4519-6_1.

[WCHG13] Wang T., Collomosse J. P., Hunter A., Greig D.:
Learnable stroke models for example-based portrait painting. In
British Machine Vision Conference, BMVC 2013, Bristol, UK,
September 9-13, 2013 (2013), T. Burghardt, D. Damen, W. W.
Mayol-Cuevas and M. Mirmehdi (Eds.), BMVA Press. https://
doi.org/10.5244/C.27.36.

[WDK*12] Whited B., Daniels E., Kaschalk M., Osborne P.,
Odermatt K.: Computer-assisted animation of line and paint in
Disney’s paperman. In SIGGRAPH’12: ACM SIGGRAPH 2012
Talks (New York, NY, USA, 2012), Association for Computing
Machinery. https://doi.org/10.1145/2343045.2343071.

[Wil09] Williams R.: The Animator’s Survival Kit–Revised Edi-
tion: A Manual of Methods, Principles and Formulas for Clas-
sical, Computer, Games, Stop Motion and Internet Animators.
Faber & Faber, Inc., London, UK, 2009.

[WNS*10] Whited B., Noris G., Simmons M., Sumner R. W.,
GrossM., Rossignac J.: BetweenIT: An interactive tool for tight
inbetweening.Computer Graphics Forum 29, 2 (2010), 605–614.
https://doi.org/10.1111/j.1467-8659.2009.01630.x.

[XWSY15] Xing J., Wei L.-Y., Shiratori T., Yatani K.: Auto-
complete hand-drawn animations. ACM Transactions on Graph-
ics 34, 6 (Nov. 2015). https://doi.org/10.1145/2816795.2818079.

[YSC*18] Yang W., Seah H.-S., Chen Q., Liew H.-Z., Sýkora
D.: FTP-SC: Fuzzy topology preserving stroke correspondence.
Computer Graphics Forum 37, 8 (2018), 125–135. https://doi.
org/10.1111/cgf.13518.

[YXD*20] Yang L., Xu T., Du J., Zhang H., Wu E.: Brushwork
master: Chinese ink painting synthesis for animating brushwork
process. Computer Animation and Virtual Worlds 31, 4-5 (2020),
e1949. https://doi.org/10.1002/cav.1949.

[ZZ11] Zhao M., Zhu S.-C.: Portrait painting using ac-
tive templates. In NPAR’11: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Non-Photorealistic Ani-
mation and Rendering (New York, NY, USA, 2011), Association
for ComputingMachinery, pp. 117–124. https://doi.org/10.1145/
2024676.2024696.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Supporting Information

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15201 by D

avid V
anderhaeghe - U

niversité T
oulouse - Jean Jaurès , W

iley O
nline L

ibrary on [15/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/BFb0014497
https://doi.org/10.1111/cgf.13621
https://doi.org/10.1145/1964921.1964923
https://doi.org/10.1145/1964921.1964923
https://doi.org/10.1145/3528233.3530703
https://doi.org/10.1145/3528233.3530703
https://doi.org/10.1007/978-1-4471-4519-6_1
https://doi.org/10.1007/978-1-4471-4519-6_1
https://doi.org/10.5244/C.27.36
https://doi.org/10.5244/C.27.36
https://doi.org/10.1145/2343045.2343071
https://doi.org/10.1111/j.1467-8659.2009.01630.x
https://doi.org/10.1145/2816795.2818079
https://doi.org/10.1111/cgf.13518
https://doi.org/10.1111/cgf.13518
https://doi.org/10.1002/cav.1949
https://doi.org/10.1145/2024676.2024696
https://doi.org/10.1145/2024676.2024696

	Automatic Inbetweening for Stroke-Based Painterly Animation
	1. Introduction
	2. Related Works
	3. Overview
	4. Keyframe Propagation
	4.1. Stroke advection and regularisation
	4.2. Paint amount propagation

	5. Intermediate Frame Generation
	5.1. Stroke ordering
	5.2. Candidate stroke evaluation

	6. Extrapolation of Motion Field
	7. Implementation and Results
	8. Limits and Perspectives
	9. Conclusion
	Acknowledgements
	References
	Supporting Information

