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ABSTRACT

Several popular variational bounds involving importance weighting ideas have been proposed
to generalize and improve on the Evidence Lower BOund (ELBO) in the context of maximum
likelihood optimization, such as the Importance Weighted Auto-Encoder (IWAE) and the
Variational Rényi (VR) bounds. The methodology to learn the parameters of interest using
these bounds typically amounts to running gradient-based variational inference algorithms
that incorporate the reparameterization trick. However, the way the choice of the variational
bound impacts the outcome of variational inference algorithms can be unclear. Recently, the
VR-IWAE bound was introduced as a variational bound that unifies the ELBO, IWAE and
VR bounds methodologies. In this paper, we provide two analyses for the reparameterized
and doubly-reparameterized gradient estimators of the VR-IWAE bound, which reveal the
advantages and limitations of these gradient estimators while enabling us to compare of the
ELBO, IWAE and VR bounds methodologies. Our work advances the understanding of
importance weighted variational inference methods and we illustrate our theoretical findings
empirically.

Keywords Variational Inference - Alpha-Divergence - Importance Weighted Auto-encoder - High
dimension - Signal-To-Noise Ratio
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1 Introduction

Variational inference (VI) methods seek to find the best approximation to an unknown target posterior
density within a more tractable family of probability densities Q (Jordan et al., ; Blei et al., ).
A common setting where VI is applied is when one is given a model that depends on a parameter ¢ and
the goal is to optimize the associated marginal log likelihood, with the posterior density being intractable.
Since direct optimization of the marginal log likelihood cannot be carried out, variational bounds involving
the variational family Q are constructed as surrogate objective functions to the marginal log likelihood that
are more amenable to optimization.

While the most traditional variational bound is the Evidence Lower BOund (ELBO), popular alternatives
to the ELBO that rely on importance weighting ideas have been proposed to improve on VI, such as the
Importance Weighted Auto-Encoder (IWAE) bound in Burda et al., and the Variational Rényi (VR)
bound in Li and Turner, . An active line of research in VI is then concerned with how the choice of
the variational bound affects the outcome of VI algorithms (Dieng et al., ; Li and Gal, ; Maddison
et al., ; Rainforth et al., ; Wang et al., ; Tucker et al., ; Geffner and Domke, ;
Daudel and Douc, ; Daudel et al., ; Dhaka et al., ; Geffner and Domke, ; Rudner et al.,

: Guilmeau et al., ; Knoblauch et al., ; Rodriguez-Santana and Hernandez-Lobato, ;
Daudel et al., ,b; Guilmeau et al., ; Margossian et al., ).

Among these works, Daudel et al., introduce and study the VR-IWAE bound, a variational bound
that depends on two hyperparameters (N, «) € N* x [0,1) and that unifies the ELBO, IWAE and VR
methodologies when the reparametrization trick (Kingma and Welling, ) is available. Daudel et al.,

notably provide two analyses of the VR-IWAE bound that elucidate the role NV and « play in this
bound. Yet, solely focusing on the behavior of a variational bound is insufficient to assess the effectiveness
of algorithms based on this bound at learning the parameters of interest (Rainforth et al., ).

In this paper, we study the role of N and « in two gradient estimators of the VR-IWAE bound that are
at the center of the methodology built in Daudel et al., , namely the reparameterized (REP) and
doubly-reparameterized (DREP) gradient estimators of the VR-IWAE bound. In doing so, our aim is to
provide insights that apply to widely-used gradient estimators of the IWAE and VR bounds and more
broadly to further advance the understanding of importance weighted VI methods. The paper is then
organized as follows.

In Section 2, we review the main concepts behind the VR-IWAE bound methodology and the existing
asymptotic studies for this methodology. In Section 3, we provide two asymptotic studies for the REP and
DREP gradient estimators of the VR-IWAE bound.

(1) The first analysis, in which the number of Monte Carlo samples /N goes to infinity, shows that « enables
a bias-variance tradeoff in these gradient estimators and highlights how the DREP gradient estimator can
significantly outperform the REP one (Theorems 1 to 3). This analysis is illustrated in Examples 3 and 4.
Examples 3 and 4 also reveal the impact the dimension of the latent space d may have on the relevance
of Theorems 1 to 3 as d increases.

(i) To account for the effect of a large dimension d in the REP and DREP gradient estimators of the VR-
IWAE bound, we derive a second analysis in Theorems 4 and 5 as NV, d — oo that is illustrated in Example 5.
This analysis suggests that in certain regimes the REP and DREP gradients of the VR-IWAE bound suffer
from a weight collapse phenomenon for all o € [0, 1) which impedes the VR-IWAE bound methodology.
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Section 4 provides empirical evidence supporting our claims. Directions for future research are outlined in
Section 5. Proofs and additional experiments are provided in the appendix.

2 Background on the VR-IWAE bound methodology

Consider a model with joint distribution py(z, z) parameterized by § € © C R?, where x denotes an
observation and z is a latent variable valued in R¢. In bayesian inference, one seeks to sample from the
posterior density pg(z|x). However, in many important cases sampling directly from the posterior density is
impossible. This then hinders usual bayesian inference tasks such as maximization likelihood optimization,
where the goal is to find the optimal § € © which maximizes the marginal log likelihood

00 2) = log </p9(x,z)dz> | 0

To tackle this challenge, VI methods introduce a probability density ¢, (z|z) parameterized by ¢ € &,
whose distribution is easy to sample from and where typically ® C R’. Specifically, in the context of
maximum likelihood optimization, VI methods solve an optimization problem involving a variational
bound, that is a lower bound on the marginal log likelihood ¢(; ). While the most common example of
variational bound is the ELBO

ELBO(6, ¢; x) = /q¢(z|x) logwy ¢(2;x) dz where wp4(2;2) = pg((:c,‘ Z)) , z €RY (2)
qe(2|
several generalizations of the ELBO exist, such as the IWAE bound (Burda et al., )

N N
IWAE 1 *
KEV )(Q,gb; T) = /E%(%‘x) log (N;wa(b(zj;x)) dzi.y, N €N

and the VR-IWAE bound (Daudel et al., ): forall N € N*and all o € [0, 1),

N N
. 1 1 .
Egv)(Q,Qﬁ; T) = E/quﬁ(zi]x) log (N g we 4(25; )" >dzl;N. 3)
i=1 =1

Both variational bounds recover the ELBO when N = 1 (or when o« — 1 for the VR-IWAE bound) with the
VR-IWAE bound generalizing the IWAE bound (o = 0). Furthermore, a straightforward way to optimize
these variational bounds is to use stochastic gradient ascent (SGA) paired up with the reparameterization
trick (Kingma and Welling, ; Burda et al., ; Daudel et al., ). The reparameterization trick
is a common tool used in VI which has led to empirical advantages when estimating gradients with respect
to ¢ and which relies on the assumption that Z = f(e, ¢; ) ~ g,4(-|z) with € ~ ¢. Under the assumption

that Z can be reparameterized, the gradient of the VR-IWAE bound V97¢€§\°,¥) (0, ¢; ) reads

3 o~ wio(flep dr)ia)'
/HCI(@') (Z S ot o —~ Voo log w9,¢(f(€j;¢;l’);$)) dern 4)
i=1 j=1

§'=1 w@,(j)(f(gj’a 9257 l’), x)l_

and since this gradient can be estimated with an unbiased Monte Carlo estimator, the resulting procedure
enjoys the typical theoretical guarantees of unbiased SGA.
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One key consequence of this result is that the VR-IWAE bound provides the theoretical grounding for
VI methods which seek to improve on the ELBO methodology by relying instead on the VR bound, a
flexible variational bound defined in Li and Turner, by

VRO (0, 612) =

—

log (/ qo(2|7) wo g(z; )1 dz) , a€(0,1)U(1,00). (5)

Indeed, SGA steps on the VR bound lead to the same SGA scheme as the VR-IWAE bound one, but the
SGA is biased for the VR bound (Li and Turner, ; Daudel et al., ).

To provide insights as to how the variational bound should be selected in VI, Daudel et al., then
provide two asymptotic analyses of the VR-IWAE bound. Those analyses will lay the foundations for our
work in this paper and we will thus briefly recall them next. Before that, note that from now on we let
be a fixed observation, o € [0,1), ©® C R* and & C R? be two open subsets, and we assume that for all
0 € O, ¢ € P, the following holds:

(A1) [ po(z, 2) v(dz) < oo, [ qs(z]z) v(dz) =1 and g4(z|x), pe(z|x) > 0 for v-a.e. z.

Here v is a o-finite measure on R?, typically the Lebesgue measure on R? as used in (1)—(5), or the
Lebesgue measure on a subset of R?, or any other convenient dominating measure on the Borel sets of
R?. To avoid specifying the dominating measure, we will use the notation [E throughout the paper. If
the probability distribution of the involved random variables has not been specified beforehand, we use a
subscript to the symbol E to indicate their densities with respect to v. Using this convention, (3) and (5) are
then respectively written as

N
(o] 1 1 .
KEV)<97 ¢; :E) - 1-— OéEZjiM'%("x) <log (N Z w97¢(Zj; x)l )) (6)
7j=1

1
VR0, ¢12) = §

—

108 Ezmgy(sla) (wo,6(Z52)' ™) @)

with (A1) ensuring wy 4(-; z) is well-defined and positive a.s. under the expectation E. We now review
the first asymptotic analysis of the VR-IWAE bound from Daudel et al.,

2.1 Asymptotics of the VR-IWAE bound as N — oo

Under precise conditions stated in Daudel et al., , Theorem 3, it holds that:
(o) . 2)2
a o Y0, ¢; ) 1
078, 1) = VR (0, 610) = 1 4o 57 ). ®)

where VR (0, ¢; x) is the VR bound defined in (7) and

V)0, ¢; ) = 9)

1 we ¢(Z; )™
1 — VZN%('L’C) E 71 r)l—a :
Q Z'~q4(|) (w9,¢( ,:L") )

The asymptotic result (8) shows that the VR-IWAE bound converges at a fast 1/ rate towards the VR
bound and hence encourages increasing N (as the VR bound is meant to improve on the ELBO and it
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is exactly the true marginal log likelihood when @ = 0, see Li and Turner, ). It also highlights
a bias-variance tradeoff: the VR bound is a bias term with VR® (6, ¢;z) = £(6;x) for o = 0 and
()0, ¢; x)? is a variance term with (¥ (0, ¢;)> — 0 as a — 1. Daudel et al., , Theorem 3
thus suggests using the VR-IWAE bound with N > 1 over the ELBO (N = 1) and, depending on the
bias-variance tradeoff, using the VR-IWAE bound with a € (0, 1) over the the IWAE bound (o = 0).

While the asymptotic regime predicted by (8) is promising, Daudel et al., noticed that it may not
kick in for high-dimensional latent spaces d unless N is unpractically large. Therefore, (8) may not reflect
the behavior of the VR-IWAE bound in practice. As a result, Daudel et al., developed a second

asymptotic approach when N, d — oo.

2.2 Asymptotics of the VR-IWAE bound as N, d — oo

Daudel et al., argue in their Section 4.2 that the relative weight
wo,4(Z; ¥) po(Z|x)
E 7)) aZa) 2wl
Zimao () (Woo(Z': %)) qp(Z]2)
is likely to become approximately log-normal as the dimension of the latent space d increases. This

intuition is based on a central limit theorem argument, so that the distribution of the relative weight can
be approximated in high dimensions by a log-normal distribution of the form

pg(Z|x)> o?d 5

log(— =~ — —gVdS, S~N(0,1), ¢*< . (10)
wZl)) =2 1)

Under (10), Daudel et al., then show that the VR-IWAE bound collapses to the ELBO as N, d — oo

when N does not grow as fast as exponentially with d, before extending their study to approximately
log-normal cases of the form

log (pe(zlx)) = —logE(exp(~0V/dS)) — oVdS, 5=

4s(Z17) 25

with &, ..., &; being centered i.i.d. random variables which are absolutely continuous with respect to the
Lebesgue measure. Contrary to (8), this second study warns about the potential computational overhead
when N > 1 and the weights are approximately log-normal.

%, o> =V(&)<oo (11)

2.3 Two key examples

Daudel et al., showcase the validity of their results over two examples recalled below.

Example 1 Let 0,¢ € RL Set po(z|x) = N(z;0,1,) and q4(z|x) = N(2;6, 1), where 1, is the

d-dimensional identity matrix. Then, denoting the Euclidean norm of a finite dimensional vector x with

real entries by ||z|| and its associated inner product by (-, -),

_alld - ¢l
2

In addition, (10) holds with 0% = 1 for ¢ = 0 + ug, where uy denotes the d-dimensional vector whose
coordinates are all equal to 1 and more generally we have for this example

1 pa<z|x>>:_ue—¢||2_g_ R Y R
Og(q¢<z|x> y 0= olls: T

_ e (-0 - o)~ 1

VR0, 650) = £(0;2) -

and (0, ¢;2)*



Example 2 Ler 0 € RY ¢ = (a,0) € R x R and A = diag(a). Set py(z) = N(z0,1,),

po(x|2) = N(z; 2, 1) and q4(z|z) = N (2; Az + b,2/3 1,) as in Rainforth et al., . Then,
3 9+I 2
() . _
1 _d 24(1 — «) - O+ x2
(@) Cr)2 — _oNd(1E d B B

In addition, (11) holds with o® = 1/18 + 8)\?/3 and &§; = y} /4 — 2\y; = 1/6 for all j = 1...d, where
A=||%2 — Az —b||/Vdand y = (y1,...,ya) ~ N(0,2/31,).

2.4 Limitations of existing results

The asymptotic analyses from Daudel et al., recalled in Subsections 2.1 and 2.2 focus on the role
of N, and d in the VR-IWAE bound. However, assessing the effectiveness of the VR-IWAE bound
methodology requires understanding the behavior of the gradient estimators of the bound rather than
solely focusing on the bound itself. For example, while the IWAE bound can be shown to converge to

the target marginal likelihood at a 1/N rate for a fixed d (see Domke and Sheldon, ,orseta = 01n
(8)), increasing N may be harmful to the learning of ¢ in the reparameterized case (Rainforth et al., ).
Daudel et al., , Theorem 1 provides an asymptotic analysis for the Signal-to-Noise Ratio (SNR) of the

reparameterized (REP) gradient estimator of the VR-IWAE bound. Indeed, let M € N*, €., 1,..., & n be
i.i.d. samples generated from ¢ forallm = 1... M and set Z,, ; = f(em;, ¢;x) forallm =1... M and
all j = 1...N. Let 1 denote a component of the R**-valued variable (0, ¢) = (01,...,04,¢1,..., %)
and consider the unbiased REP gradient estimator of the VR-IWAE bound w.r.t. to the component 1/ given
by

1 w )
(a,REP) § : § : 9¢> m]7 o).
_gM,N 7 7‘{ a¢ 10gw97¢(f(5m,j7¢7 ZL‘),.I') (12)
m=1 j= 122 1w9¢( m, 0y L )t

Then, Daudel et al., , Theorem 1 yields that:
Forallk=1...a, SNR[0;-g\in"" (0, ¢:2)] < (VMN).

) JM/N ifa=0,
Forall k¥ =1...0, SNR[QSk/—g](w:]F\{[EP)(H,QS;x)] = {\/M—]/\f o (0.1) (13)

which motivates the VR-IWAE bound with & € (0,1) and N > 1 over the ELBO (/N = 1) and IWAE
bound (o = 0). Daudel et al., also derive a doubly-reparameterized (DREP) gradient estimator in the
spirit of Tucker et al., , which leads to better performances empirically compared to the REP gradient
estimator.

Yet, the SNR results for the REP gradient estimator from Daudel et al., only distinguish between
the cases @« = 0 and a € (0, 1), with no further information regarding the role of « across the interval
(0,1). Furthermore, the DREP gradient estimator is not analyzed and the impact of a high-dimensional
latent space in the REP and DREP gradient estimators of the VR-IWAE bound is not elucidated either.
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In the next section, we will first show that we can obtain more refined results regarding the role of «
compared to those presented in Daudel et al., , Theorem 1 that also require less restrictive assumptions.
We will then use our more precise results as a stepping stone towards deriving relevant asymptotic analyses
at the gradient level for the VR-IWAE bound that shed light on the role of N, « and d in the VR-IWAE
bound methodology.

3 Analyzing the VR-IWAE bound at the gradient level

From here on, on top of (A1) and in order to compute gradient estimators, we assume that the mappings
0 — po(x), (2,0) — po(z]x), and (z, @) — qu(2|z) are differentiable on ©, R? x © and R? x @, respectively.
We also assume that integration with respect to ¢, (-|z) can always be reparameterized as an expectation
independent of ¢, and that the involved functions of # and ¢ inside this expectation are differentiable,
meaning (A2) below holds:

(A2) There exist a function f and a density ¢ such that f(e, ¢; z) ~ ¢4(-|z) with £ ~ ¢. In addition,
for ¢ ~ ¢, we have a.s. that the mapping ¢ — f(<, ¢; x) is differentiable on ®.

For a differentiable function g on R” with D € N*, 9,, () denotes the partial derivative of g(y1, ..., yp)
with respect to yj, evaluated at y = (yi,...,yp) € R asin (12) and V,g(y) denotes the gradient vector
(04.9(Y))—; ... p as in (4). When differentiating, it can be convenient to evaluate the resulting function

,—y (0 indicate that the multivariate function (y, z) — h(y, z)
is evaluated at (¢/, z). In the following, we let M, N € N* and €, 1, . .., &, n be i.i.d. samples generated
from g forallm =1... M, weset Z,,; = f(em,j,¢;x) forall j =1...Nandallm = 1... M and we
let 1) denote a component of the R*"-valued variable (¢, 0) = (0y,...,04, ¢1,..., o). We consider two
estimators of the gradient of the VR-IWAE bound.

* Reparameterized gradient estimator. The reparameterized (REP) gradient estimator of the VR-IWAE
bound w.r.t. ¥ is given by (12), that is

M 11—«

« 1 We m 3 X
gl o, MZZ it " 5 gy s(F(emy, 10): ).

m=1 j=1 Ze 1 Wo,p(Zm,e; )

 Doubly-reparameterized gradient estimator. If 1) is a component of the R’-valued variable ¢ =
(¢1,...,¢p), we can use the doubly-reparameterized (DREP) gradient estimator of the VR-IWAE bound
w.r.t. ¢ given by

o 1 al /
g O, 65 = = 303 (e (0.632) (0w logwes(f(emgs 20l my) s (14)

)
m=1 j=1

where, forallm =1... M andallj =1... N,

2
Zm . jEet Zm » 11—«
hf;z?](e,Qb, .ZU) _ Wo ¢( J)’I) — + (1 . OZ) ( ]"\6709@( »J ZIZ') - ) ) (15)
Zz L W0, (Zim g3 )~ > i1 Wo,p(Zm,e; )0



The gradient estimator (14), which was introduced in Daudel et al., , generalizes the DREP gradient
estimator of the IWAE bound (Tucker et al., ). The main motivation behind DREP gradient estimators
comes from the observation made in Roeder et al., that:

Oy logwe o (f(e, 1 7);7) = [Op logweg(f(e, ¢'sx);7) — Oy log qu (f (e, 3 2)[@)]] 4y, (16)

meaning that the left-hand side will have nonzero variance even when ¢, (-|z) matches the exact posterior
density py(-|z) everywhere. As informally shown in Tucker et al., , the DREP gradient estimator of
the IWAE bound can then improve on the REP gradient estimator. More generally, (14) can perform better
than (12) in practice (Daudel et al., ).

The REP and DREP gradient estimators are both unbiased estimators of the gradient of the VR-IWAE
bound (Daudel et al., ). Establishing such properties requires assumptions to interchange derivatives
and expectations. We provide in Appendix A.2 precise sufficient conditions to ensure that this can be done
rigorously (without overloading the paper with technical assumptions that can be skipped on a first reading)
: (AREP) will be used for the REP estimator and (AJEF) for the DREP estimator.

Let us now derive relevant asymptotic analyses for these gradient estimators.
3.1 Asymptotics of gradient estimators as N — oo

Let « € [0,1). Lete ~ ¢, €1, &9, ... be i.i.d. copies of €. Let us denote

W ,p, (€;0) = wou(f(e,¢s2);2), H€O, ¢,¢ €. (17)

We will rely on the following assumptions.
(A3) There exist > 1and N € N* such that E(|N ' SN 1y 4.4(e5; )% ) < oo.

(An) We have that E(ig,g4(c; 2)!' ") < oc.
(AREP) We have that E (|&/, (W,p.0(c; x)l—a)|h’> < 0.

In (Ay,) and (AF"), h and I/ are positive exponents to be precised. For ease of exposition, an in-depth
discussion of (A3), (A;) and (ARET) is postponed to Section 3.1.1. We present our first result, which
analyses the gradient of the VR-IWAE bound as N — oo.

Theorem 1 Assume (A3), (Ay) with h > 2, (AREY) with b > 1 and (ASEY). If b < 2 assume moreover
that2/h + 1/ < 1. Then, as N — oo,

0u85) (6,01 7) = VR (6, 652) — 50,140,652 + o (%) - (18)

The proof of Theorem 1 is deferred to Appendix B.2.2. Theorem 1 provides an asymptotic result for
the gradient of the VR-IWAE bound which is coherent with the one established in Daudel et al., ,
Theorem 3 and reviewed in Section 2.1.



Indeed, the gradient of the VR-IWAE bound is made of two main terms that involve the gradient of
quantities identified in (8): the gradient of the VR bound and a fast 1 /N term incorporating the gradient
of 7@(9, ¢;x)?. Theorem 1 thus reinforces the idea that the core quantities to analyze the VR-IWAE
bound methodology are the VR bound and 7(*)(6, ¢; 2)?, and that the benefits of using the VR-IWAE
bound depend on how those quantities and especially their gradients behave. Note that it is reasonable
to assume that 9, VR (8, ¢; 2) # 0 unless o = 0 and ¢ is among the components of ¢ = (¢1, ..., B)
(so that 3, VR (6, ¢; ) = 0) or we are at a local optimum for (6, ¢). In this case the first order term in
(18) is the leading term.

As it turns out, the proof of Theorem 1 consists of two steps. Firstly, under (A3), (A;) and (ARFF)
with h,h’ as in Theorem 1, we show a precise asymptotic result for the expectation of the REP
gradient estimator of the VR-IWAE bound as N — oo. Secondly, we appeal to (AFFF) and we
rewrite this asymptotic result under the convenient formulation (18), which notably involves using that

E(w—gﬁ’gEP) (6, ¢ ) = 0,05 (8, ¢: ) under (AREP). As a byproduct of Theorem 1, we thus have access

to an asymptotic result for E(1)- g](\?,’]%EP) (0, ¢;x)) as N — oo and our next step to further comprehend the

behavior of the REP gradient estimator is to capture the behavior of its SNR as N — co. Recalling that for a
random variable X the SNR is given by SNR[X] = |E(X)|//V(X), we then have the following theorem.

Theorem 2 Assume (A3), (Ay)—(AREY) with h, ' > 2 and (AYFY). Then, as N — o,

92VRE) (6, 65) = 50u11) (0, 6:)7] + 0 ()]
V-VERER (G, 6;.) + 0 (1)

1 ~ . e
where -V @REP) (9 4. 1) — WVENQ (aw (EZSZJ:Z?)I_Q))) - (20)

SNR[y-g\7 (8, ¢;2)] = VMN . (19)

The proof of Theorem 2 is deferred to Appendix B.2.3. Once more, the proof is made of two steps: we
first establish an asymptotic result for SNR[@D—gﬁ:JP\{,EP) (0, ¢; x)] as N — oo which holds under (A3) and
(An)—(AREP) with h, b’ > 2, before rewriting this asymptotic result under the convenient formulation (19)
thanks to (AREP). Let us now comment on Theorem 2.

* When a = 0 in (19) and (20), we recognize the asymptotic SNR results for the REP gradient estimator of
the IWAE bound from Rainforth et al., and the SNR scales like v/ M N when learning the components
of 0, like /M /N when learning the components of ¢.

¢ Theorem 2 is a refinement of Daudel et al., , Theorem 1. Indeed, asymptotic results close to (19)
already appear in equations (54) and (55) from the proof of Daudel et al., , Theorem 1. Those results
encompass the case & = 0 studied in Rainforth et al., and encourage setting o € (0, 1) as well as
increasing N. However, these results hold under stronger assumptions than the ones we make here and
the role that 9, VR® (0, ¢; ), 9, [y (8, $; 2)?] and -V *REP) (9 6: ) play in the SNR is not uncovered
in Daudel et al., . As already mentioned earlier, the full discussion regarding our assumptions is
postponed to Section 3.1.1.

« Besides 9, VR\® (0, ¢; ) and 9,,[y*) (0, $; x)?], which we had already identified as key quantities to
study in order to analyze the VR-IWAE bound methodology, it is now clear that -V (*REP) (9 ¢: 1) also
plays an important role in the success the VR-IWAE bound methodology based on the REP gradient
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estimator. Crucially, this quantity can be interpreted in light of Roeder et al., ; Tucker et al.,

the intuition of Roeder et al., that the score function adds variance to the REP gradient estimator
of the IWAE bound (which led Tucker et al., to introduce the DREP gradient estimator of the IWAE
bound) is confirmed and justified for the REP gradient estimator of the more general VR-IWAE bound
by looking at the asymptotics as N — oo. In this more general setting, the score function adds variance
via [0y log gy (f (€, ¢; x)|2)]|,_,- This can notably be observed by considering the case py(-|r) = ¢4(-|7)
for which we get (see (107) of Appendix B.2.3 for details) that:

-V @REP) (9 g ) = ([&p' log qg (f (e, ¢; )| )] |¢/:¢> : 2D

With the last point in mind, we turn to the DREP gradient estimator of the VR-IWAE bound. Since the
DREP gradient estimator only impacts the learning of ¢, it remains to understand the asymptotic behavior
for the variance of the DREP gradient estimator w.r.t. ¢. We introduce the following assumptions, in which
R and h are positive real numbers to be precised.

h/
(ADREP) ‘We have that E () [Oyr (w97¢,¢/(s;x)1fa)]|¢/:¢) ) < o0.

i B
(APREP) 'We have that E () [0y (Wg,6,4 (€)1 =) ¢,:¢‘ ) < 0.

This leads us to the theorem below.

Theorem 3 Assume (A3), (Ay), (K}?REP) with h, h > 2 and (AYEPP). Let 1) denote a component of the
R°-valued variable ¢ = (¢, . .., ¢y). The following assertions hold.

(i) If o € (0,1) and (ADREP) holds with b/ > 2, then, as N — oo,

‘8¢VR(Q)(6,¢; )+ 0(1)(

R N s ) =
whre e = 2 (o (et )),L) o
(ii) If o = 0, then, as N — 0o,
e I
Dy (Wo,p,0 (32)%)]]
A
0s0(E50) B (o (oo lly—) \ o

E(p,4,6(¢; 7))?
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The proof of Theorem 3 is deferred to Appendix B.2.4 and we next comment on Theorem 3.

* The case @ = 0 in Theorem 3 recovers the asymptotic v M N rate for the SNR of the DREP gradient esti-

mator of the IWAE bound informally derived in Tucker et al., , Section 8.2 and which was used to mo-
tivate this estimator over the REP one when o« = 0. Theorem 3 thus enables us to (i) state conditions for the
asymptotic analysis written in Tucker et al., , Section 8.2 to hold and (ii) extend the asymptotic analysis

for o = 0 to the more general case of the VR-IWAE bound which was not covered in Daudel et al.,

* Theorem 3 indicates how increasing /N in the DREP gradient estimator of the VR-IWAE bound will
be beneficial in practice for all a € [0,1). Furthermore, and contrary to -V (*REP) (9 ¢: 2) which is
non-zero even when py(-|z) = q4(-|x), we have -V (@PREP) (9 g 1) = 0 when py(-|z) = q4(-|x). This
encourages considering the DREP gradient estimator as an alternative to the REP one. Interestingly, the
discontinuity between the cases &« = 0 and o € (0, 1) (expressed through the very different expression
of -V (@PREP) (9 4. 1) in each of these cases) originates from the fact that when o € (0, 1), the part that
dominates in the variance of the DREP gradient estimator as N increases is the variance of the first term
in the r.h.s. of (15).

We have obtained that -V (*REP) (9 ¢: x) and -V (@PREP) (9 4. 1) are additional quantities that should

be monitored with 8¢€§\?)(6, ¢; ) and Oy[y'™ (0, ¢; )% to assess the success of the VR-IWAE bound
methodology. Before providing examples for which these quantities are tractable and our results apply,
we discuss the assumptions made in Theorems 1 to 3.

3.1.1 Assumptions made in Theorems 1 to 3

We start with Assumption (A3), which is common to Theorems 1 to 3.

Assumption (A3). A condition akin to (A3) already appears in Daudel et al., , Theorem 1, with the
particularity that in Daudel et al., this condition is assumed to hold for a specific choice of 1, namely

p=4



Assumptions (A;) and (Al*"). These assumptions are moment conditions which are used together in
Theorems 1 and 2 to control the numerator and denominator terms appearing in the REP gradient estimator
of the VR-IWAE bound. Similarly to (A3), these conditions are present in Daudel et al., , Theorem 1
for a specific choice of (h, '), thatis h = b’ = 8. They also appear in Rainforth et al., (which studies
the case o = 0) with h = h/ = 4. By constrast, our conditions in Theorem 2 only require h, h’ > 2. Hence,
the SNR results of Theorem 2 hold under much less restrictive moment assumptions compared to existing
SNR results, rendering them applicable to a wider range of scenarios.

Assumptions (KBDREP) and (APREP),  These assumptions are moment conditions used in Theorem 3 to
deal with the numerator terms appearing in the DREP gradient estimator of the VR-IWAE bound. Paired up
with (A3) and (Ay,), they are to the best of our knowledge the first set of conditions permitting to capture the
behavior as N — oo of the DREP gradient estimator of the VR-IWAE bound. Notice that (APR) is only
utilized to handle the case o € (0, 1) in Theorem 3, since only the second term remains in (15) when a = 0.

Assumptions (A5F") and (AJRFF).  As mentioned earlier, these assumptions ensure that interchanging
the derivation and expectation signs is valid when needed in our proofs, see Appendix A.2 for a statement
of these assumptions and how they are used in our proofs.

3.1.2 Illustrating Theorems 1 to 3

We revisit Examples 1 and 2 by studying this time the gradient of the VR-IWAE bound.

Example 3 (Example 1 revisited)  Consider the setting of Example 1 with the reparameterization given
by Z = f(e,¢;x) = € + ¢ where ¢ ~ N(0 - ug,1,) and the goal is to learn ¢. Then, we can apply
Theorems 1 to 3 and all the terms appearing in these results are analytically tractable. In particular, letting
k=1,...d,0 =¢-ugand ¢ =0 - uqg with € > 0, we have that: for all « € [0,1), as N — oo,

E(br-gyrn (0, ¢;x)) = e+ €(1-a) eXij/(l —a)’de) (i)
VMN —(-a)de?) | 1-a (1-0)%de?
(oo (57) + e (5 ))(1+0(1))

V1+ (1 —a)e
SNR[%'Q}&’,%REP)(@, o x)] = VMN(1+o(1)) .
(exp (4de?) — 4exp (2de?) + dexp (de?) — 1)2

SNR[pe-gin (0, ds2)] > VMN  ifa € (0,1).

SNR[p-girn (0, ;)] =

The derivation details for this example are deferred to Appendix B.3.2.

Example 3 supports the claim that « enables a bias-variance tradeoff for the REP and DREP gradient
estimators of the VR-IWAE bound. Indeed, the SNR in the REP case is improved by taking o € (0, 1) and
more specifically by increasing « at the cost of increasing the bias through the quantity e in the numerator
(corresponding to the gradient of the VR bound). It also turns out that ¢-V (*PREP) (9 ¢ 1) = 0 for
a € (0,1). Although the setting where -V (“PREP) (9 ¢ 2:) = 0 for certain values of o seems unlikely
enough in practice to warrant a specific theoretical study of the leading order term in the SNR, it is
noteworthy that in Example 3 the case a € (0, 1) for the DREP gradient estimator improves the rate in V.
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If we now keep a € [0, 1) and € > 0 fixed in Example 3, we see that this example hints at the fact that the
asymptotic regimes predicted by Theorems 1 to 3 may not kick in as the dimension d increases unless N
is unpractically large. In other words, Theorems 1 to 3 may not capture the behavior of the REP gradient
estimator of the VR-IWAE bound as d increases, much like Daudel et al., noted that (8) may not
capture the behavior of the VR-IWAE bound as d increases. We now move on to a second example.

Example 4 (Example 2 revisited)  Consider the setting of Example 2 with the reparameterization given
by Z = \/55 + Az +b, where & ~ N(0-uy, I). Then, the assumptions from Theorems 1 to 3 are met and

all the terms appearing in these results are analytically tractable. In particular, denoting x = (xl, Cey ),
0= (61,...,04),b=(by,...,by), letting Az + b= (0 + z)/2 + eugwithe > 0 and k = 1. .. d, we have
that: forall o € [0,1), as N — o0,

|25 + 2] (1+0(1))
(4—a)d/2 12(1—« 2 12(1—a)e 2
(15_6aya/i “XP ((4 )5 2a)d 2) \/ “oa T ((5—2a)(4—a)>

« 2 €
3oy | 2(l-@)(d—a)t exp<(2j<12a)<>4 dcﬂ)
+ 1 + O

SNR[G-gi N (0. ¢; )] = VMN

d-a N34/2(5-20) 8+

SNR[bi-giyn (0, ¢3 7)) = VMN ( :
(4—a)d/2 12(1—« 2 12(1—a)e
(15—6a)a/2 SXP ((4 a)(5— 2a)d62> \/52a + ((57204)(47(1))
24€4d71 exp(%)

_—— I o
SNR[be-giyn (0, ¢12)] = VMNW;@;ZW =(1+0(1)) ifa=0,

407 SNR[b-g\i N (0, ¢; 7)) if o € (0,1),

where Bk—V(O’DREP)(Q, ¢; x) is given by (156) in Appendix B.3.3. The derivation details for this example
are deferred to Appendix B.3.3.

Example 4 illustrates again the bias-variance tradeoff occurring in the REP and DREP gradient estimators
of the VR-IWAE bound as « varies. It also showcases how the DREP gradient estimator can significantly
outperform the REP one when o € (0,1) via a direct improvement in terms of SNR that is expressed
through the multiplicative factor 4o ~!. Lastly, the conclusions drawn for Example 3 regarding the impact
of d on the SNRs transfer to Example 4, in the sense that Theorems 1 to 3 may not capture the asymptotic
behavior of the REP and DREP gradient estimators as d increases. This then calls for a study of the REP
and DREP gradient estimators of the VR-IWAE bound as both d and N go to infinity.

3.2 Asymptotics of gradient estimators as N,d — oo

We now investigate the behavior of the REP and DREP gradient estimators of the VR-IWAE bound

in high dimensions. From here on, we denote these two gradient estimators by - g]\? ]%%P) (0, »; x) and

gﬁﬁi}Ep)( , »; x) respectively to highlight their dependency with respect to d. In principle, 6, ¢ and x

may also depend on d, but we do not make this dependency explicit in the notation for the sake of conciseness.
Now observe that, letting Z ~ g4(-|7), the difference log wg 4(Z; x) — Ez~q,(|x)(10g wg¢(Z; x)) can be
seen as a centered log likelihood ratio over the latent space R? and, provided that the first two moments of
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log wy 4(Z; ) exist, we can write without any loss of generality that
log wo,g(Z; ) = Ezmgy (o) (log wy o(Z; x)) — BySa, (27)

where B2 = V(logwg 4(Z;x)) and Sy is a centered and normalized random variable. As d — oo, the
log likelihood ratio log wy 4(Z; x) will typically behave after centering and normalizing as a standardized
Normal variable, which corresponds to taking Sy ~ N (0, 1) in (27). Consequently, we offer in our study to
analyze the Gaussian case in order to derive insights regarding the behavior of the REP and DREP gradient
estimators in high dimensional settings.

Remark 1  The setting studied in Daudel et al., can easily be recovered as a special case of (27).
Indeed, (27) can be rewritten as

A
o (2212
44(Z]x)
since Bz, (o) (Po(Z|7)/q4(Z|x)) = 1. The link with the cases studied in Daudel et al., and

recalled in Section 2.2 is then immediate by setting B3 = od with 0® > 0 and considering the choices
of Sy described in (10) and (11) respectively.

) = —log E (exp(—B4S4)) — BaSa,

Since the REP and DREP gradient estimators of the VR-IWAE bound involve differentiating
log Wy ¢4 (€; ), we will in fact need to account for the dependency in (6, ¢, ¢') of the log-weights. This
amounts to considering instead of (27)

log Wg,¢,¢ (€5 2) = Eeng(log Wo,g.¢ (€5 2)) — Ba(0, ¢, ¢'; 2)Sa(e, 0,6, ¢'; x) (28)
with  By(0,¢,¢" ;) = Ve, (log W s e (g5 2)) .

As we focus on the Gaussian case in our study, we also work under the following assumption.

(B1) For e ~ ¢, the random field (log wg ¢« (¢; %)) is a Gaussian random field.

(0,6,¢')€OX B2
To guaranty that we can interchange derivative and expectation signs when needed for our study of the REP
and DREP gradient estimators under (B1), we further rely on additional assumptions, denoted by (B5")
and (BDRET) respectively. These assumptions, which do not depend on o € [0, 1), are postponed to

Appendix A.2.2 to not overload the paper with technical assumptions that can be overlooked in a first read
(as we did for (ARFY) and (ADREDY).

Starting with the REP gradient estimator and denoting the marginal log likelihood by /4(6; x) to indicate
that this quantity depends on d, we then have the following theorem.

Theorem 4  Assume (B1) and (BYFY). If, as N, d — oo,

logN =o (83(9, o, O; x)) (29)
SNR[1-g @R (9, 6 2) — Dyla(0:2)] =08 _ o) (30)
b R TR Ba(0, 6, 65 ) ’
then: as N,d — oo,
SNR[y-g\% (8, ¢; 7)) = SNR[1-g5 5 (8, 95 2)] (1 + (1)) + o(1). 31)

15



The proof of Theorem 4 is deferred to Appendix C.3.1 and we now comment on this result. Theorem 4
provides conditions tying N to d under which the REP gradient estimator of the VR-IWAE bound
suffers from a weight collapse phenomenon as N,d — oo in the Gaussian random field case for all

€ [0,1). Specifically: as N,d — oo, if (i) N does not grow exponentially with B;(f, ¢; z)? and
(ii) SNR[z/J-gﬁ’EEP)(H@; x) — Oylq(0; )] does not grow faster than \/log N/By(8, ¢, ¢;x), then the
improvement at the SNR level obtained by using the VR-IWAE bound with N > 1 is negligible compared
to having used N = 1 (ELBO) instead.

Indeed, by distinguishing between the two settings SNR[i- glaf;EP( ,o;x)] = o(l) and
SNR[- gla REP)( 0,9;2)] > 1 in (31), we see that in both settings the case N > 1 does
not yield s1gniﬁcant gains compared to the case N = 1 in terms of SNR. In fact, we
get an even more precise result when SNR[¢- IQII;EP)(G,qﬁ; x)] > 1 since (31) then reads

SNR[¢)- IO‘NRfP( o) = SNR[@ZJ—gﬁEEP( ,¢;7)](1 + o(1)) so that it becomes equivalent to
use N > 1 or N = 1 at the SNR level as N, d — oo under the conditions stated in Theorem 4.

Consequently, Theorem 4 reveals that the behavior as a function of d of By(0,¢;x)* and
SNR[w-gﬁ’EEP)(G, ¢;x) — Oyly(0; )] is crucial, as these quantities have a direct impact on the com-
putational budget required to benefit from the VR-IWAE bound methodology based on the REP gradient
estimator. As we shall see in our forthcoming Example 5, we can find instances where By(6, ¢, ¢)? is of
order d so that the condition (29) calls for /V to not grow faster than exponentially in d. In this scenario,
circumventing the condition (29) for a high dimension d would thus require using an unpractical amount of
samples NV in practice. As for (30), focusing first on the case ¢ € {¢1,. .., ¢} it holds that:

P-g\ 0, ds ) — Opla(0; ) = -GN (0, ¢ x) = Dy log wp g.4(e3 7)

so that (30) also reads

Viog N
SNR[-g\*BEP) (9, ¢ 2)] — L2 — (1), 32
[w 1 1,d ( (b )} Bd(e, ¢’ ¢7 ZU) ( ) ( )
Thus, (30) directly involves the weight collapse term SNR |- IQIPC}EP)(H, ¢; x)] appearing in (31) and we

can interpret (30) as follows: this condition requires the REP gradient estimator of the VR-IWAE bound
with V = 1 to have a high enough SNR as d increases if we wish to benefit from the VR-IWAE bound
methodology. More generally, since

(a.REP) (g - o W .4(; ) _ o po(f(g,¢;7)|z)
vaiid (0,07) = Dulalfin) = 8¢1g(E<we¢¢<e x))) %lg(qqs(f(aaﬁ;x)!x))

the condition (30) emphasizes how important the behavior of the log of the normalized weight
Wo,p.6(€;2) /E(Wg,4,6(c; )) is to make the most of the VR-IWAE bound methodology: if the SNR of
its gradient is not high enough, it may take an unpractical amount of samples IV as d increases to obtain an
improvement in the SNR using the REP gradient.

Crucially, we see thanks to the expression above that (30) does not depend on «. Hence, none of the
assumptions made in Theorem 4 depend on « and if the weight collapse phenomenon occurs for one
value of « in the context of Theorem 4, it will thus occur for all « € [0, 1). Furthermore, (30) highlights
how the choice of the variational family Q strongly impacts the VR-IWAE bound methodology: the more
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expressive this family is, the closer ¢, (f(-, ¢; z)|z) can get to the target py(f (-, ¢; x)|x) and the more we
can avoid a weight collapse in the REP gradient estimator of the VR-IWAE bound.

Note that an underlying assumption when stating (30) is to have V(¢-g§i’2EP) 0,¢;x)) =
V(0ylog Wy e(e;x)) > 0. Following earlier comments we made in relation to Roeder et al.,

; Tucker et al., , we expect this quantity to be positive in practice. We next turn to the study of
the DREP gradient estimator and we have the following theorem.

Theorem 5  Assume (B1) and (BYRET). Let 1 denote a component of the R°-valued variable ¢ =
(¢1, ..., 0). The following assertions hold.

(i) If, as N,d — oo, there exists r > 0 such that \/log N < By(0, ¢, ¢; x) < N" and

log N

SNR[Y-0)773" (6, 652) = [ 108 (@ (5 0)lyol o ggy = o1 G3)
. Ve N\ Y2
SNR [1-g{55"" (0, ¢50)| (W) = o(1), (34)
then: as N,d — oo,
SNR[¢-g\ %0, ¢ 2)] = SNR[y-g\ %) (9, ¢ 2)] (140 (1)) + o(1). (35)

(ii) If, as N,d — oo, there exists v > 0 such that \/logN < By(0,¢,¢;x) < N" and
V(@/J'QﬁBREP)(Q, :x)) = 0 for d large enough, then: as N,d — oo,

E(y-g\ % (0. ¢ 7)) = E(-g1% (0, ¢:.2)) (1 + o(1)) (36)

\/lmg—N)‘

V(-gr "0, 65.0)) = (Bw-g 50 (0, 05 @))2 0 ( Bl T (37)

The proof of Theorem 5 is deferred to Appendix C.3.2. In the same vein as Theorem 4, Theorem 5 provides
conditions on N and d leading to a weight collapse in the Gaussian case for the DREP gradient estimator of
the VR-IWAE bound with « € [0,1) and N, d — oc.

More specifically, assertion (1) is the analogue of Theorem 4 when considering the DREP gradient estimator
instead of the REP one. In particular, (33) and (34) are the counterpart of (30) (recall indeed that (30) can
be rewritten as (32) when ¢ € {¢1,..., ¢y }). Since

I

4 U /[[] '@y ! E; X
¢—g§7172REP) (07 ¢, fL‘) - [(%, 10g E(w97¢7¢/ (5, I))] ’¢>/=¢ = |:a¢' 10g (E ~9¢ ¢ ( ) ):|
o=

(Wo,4,4 (€5 7))

(33) showcases once more how the success of the VR-IWAE bound methodology depends on the behavior
of the log of the normalized weights, while (34) highlights the need to have a high enough SNR when
N =1 if we wish to benefit from the VR-IWAE bound methodology based on the DREP gradient estimator
as d increases.

In the spirit of the DREP gradient methodology (Roeder et al., ; Tucker et al., ) dis-
cussed earlier, we include in assertion (ii) of our analysis the setting where V(@b—gﬁzmm(@, p;x)) =
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V(9y [log 4,4 (g;2)]|5_,) = 0 for d large enough. Interestingly, the main take-away message does not
change between assertions (i) and (ii), as the weight collapse occurs in both settings, with the condition (29)
that already appeared in Theorem 4 being shared between both assertions (in addition to the mild condition
that there exists 7 > 0 such that, as N,d — oo, By(0, ¢, ¢;x) < N").

We now revisit the setting from Examples 1 and 3, this time for high dimensions.

Example S (Examples 1 and 3 revisited for high dimensions)  Consider the setting of Examples I and 3,
in whichwe let 0 = ¢ - uwg and ¢ = 0 - ug with € > 0. Then, (29) becomes

10ng = o(1) (38)

and we can apply Theorems 4 and 5. Specifically, for all o € [0,1) and all v € {¢y,...,¢q}: as
N, d — 00, we have under (38) that (31) holds, and if moreover d << N for some r > 0, (36) and (37)
hold. In particular, we have that

SNR[¢-g\ 050, ¢;2)] = €+ o(1)
E(y-g\ %0 (0, 65 2)) = —e(1+0(1))

o log N
Vw-g%,ﬁ;’”“)(e,qs;x>>=0( & )

d
The derivation details for this example are deferred to Appendix C.4.

As N,d — oo, Example 5 states that the condition (38), that is the number of samples N does not grow
quicker than exponentially with the dimension of the latent space d, leads to a weight collapse in the REP
and DREP gradient estimators of the VR-IWAE bound for all « € [0, 1) (in the DREP case we also require
d < NT for some r > 0, which is a very mild condition in practice). Bypassing (38) imposes a heavy
computational budget as d increases. Example 5 thus illustrates how the VR-IWAE bound methodology
with N > 1 and a € [0, 1), which includes the IWAE bound methodology (o« = 0), may not lead to
improvements over the ELBO one (N = 1) in high dimensions due to a collapse in its gradient estimators.
Let us now put Example 5 in perspective with the findings of Daudel et al.,

Daudel et al., , Example 3 shows that for the setting described in Examples 1 and 3: as N, d — oo and
under (38), a weight collapse phenomenon occurs in the VR-IWAE bound for all o € [0, 1). Consequently,
Example 5 lends credence to the idea that the behavior of the VR-IWAE bound and of its REP and DREP
gradient estimators are intertwined through conditions of the form (38) (and more generally of the form
(29)). While Daudel et al., focused only on the behavior of the VR-IWAE bound, we uncover in
Theorems 4 and 5 additional conditions on top of conditions of the form (29) which pertain to the SNR
of the REP and DREP gradient estimators when N = 1 and permit us to capture the behavior of these
estimators for the Gaussian case when /N > 1 in high-dimensions.

We conjecture that, under adequate conditions making the centered and normalized log likelihood ratio
Sa(e,0,¢,¢'; x) in (28) well approximated by a Gaussian random field as d increases, there will be a
weight collapse in the REP and DREP gradient estimators of the VR-IWAE bound under conditions akin
to (possibly stronger than) (29), (30), (33) and (34). Indeed, we already know from Daudel et al.,

that in instances where (11) holds (the setting described in Example 2 is one such instance), the condition
for collapse in the VR-IWAE bound is to have NV that does not grow quicker than exponentially with d'/3.
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Establishing associated weight collapse results for the REP and DREP gradient estimators of the VR-IWAE
bound is left for future work.

We next present several numerical experiments.

4 Numerical experiments

In this section, we provide empirical evidence supporting our theoretical claims.

4.1 Gaussian example

We consider the Gaussian example described in Example 1 with the reparameterization given by
Z = f(e,;x) = e+ ¢ where ¢ ~ N(0 - ug, I;). Lettingk = 1,...d, 0 = e-ugand ¢ = 0 - uq
with € > 0, we know from Example 3 that Theorem 2 predicts the following asymptotic behavior of
SNR[qbk—gg\?ﬁip)(Q, ¢;x)] foralla € [0,1): as N — oo,

V/MNe (aexp —7(173)%62 + 5% exp (170‘2)2“2
SNR[¢x-gy7 v | (6: $:7)] = (oo 7 +(1>a)2€2 ( ))<1+0<1>>.

To check the validity of this asymptotic result, we first study the case a € (0,1). Consequently, we
investigate whether the asymptotic behavior as N — oo

VM Neaexp <_(1+")2d€2

1+ (1 — )€

SNR[gr-g31ng (0, 6;2)] = ) (1+o(1), ae(0,1) (39)

matches with the observed SNR[gbk—g](\?”IPV”iP) (0, ¢; )] as N increases (note that only the leading order term

remains in (39)). To this end, we let ¢ € {0.2,1.,2}, a € {0.1,0.3,0.5,0.7,0.9}, d € {10, 100,500},
N e€{2/,7=1...15}, M = 1 and ¢}, be a random coordinate in (¢; ... ¢4). The results are shown in
Figure 1.

Observe first that, in the favourable setting of a low dimension d with a small perturbation € near the optimum
(that is (d,e) = (10,0.2)), the asymptotic behavior predicted by (39) for each « ends up matching the
corresponding observed SNR as /V increases. In particular, the bias-variance tradeoff behavior highlighted
in our theoretical analysis of Example 3 is empirically confirmed for N large enough, with the bias and
variance of the REP gradient estimator increasing and decreasing with «, respectively. In addition, the
highest the value of o (and the lowest the value of ¢), the lowest N needs to be before the observed SNR
and the prediction made by (39) coincide. This can be explained by the fact that the second-order term in
the numerator of the SNR when v € (0,1) and € > 0 is expected to vanish quicker with N as « increases
and e decreases.

As d increases, we expect SNR[¢k—g$7’JP\{77EClP)(€, ¢; x)] to collapse to SNR[ngk—g](\jng)(Q, ¢; x)] unless we

use an unpractical amount of samples /N (Example 5), meaning that the asymptotic behavior (39) will not
reflect the observed SNRs anymore. This is indeed what we observe in Figure 1 (N = 10° corresponds to
SNR[@-gﬁ’%EP) (0, ¢; x)] = €), with the particularity that the weight collapse occurs quicker the higher
the value of e that is the further the variational approximation is to the target posterior density. Interpreting
the different values of € as different stages of the training procedure, Example 5 sheds light on the role the
flexibility of the variational family plays in the success of the VR-IWAE bound framework.
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SNR: ¢ REP gradient (d=10, ¢=0.2) SNR: ¢ REP gradient (d=100, e=0.2) SNR: ¢ REP gradient (d=500, e=0.2)
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Figure 1: Plotted is SNR[ngk—g](\?”]%iP) (0, ¢; x)] computed over 2000 Monte Carlo samples for the Gaussian

example described in Section 4.1 as a function of N, for varying values of («, d, ¢) and a random coor-

dinate ¢. The solid lines correspond to SNR[qﬁk—g](\?”]P\{,iP) (0, ¢; )], while the dashed lines correspond to

predictions of the form (39).

Example 5 also predicts the collapse of the DREP gradient estimator as d increases, such as the collapse
E(m-gﬁ’ﬁip) (0, ¢;x)) to E(qﬁk-gﬁf CI?P) (0, ¢; x)). Similarly to the REP case, this collapse is well-observed
by setting a high value for €, see Figure 2 in which € = 2. The IWAE case (o = 0) unfolds in the same
manner as d increases and it is provided in Appendix D.1 for the sake of completeness. We now move
on to a second numerical experiment.

4.2 Linear Gaussian example

We are next interested in the linear Gaussian example from Rainforth et al., , which we reviewed in
Example 2. The data set D = {x, ..., zr} is generated by sampling 7' = 1024 datapoints from N (0, 21 )

and we consider the reparameterization given by Z = \/gg + Az +bwhere e ~ N (0 - ug, I,;). Letting
0 =0*+2, A= A*and b = b* +2c withe > 0, 0* = T—! Zle Ty, AF = %Id and b* = %9*, we have that
Az+b=i(z+0)+e Forall a € [0,1), we thus know from Example 4 that Theorems 2 and 3 predict the
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Expectation: ¢ DREP gradient (d=10, e=2.0) Expectation: ¢ DREP gradient (d=100, e=2.0) Expectation: ¢ DREP gradient (=500, e=2.0)

Figure 2: Plotted is E(¢x-g A? ]]\D,PU}EP (0, »; x)) computed over 2000 Monte Carlo samples for the Gaussian

example described in Section 4.1 as a function of N, for varying values of («, d) and a random coordinate

¢r- The solid lines correspond to E(¢-g ]\; ]%Edp) (0, ¢; x)), while the dashed lines correspond to predictions

of the form y = ea.

asymptotic behavior as N — oo of SNR[b- gz\j‘ ]%ZP (A, ¢; )] and SNR/[by- gﬁ B%EP)(H, ¢; )] respectively.
Let us now check the validity of the asymptotic results obtained in Example 4. Letting k = 1...d and
focusing first on the learning of b when o € (0, 1), this boils down to checking whether as N increases the
observed SNR b gﬁ ]%Edp (0, »; x)] and SNR[Ek-gﬁ’JEEEP) (0, ¢; x)] match with the asymptotic behaviors:
as N — oo

~ MN Jea 1 1
SNR[b-giyva (6. 9:2)] = VMN (1 +0(1)) o

(4—a)d/2 12(1—« 2 12(1—a)e 2
(15—6a)a/x XP ((4 o) (5— 2a)d6 > \/52a + <(572a)(4701)>

SNR[Di-g5 g (0. 65 2)] = 4o~ SNR[b-g57 8" (6, 63 2)] (41)

(note that once more only the leading order term remains in (40)). Now let ¢ € {0.2,1}, a €
{0.1,0.3,0.5,0.7;0.9}, d € {10,100,500}, N € {27,j = 1...15}, M = 1 and b; be a random co-
ordinate in (b1, ..., bg). The results are shown in Figures 3 and 4.

Starting with Figure 3, we see that the conclusions drawn in Section 4.1 for the REP gradient estimator
regarding the validity of the asymptotic behaviors predicted by Theorems 2 and 3 when « € (0, 1) apply
here too. Moving on to Figure 4, we have that these conclusions are also valid for the DREP gradient
estimator, which notably confirms empirically that the DREP gradient estimator outperforms the REP one
by a 4a~! factor in terms of SNR for the setting considered here. Additional plots in which we replace br
by 60, and/or we set o = 0 are available in Appendix D.2. They further validate our conclusions regarding
the empirical validity of Theorems 2 and 3.

As d increases, a weight collapse phenomenon can be observed in Figures 3 and 4 for the REP and DREP
gradient estimators of the VR-IWAE bound. This is coherent with the work of Daudel et al., , in which
they show (and empirically check) that in the context of Example 4 there is weight collapse phenomenon
occuring in the VR-IWAE bound as d increases unless /N is unpractically large.

5 Conclusion

We proposed two complementary SNR analyses for the REP and DREP gradient estimators of the
VR-IWAE bound. Those analyses improve on and enrich the existing studies by casting a new light on
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SNR: ¢ REP gradient (d=10, ¢=0.2) SNR: ¢ REP gradient (d=100, e=0.2) SNR: ¢ REP gradient (d=500, e=0.2)
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Figure 3: Plotted is SNR[i)k—gﬁﬁiP)(@, ¢; )] computed over 2000 Monte Carlo samples for the Linear

Gaussian example described in Section 4.2 as a function of N, for varying values of («,d,¢) and a
randomly selected datapoint x. The solid lines correspond to SNR[bk—g](\?:]%ilP) (0, ¢; )], while the dashed
lines correspond to predictions of the form (40).

SNR: ¢ DREP gradient (d=10, e=0.2) SNR: ¢ DREP gradient (d=100, ¢=0.2) SNR: ¢ DREP gradient (d=500, ¢ =0.2)
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Figure 4: Plotted is SNR[ZN)k—g](\?:]]\),iEP) (0, ¢; x)] computed over 2000 Monte Carlo samples for the Linear

Gaussian example described in Section 4.2 as a function of N, for varying values of (a,d,¢) and a
randomly selected datapoint x. The solid lines correspond to SNR[bk-gJ(\Z’BEEP) (0, ¢; )], while the dashed
lines correspond to predictions of the form (40).
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the innerworkings of the VR-IWAE bound methodology as well as enabling a comparison of the ELBO,
IWAE and VR bounds methodologies at the gradient level.

Our work advances the understanding of importance weighted variational inference methods and we now
briefly mention potential direction of research to extend it. One may for instance investigate how our
theoretical results for the Gaussian random field case can be extended to the approximate Gaussian random
field case of Section 3.2. Another possibility is to see if there are instances where the weight collapse can
be avoided, for example via the tuning of a.

A Preliminaries

A.1 LP norms

For a real valued random variable X we denote by || X ||, its L? norm, that is, || X || denotes the smallest
a.s. upper bound of | X| and, forall 1 < p < oo,

11, = E(XP)7 .

Recall that the L” space of random variables with finite LP-norms is a Banach space when endowed with
this LP-norm and that, by Jensen’s inequality we have || X ||, < || X[|,, forall p < p'. We will also repeatedly
use the Holder inequality

XY [l < ([ X (Y 1l

which holds for all X € L? and Y € L¥ with p, p’ € [1, 00] such that 1/p 4+ 1/p’ = 1.

A.2 Interchanging derivative and expectation signs

Throughout the paper, we often come across expectations of the form E..., (¢(¢, )) for some real valued
parameter v in a parameter space WV, which we want to differentiate w.r.t ). More specifically, using that ¢
does not depend on v, we want compute the derivative by interchanging the derivative and the expectation
signs, that is

al/)Equ (g@ba 5)) = EENq (aw9(¢> 5)) ) w ev. (42)

General conditions to make the identity (42) valid are well known (see e.g. L’Ecuyer, ) and specifying
them can be overlooked at first reading as it sometimes burdens the technical content with lengthy assump-
tions whose sole aim is to make interchanges of derivatives and expectations well justified. Nevertheless,
we specify hereafter sufficient conditions for all the interchanges of derivatives and expectations to be valid
in our main results.

To this end, we will repeatedly use the notation U~)9,¢’¢/(8; x) defined in (17) which, for every ¢ and z, is
differentiable with respect to (6, ¢, ¢’) on © x &2 following the differentiability conditions already assumed
on § — py(x), (2,0) — pe(z|x), (2,0) = qs(2|z) and ¢ — f(e, ¢;x) in the beginning of Section 3.
Furthermore, ) will denote a component of the R%**-valued variable (0, ¢) = (01,...,04, ¢1,- .., bp)
and we will say that V is a y-neighborhood of (0, ¢) € R+’ if there exists r > 0 such that for all
W' € (¢ — r, ¢ + r), the vector obtained by replacing ¢ by ¢’ in (6, ¢) belongs to V.

The remaining of Appendix A.2 is then concerned with providing sufficient conditions to ensure that the
interchanges of derivatives and expectations necessary to establish the results of Section 3.1 and Section 3.2
are valid.
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A.2.1 Interchanging derivative and expectation signs in Section 3.1

The first assumption below is concerned with the REP gradient estimator.

(AREP) All (0, ¢) € © x ® admit a ¢-neighborhood V € © x ® such that, for ¢ =0, 1,2,
Equ ( sup }@91@1’4)/ ({:‘; :L’)Z(l_a) aw/ (log U~J9/’¢/’¢/(€; x))‘) <0 (43)
(0',¢')eV

We have the following result which will cover all the interchanges of derivatives and expectations that are
necessary for our study of the REP gradient estimator in Section 3.1.

Proposition 1 Under (ASFY), we have for all (0, ¢) € © x @,
%]EENQ (@97(15745(8; l’)l_a) =E (% (11?974574)(8; J,’)l_a)) 5 (44)
8¢]E€Nq (ID@@@(&; $)2(1_a)) =K (8¢ (U~)9’¢7¢(€; I)2(1_a))) . (45)

Moreover, for all N > 1,

N N
8¢Esji'ri<51'q <log (Z U~)9’¢’¢(€j; [E)l_a) ) = Ez—:ji%’q <8¢ log (Z ID97¢7¢(€]‘; I)l_a> ) . (46)
j=1 J=1

Proof. Suppose that (AXEY) holds. Observe that, for £ = 1,2, by (17), we have

Oy <w97¢7¢(5;$)£(1_a)> =01 — @) wos(f(e, d;2); 2) =) 9y (log w4 (f (e, ¢; 2); 7)) .

Thus, by the usual dominated convergence argument for interchanging the expectation and derivative signs,
the condition in (43) for ¢ = 1, 2 leads to (44) and (45), respectively.

Let now N > 1. To get (46), by the same dominated convergence argument, it is sufficient to show that all
(0, ¢) € © x ® admit a ¥-neighborhood V C © x ® such that

N
67/,/ 10g <Z U~}9/7¢/7¢/(€j; x)l_a) ‘) < 0.

=1

E i sup
gj~4q ((9/,¢/)€V

Differentiating and using that the sup of a sum is bounded by the sum of the sup from above, the latter
condition is implied by having that forall j =1,... N,

8 ’ 0 AP VAPV FONN l-a
E . | sup | wN(wa~¢,¢( 507
€5 ~4q (0',6')EV Zk:l w@’,qﬁ’,qﬁ’(gk; [lj’)lfa

Using that Wy o 4 (€5; ) > 0 for all k # j, this ratio is bounded from above by

|0y (Wer ¢ g (€55 )" )|
W g 41 (€55 1)1

= (1 — Oé) |8¢ (log QIJO’,(;&’,(]&’(‘L:]'; I‘))| .

Hence assuming (43) with ¢ = 0 ensures that the previous condition holds and we have concluded the proof
of (46). U
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The next assumption is concerned with the DREP gradient estimator and is only required for a component
1 of the R®-valued variable ¢ = (¢, ..., @),

(ADRERYAll (0, ¢) in © x ® admit a ¢-neighborhood V C © x ® such that:

(i) If a € (0,1), we have

E€~q< sup |9y (we,¢/,¢f(a;x)1“)\> <oo. (47)
(0,9")€V
E. < sup \aw/ (o, (e;x)la)o <00 . (48)
(0,9")€V
Y e (Z|x)
Ezngyle) | Wos(Z;2)'™ sup |0y (log gy (Z]2)) < oo, (49)
e (-|) ( (0.6)eV P ¢ q¢(Z|x)
(iiy If « =0, we have
anq ( sup ‘8¢,/ (U~)97¢/7¢/(€;$)2) ‘) <00, (50)
(0,¢")eV
ngq ( sup ‘811/ (@97(757(15/(8;1')2)‘) <0, (G1))
(8,¢")eV
Gy (Z]z)
Ezgyia) | Wo.0(Z;2)* sup |9y (log gy (Z|z)) "= | < o0 (52)
%(‘ ) ( ¢ (0.6)€V v ¢ Q¢(Z’$)

We have the following result which will cover all the interchanges of derivatives and expectations that are
necessary for our study of the DREP gradient estimator in Section 3.1.

Proposition 2 Let 1) denote a component of the R®-valued variable ¢ = (¢1, . .., ¢p). Under (ASRED),
we have the following assertions for all (0, ¢) in © x .

(i) If a € (0,1), we have

[Op By (o6, (;2) %) ] s = Borg ( [0y (o6, (£32)' )]

3¢]E5Nq (17)9’4)791)(8; l’)l_a) = OéEqu ( [awl (U~}9,¢’¢/ (8; x)l_a)}

¢'=¢) ) (53)
) (54)

(ii) If o =0, we have

a[/,Equ (ﬁ)gﬂs’(ﬁ(é; .I)2) = —Equ < [aw/ (ﬁ)gﬁ@/ (6; $>2)}

) (55)

Proof. First observe that (55) in Assertion (ii) corresponds to (54) in Assertion (i) with « replaced by
—1. In addition, the case @ = 0 in Assumption (AJRFF) corresponds to the case a € (0, 1) with « also
replaced by —1. We thus only have to prove that for any o € (0, 1) U {—1}, Conditions (47)—(49) imply
the identities (53) and (54).
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We will in fact prove that more generally: for all @ € R, Conditions (47)—(49) imply the identities (53)
and (54). The case o = 1 is immediate so let us pick & € R\ {1} in the following and assume that (47)—(49)
hold. Note first that (53) is a simple interchange of the derivative and expectation signs which holds by
dominated convergence using (48). To then prove (54), observe that by (47), we can interchange the
derivative and expectation signs on the left-hand side of (54), that is: for all a € (0, 1),

OpBeny (Wo,pp(e;7) ™) = Beng (9 (W0 ,6,6(e52)' 7)) .

Since Jy, (Wo,4,6(€;2)' ™) =[Oy (Wo,p,¢ (£;2)' ™) + Opr (Wo,0,6(52)' )] | 51—, to Obtain (54) it remains
to prove that

1

o7 B ([0 (T stei) )]

¢'=¢) =E. ([% (o600 (:2) )] |, ¢>> . (56)
Observe then that, using (17), it holds that

1
a—1

[azb’ (w(;,¢/,¢(€;x)l_aﬂ l1-a 5¢q¢(z)}

T i e

z=f(e,¢3z)
Hence the left-hand side of (56) reads
10)
E.., ( i) PR

Gs(2])

0 Ouas(Z|7)
—F N e 7 1—a Yy 4o
) Z Q¢(| ) (U)g#,( 7'7:) q¢(Z]9€)

— [ wnolZi)' - Duau(2le) v(d)

z=f(e,¢;%)

and the proof of (56) will be concluded if we can prove that

Fevg ( [0y (o9, (e52)' ~*)] ¢/:¢> = (00 B (Wp.0.¢ (£5.2) )] {qﬁ’:qﬁ

() -«
= [%'Eh%/(-lx) (wo,0(Z; )" )}

'=¢
© / Wop(Z:2)1 0 Dyas(Z)0) v(d2).

The equality (a) follows from interchanging the integral and the derivative signs again thanks to (48) and the
equality (b) follows from the reparameterization trick. As for the equality (c), it is obtained by interchanging
the integral and the derivative thanks to the fact that for a ¢-neighborhood V of (6, ¢),

/w97¢(z;x)1_o‘ sup |0y gy (2|z)| v(dz) < oo,
(0,9")€V

which holds using (49) and that

qe Z\x
sup |0y qy(Z|x)] = sup |(Oy logay(Z]|z)) % q(Z|x) .
(0.6')€V (6.6')€V qs(Z|x)
The proof of Proposition 2 is thus concluded. [

The conclusions from Proposition 2 will be used to express the constants in the asymptotic behavior of the
SNR of the DREP estimator, see the proof of Theorem 3.
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A.2.2 Interchanging derivative and expectation signs in Section 3.2

We now examine the specific case where the Gaussian assumption (B1) holds. In this special case, we rely
on the following assumption for the REP gradient estimator.

(BEEP) All (6, ¢) in © x ® admit a ¢-neighborhood V € © x @& such that

Eewg | sup (9 logiig g s (c;2))” ) < o0, (57)
(07,¢")eV

Eeeg | sup (logtig g e(c7))’ | < oo (58)
(07,¢")eV

We have the following result which will cover all the interchanges of derivatives and expectations that are
necessary for our study of the REP gradient estimator in Theorem 4.

Proposition 3 Ler e ~ q. Under (B1) and (BXFY), we have that: for all (6, $) € © x ®,

OpEcry (log g g 4(c; 7)) = Ecny (Oy log iy g¢(c; 7)) (59)
Oy Eerq ((log g (e 7))°) = Eeng (0 ((log Wos.6(;2))%)) (60)

and ((log We,44(€; x), Oy 10g Wo,4,4(€; %)) g 5)coxa 1 @ Gaussian process.

Proof. Using the dominated convergence theorem, (57) in (BYFF) implies (59) but also that
Oplogy s s(c;x) can be seen as the L? limit of a linear combination of the process

(log Wo,p,6(€; 7)) g gy coxa- 1t follows by (28) that ((log We,p,4(e; ), Oy log Wo,p,4(€; 7)) (4 4)coxa 18 @ Gaus-
sian process. As for (60), it follows from the dominated convergence theorem and

Eeng (( sup Oy ((log®9/7¢/7¢/(5;x))2)>

0,9 eV

N

<2 (anq < sup (9yr log 1179/@/@/(5;95))2) Eevyq ( sup (log @a/,¢/7¢/(6;m))2)> < 00,
( (

0',¢/)EV 0’ ,¢')eV

where the first inequality uses the Cauchy-Schwarz inequality and the second is a consequence of (57)
and (58). ]

We now consider the assumption used for the DREP gradient estimator.

(BDREPY All (0, ¢) in © x & admit a ¢-neighborhood V € © x & such that

E < sup (&W logwg7¢,¢/(5;x))2> < oo, (61)
(0,6")eV

E( sup (logwsss(c;z))’ ] <oo. (62)
(0,6")€V
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We have the following result which will cover all the interchanges of derivatives and expectations that are
necessary for our study of the DREP gradient estimator in Theorem 5.

Proposition 4 Let 1) denote a component of the R®-valued variable ¢ = (¢1, ..., ¢y) and € ~ q. Under
(B1) and (BYRFT), we have that: for all (0, ¢) € © x @,

O (108 G025 0))] .y = B (100 108 T0.0.00 (2], (63)
[ale ((log 11)97(157(]5/ (5; x))Q)} P=¢ - E < [81// ((log U~)97¢7¢/ (8; {L‘))Z)] |¢,:¢> (64)
and <<log Wo, . (€5 1), [y log Wy 4.4 (g5 )] ]¢,:¢> ) 0.6y c0nts is a Gaussian process.
Proof. The proof is similar to that of Proposition 3 and is therefore omitted. [

B Deferred proofs and results for Section 3.1

B.1 Preliminary results for the proofs of Theorems 1 to 3

We first provide three lemmas.

Lemma 2 Letng < pg be two real exponents. Then, for all a,b > 0, we have
|a _ b|“0 < |a _ b|’70 (aurno 4 burno) )

Proof. Since both sides of the inequality are unchanged by permuting a and b, it is sufficient to show that it
holds for all 0 < a < b. We then indeed have

|a . b|“° _ (b i a)no (b . a)uo—no < (b . a)m pHo—mo < |a _ b|770 (auo—no + buo—no) 7

where in the first inequality we used that x — z#°~" is non-decreasing on R, and in the second that
aﬂO_nO Z 0. D

Lemma 3  Let Z be a real valued random variable, let Zy, . .., Zy be i.i.d. copies of Z and denote
Zy = NN Z forall N € N*. Then, for all real p > 1,

B(|2[7) < 0o = sup (Np E (\ZN . ]E(Z)|2p)) <0, (65)
E(|Z]P) < 00 = JsleleE (|7N’p) <00, (66)
E(|Z[P) <m:1vli£nmE(17N—E(Z)\p) =0. (67)
Proof of Lemma 3. Since 2p > 2, (65) is a straightforward consequence of Petrov, , Theorems 2.10

with Sy = N(Zy — E(Z)). To prove (66), we apply the Minkowski inequality which yields the bound

_ 1 X
1Znll, < 5 212, =121, - (68)
=1
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Let us now prove (67). For any M > 0 we set
VEN = Z gz —E(Z yzn)  and VO = Z 1z — E(Z 1gzi5)

and we define similarly %(SM) and Vi(>M) for all i > 1, while V](VSM) and V]$,>M) denote their /NV-sample
means. Then we observe that, for any M > 0,

1Zx -E(2)||, < Hv]\(,SM')

S
p

<[
p

[

2Vp p

Applying (66) with V(M) (which admits finite moments of all orders) replacing Z and 2 V p replacing

2p we get that the first term in this upper bound satisfies HVJS,SM) =0 (N_l/Q) =o0(l)as N — oc.
2Vp

Hence, to obtain (67), it only remains to show

=0. (69)

E(|Z]P) < 0o = lim limsup HV]\(,>M)
p

M—=00 N_oo

Using the same bound as in (68) but with V]§>M) replacing Z, we have

V] <12 12500y B (Z 2gzsan)ll, < 112 Lgzsan |, + E (121 Lyzsan)

This upper bound does not depend on N and converges to zero as M — oo by dominated convergence if
E(]Z]?) < co. Hence, we get (69). O]

I,

Lemmad4 Let X and Y be two random variables. Let X1, X, ... and Y1,Ys, ... be two sequences of
i.i.d. random variables with the same distribution as X and Y respectively. Assume that V(X) < oo,
E(Y)#0and V(Y) < oo. Forall N € N*, denote Xy = N"' SN X, and Yy = N~ "N V,. Then,
forall ! € N*, as N — oo,

Xy EX) Y 1 E(X)
VN ((?N)K - E(Y)@) SN (o, TR (X - KYW>) . (70)

Proof. Using the Central Limit Theorem, we have

(] ]) =om w5 (o350, *507)

Paired up with the Delta method, we obtain that

Xx  E(X)) as, -
vy ((?5)Z B E(YV) d_t>N(O, a¥a’) where o' = [E(;)Z K]E(X)] '

Eq. (70) then follows by rewriting the asymptotic variance as follows:

r_ V(X) E(X) » E(X)?
aXa' = By )2 — 2£E(Y)2€_HCOV(X, Y)+¢ E(Y)WV(Y)
_ ﬁ (V(X) - zé%cw(}(, Y)+ éQIIEE;())QV(Y))
I RN 15 !
“ g (X5
from which we deduce the desired result. ]
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We next present a proposition, which will be central to prove Theorems 1 to 3.
Proposition 5 Set Zy = N~! Zf\il Zi forall N € N*, where 7, ..., Zy are positive i.i.d. random

variables. Then the following assertions hold.

(i) Forall p > 0, we have

limsupE ((1/Zy)") < co <= 3N > 1, E((1/Zy)") < co. (71)

N—o0

Furthermore, if the assertions of the equivalence (71) hold for some 1 > 0 and the distribution
of Z1 does not reduce to a Dirac measure, there exists Ny > 1 such that E ((I/ZN)#) = oo for

1 < N < Nq and the sequence (E ((1/7N)”))N>NO is strictly decreasing in (0, 00).

(ii) Foralln > 0, we have

sup (1" E (e7'7')) < oo <= sup (v " P(Z; < u)) < oo. (72)
t>0 u>0

(iii) Suppose that the assertions of the equivalence (72) hold for some 1 > 0. Then the assertions of the
equivalence (71) hold for all ;1 > 0.

(iv) Suppose that the assertions of the equivalence (71) hold for some ;. > 1. Then the assertions of the
equivalence (72) hold for some 1 > 0.

(v) Suppose that the assertions of the equivalence (72) hold for some 1 > 0. Then, for all ;1 > 0, we
have

. o 0 ifE(Z;) = oo,
lim E((1/Z5)*) = 73
N0 ((1/Zx)") {(E(Zl))_“ otherwise. (73)
Proof. We prove Assertions (i)—(v) successively.

(i) Proof of Assertion (i). Let I denote the Gamma function, so that I'(u) = [

o thle " dt forall p > 0.
Following an idea of Cressie et al., , we have: forall N > 1,

E((1/Zx)") = (D(1)~ /0 g <e*7Nt) dt
— (T ()" /0 T € B a, (74)

where we have used that, for all z > 0, 27# = (I(u))~" [;7t* *e~"" dt and Tonelli’s theorem. For all

t > 0and N > 1, by Jensen’s inequality and strict convexity of 2 + z(N+U/N
t>0,

on (0, 00), we have, for all

(E (-2t )Y = <]E ((e—z t/<N+1>)<N+1>/N>>N > (| (e Bt/ 00V

with equality if and only if both sides of the inequality are infinite or e~ */(N+1) j5 equal to its mean a.s.
and we can thus deduce Assertion (i).
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(ii) Proof of Assertion (ii). Let n > 0. We first assume that

sup (t” E (e_t Zl)) < 00 (75)
>0
holds and show
sup (v P (Z; <)) < o0. (76)
u>0

We have, for all u > 0, by Markov’s inequality,
P(Zi <u) =P ("4 > 1) <e"E (e 74/M) <" Oy u”,

where C' is the sup in the left-hand side of (75). Hence (76) follows. Let us now assume (76) and show
that (75) holds. We have, for all ¢ > 0,

E(e™') :t/ e "M P (Z <) du:/ e " P(Z1 <v/t) dv.
0 0

Let C' now denote the (finite) sup in the left-hand side of (76), so that P (Z; < u) < C'u" for all u > 0.
Using this bound in the previous integral, we get that, for all £ > 0,

E (e_tzl) < Ct_"/ e Vvl do .
0

Since the latter integral is a finite constant, this concludes the proof of (ii).

(iii) Proof of Assertion (iii). Let © > 0 and suppose that (75) holds. Then we have, for any N > 1, as
t — o0,
N
B (B (e B )) Y = 0 (/) 1) = O (¢
Hence for N large enough, the right-hand side of (74) is finite and E ((1/Zy)") as well. We obtain the
right-hand side of the equivalence (71).

(iv) Proof of Assertion (iv). Let x > 1. Note that, since Z; is positive, for any N > 1,
t — (E (e_Z1 t/N ))N is decreasing as t > 0 is increasing. Hence, for all £ > 0, the integral

:H 1 (E (e t/N))N dt is bounded from below by u;, = :H 1 (E (e (k“)/N))N dt. Since

:H th=rdt = (k+ 1)* — k#* = k* ((1 + k~')* — 1), we have, as k — oo,

up = prwpgn K (14 0(1))  where  wyn = (B (e k/N>)N '

As the equivalent assertions in (71) hold with x> 1, we have by (74) that: for some N > 1,

ZUkS/ th1 (E(e_zlt/N))N dt < oo .
k=0 0

Thus, as k — oo, u;, — 0, which implies wy1y = o (k'™*), hence E (e= 7t *HD/N) = ¢ (K(1-m/N)
Now for all ¢t > 1, taking k = |[Nt| — 1, we get, as t — oo, E (e7#!) < E (em# *FI/A) =
o (([Nt] = 1)A=m/N) = o(t0=#/N) ag t — co. This implies (75).
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(v) Proof of Assertions (v). By the strong law of large numbers we have Zy —E (Zy) as N — o a.s.,
including in the case where E (Z;) = cc. Hence the sequence ((1/Zy)") v, converges to the right-hand
side of (73) a.s. To conclude the proof of Assertion (v), it suffices to show that, for all 1 > 0, the sequence
((1/Zn)") N>, 1S uniformly integrable for some Ny > 1 (see for example Theorem 3.5 of Billingsley,

). By the Markov inequality, the uniform integrability then follows from the fact that: for some € > 0,

limsup E (((1/7N)“)1+6) < 00

N—oo

In other words, the uniform integrability will follow from

limsup E ((1/71\[)“/) < 00,

N—oo

with ¢/ = (1 + €) > u. By Assertion (iii), the assertions of the equivalence (71) hold for all zz > 0. The
proof is concluded by taking 1/ = (1 + €) in lieu of y in the assertions of the equivalence (71).

]

Remark 2  Assertion (i) in Proposition 5 can be deduced from the proof of Daudel et al., ,
Lemma 4. Here we provided a simpler proof of this assertion and, more importantly, we obtained the novel
assertions (ii)—(v).

Proposition 6  Let (X,Y') be an R x R -valued random vector. Let (X1,Y1),(X2,Y2),... be a
sequence of i.i.d. random vectors with the same distributions as (X,Y). Set Xy = N™'S°N X, and
Yy=N"! Zf\;l Y; for all N € N*. Assume that there exist N > 1 and p > 0 such that E((Y y)™") < 0o

and that E(Y") and B(|X|"") are finite for some positive real exponents h and . Then the following
assertions hold.

(i) If h > 1and b/ > 1, we have, as N — o0,

E ((%(—NNV) = (g(%))z +o(l), Ce{1,2}. (77)

(ii) If h > 2, we have, as N — oo,

E (@) =0 (%) . (78)

(iii) If h > 2and ' > 1 with2/h + 1/h/ < 1, we have, as N — oo,

. ((YN _ E(Y));N|XN _ ]E(X)|> . (%) | (79

Furthermore, if h,h' > 2 with 1/h + 1/h < 1, then (79) holds again as N — oc.
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(iv) Suppose that h > 2 and h' > 1. If i < 2, suppose moreover that 2/h + 1/h' < 1. Then, we have,

as N — oo,
& _ E(X) 1 (IE(X)V(Y) B Cov (X,Y)) (i)
& <?N) - E(Y) N (E(Y))? (E(Y))? To\w) (80)
(v) If ' > 2, we have, as N — o,
Xy
V(= =0(1) . 81
<<YN>2> W 5D
(vi) If h,h/ > 2, we have, as N — oo,
_ (X)
<. |V (x-0rER) (1)
VI = = — — 14 1,2}, 82
((YN>£) N (E(Y))% +o0 N ) E{ ) } ( )

Proof. In the following, we always suppose that o, b’ > 1 so that E(Y") and E(X) are well defined. We now
state some preliminary facts that will be useful to refer to when deriving the claimed assertions. Applying
Lemma 3 yields

1<h=||Xy—-EX)|, =0(1) asN — oo, (83)

2<h = || Xy —E(X) i,:()(%) as N — oo, (84)

1<h=|[Yy—E(Y)|, =0(1) asN—oo, (85)
- 1

2<h= HYN—IE(Y)HZ:O(N) as N — oo. (86)

By (iv) and (v) in Proposition 5, for all 1 > 0 we have, as N — oo, E((Y y)™*) = O(1). Therefore,
using the Holder inequality E ((Yn) ™ [V|*") < ||(Vn) ™|, IV||",, with i/ > 0,V = Xy — E(X)
orV=Yy—E()andr,r > 1suchthat1/r + 1/r' = 1 and r'h" = h or I/, (83)—(86) yield, for any
w >0,

Xn - EX)|"
1<hW=Vhr"€e(0,h), E — =o0(l) asN — oo, (87)
V)"
—_— h//
Xy —E(X
2<h =Vn"e(0,n), E ‘ N_ (/)‘ :O(%) as N — oo, (88)
h//
Yy —EY
1<h=Vh"e€(0,h), E | N_ (,)‘ =o(l) asN — oo, (89)
(Yn)"
— h//
Yy —EY
2<h=Vh"e€(0,h), E | N_ (,)‘ =0 # as N — oo. (90)
% VT



(i) Proof of Assertion (i). We have, forall N > 1 and ¢ € {1, 2},

Xy _ BEX) | Xy -E(X)  E(Y) ((?NV: <E<Y>>€) o
Yy (BY)) (Yn)* (E(Y))! (Yn)*
Observe then that the equality above can be rewritten as follows when ¢ € {1,2}:
Xy ~ E(X)
Yt (EX))
_ 7]\;: E(X) B E(X) Yy :E(Y) - 1)IET(X) YN_ E(Y) ©92)
(Yn)* (E(Y))" Yy E(Y) (Yn)
Therefore, in order to get (77), it suffices to have that, as N — oo,
YN _ E(X) ?N — E(Y) . I

Suppose now that ~ > 1 and A’ > 1. Then the first assertion in (93) follows by applying (87) with
h"=1¢€ (0,h') and p/ = ¢. If h > 1 the second assertion follows by applying (89) with " =1 € (0, h)
and p/ = p”. If h = 1, we pick any b € (0, h) and use Lemma 2 with g = 1,790 = 1", a = Y  and
b= E(Y) which yields: for ¢ € {1,¢} and all N > 1,

| h// ’ h//

Yv—E()| _ [V~ —E(Y) 1w YN —E(Y)
T = e T EXD ¥ x )"

and the second assertion in (93) follows from (89) with i/ = p” +ny — 1 or ' = u”.

(ii) Proof of Assertion (ii). If 1 > 3, then h”" = 3 and i/ = 1 in (90) directly yields (78). Suppose from
now on that 2 < h < 3. Take any 2 < h"" < h to be chosen later. Applying Lemma 2 with o = 3, 7o = 1",
a=Yyandb=E(Y), we have: forall N > 1,

h/l

Yy —EY)[ P - E(Y)|" T B Yy —E(Y)

YN B 7%/_2 YN

and (78) follows from applying (90) with /' = h” — 2 and ¢/ = 1.

(iii) Proof of Assertion (iii). Suppose that 4~ > 2 and ' > 1 with 2/h + 1/h’ < 1. Let ' > 1 be such
that 1/h' + 1/r" = 1. By the Holder inequality, we have

. ( (o - BV [ = E(X)l) < H (Vy —E(1))?

%x B,

and since the condition 2/h + 1/h’ < 1 implies 21’ < h, we then get (79) by applying (90) with
' =2r" < hand ' = 1 and (83).

Suppose now that h, b’ > 2 with 1/h + 1/h’ < 1. Take 1 < hy; < 2 close enough to 1 to have
hi/h+1/K <1. (94)
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Applying Lemma 2 with g = 2,9 = h1,a = Yy and b = E(Y), we have: for all N > 1,

(Vv —E(Y))* [Xy —E(X)| _|[Vy —EW)[" [Xy —E(Y)
?N —_— (?N)hlfl
on |Yv —EW)[" [Xy —E(X)] |

+ (E(Y) -

Now, let " > 1 be once more such that 1/’ + 1/r" = 1, which with (94) implies 7’'h; < h, and, by the
Holder inequality, we have, for any i/ > 0,
— Y — —
. <|YN ~EW)[" [Xn - E(X)!) Yy —E)
(Yv)" )
Since h, h’ > 2, we can apply (90) with h”/ = r’hy < hand i/ = hy — 1 or ¢/ = 1. Combining this with
(84) and the two previous bounds, gives that: as N — oo,

E((?N—E(Y))E|YN—E(X)|>:O<;>.

Yy Nhi/2+1/2

"

[ X v — E(X)

/

h' -

r

Since hy > 1, we get (79).

(iv) Proof of Assertion (iv). This assertion is a consequence of Assertion (ii) paired up with the following
identity, valid for all N > 1,

E(7N> E(X) +% (E(X)V(Y) B Cov(X,Y))

vv) T EY) BT (EY)
(Xy —E(X)) (Vx —E(Y))* EX) (Vx-EY))’
vE ( T (E(V)) TEY) Va B0 ) - O

Indeed, under the assumptions of Assertion (iv), we can apply Assertions (ii) and (iii), showing that the
expectation in the second line of (95) is o(1/N) as N — oo (notice in particular that the condition h > 2
with A’ > 2 implies 1/h + 1/h' < 1). To conclude we thus only need to show (95). This follows from
observing that

Yy EY)  (EQY)) Yy (E(Y))”

plugging this in the r.h.s. of (91) when ¢ = 1 and then taking the expectation, with the N~! term in the
first line of (95) coming from the fact that, for all N > 1,

1 1 Yy-EY) ([Yv-E))

E (Vv —E(Y)’) = %V (¥) and E((Xy—EX)) Ty —EQY))) = %COV (X,Y) |

(v) Proof of Assertion (v). We have, forall N > 1,
Xy Xy—-EX) EX)
—= \2 ——V=2 T =z
v O ()
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If i’ > 2, we can take h” = 2 and 1/ = 4 in (88) and get that the first term in the right-hand side has its
second moment, hence its variance, bounded by O (N *1). The second term has a bounded variance as we
already saw that by Lemma 1, for all 1 > 0 we have: as N — oo, E ((Y x)™*) = O(1). This yields (81).

(vi) Proof of Assertion (vi). Suppose that h, ' > 2. Applying Lemma 4, we have that for ¢ = 1,2,
as N — oo, VN ((VN)_EYN — (E(Y)) "E(X )> converges in distribution to a random variable whose

variance is the constant appearing in the leading asymptotic term of (82). Hence to obtain (82), it suffices
to show that we do not only have the convergence in distribution but also the convergence of the variance
to the variance of the limit. This will be true if we have the convergence of the moments of order 1 and

2 to those of the limit. By Theorem 3.5 of Billingsley, , we thus only need to show that the sequence
— J— 2
(N <(YN)—4XN — (E(Y))™ E(X)) ) is uniformly integrable (as it will also imply uniform integra-
N>1

bility without the square). By the Markov inequality, this follows if we find 2” > 2 such that, as N — oo,
X E(X 1
Xy ( )é :O<W)' (96)
@) BV,

Using the identity (92), this is implied by

Xy —E(X) B Y —E(Y) B 1 o
| G () ot HW o~ O\am) et e L

Since h, h' > 2, we can (i) apply (88) with A" > 2 and i/ = h”/ and (ii) apply (90) with A" > 2 and
' = h"p". We then obtain the two previous asymptotic bounds, which concludes the proof of Assertion (vi).

]

B.2 Proofs of Theorems 1 to 3
B.2.1 Notation

Let us first introduce some notation and resulting identities that will be used for the proofs of Theorems 1
to 3. Letting ¢ ~ ¢ and with @y 4 4(¢; ) as in (17), we define

X = (1 — a)_lﬁw (UNJQ#,@(E; I‘)l_a) and Y = w97¢’¢(6;x>1—a s

Furthermore, let ey, ..., ey be i.i.d._copies of €, and deﬁne_XZ- and Y; forallz =1,2,...as X and Y but
with ¢; replacing €. Further denote X y = % Zf;l X,and Yy = % Zfil Y; for all N € N*. Then, using
the above definitions in (12), we have

E (v-giin™ (0, 6i0)) = (%) ©7)
V(g h (6,07)) = 1V (;(N) - (98)
N

Also note that with these definitions, (A3) means that there exists . > 1 and N > 1 such that E ((7]\;)_“) <
oo and (Ay) that E <|Y|h) and E ( h/) are finite.
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B.2.2 Proof of Theorem 1

The proof consists of two steps. In the first step, we show an asymptotic result for the expectation of the
REP gradient estimator of the VR-IWAE bound as N — oo which holds under (A3), (A;,) and (A7F") with
h,h' as in Theorem 1. In the second step, we use the interchanges of the derivative and expectation signs
obtained in Proposition 1 under (AXF?) to rewrite the asymptotic result obtained in the first step into the
convenient formulation (18).

First step. Let us show that: as N — oo,

Bl 876, 010)) = -G 0, 010) - eGP 000 Ho () 09)
where
(a,REP) . E(X)
?/J‘G1 (97(257 .13) - E(Y) ) (100)

Cov (X,Y) E(X)V(Y)> . (101)

-Gé“’REP) 0,0;x) =2 5 — 3
v (6. 6:2) ( EV)E (B

By (A3), (Ay,) and (ARXF") with h, 1/ as in Theorem 1, we can apply Assertion (iv) in Proposition 6. It thus
only remains to identify (80) with (99). This follows from (97) and the definitions (100) and (101).

Second step. Under (AXFP), the conclusions of Proposition 1 imply that

00500, 6 ) = E(y-g\n (0, ¢; 7)) (102)
8y VR (0, ¢; ) = -G\ (8, ¢ ) (103)
010, ¢ 0)?) = ¥-Gy (0, 65 ) (104)

More precisely, using the definitions of Appendix B.2.1, (6), (7), (9) and (44)—(46), we get

o 1 =
000, ¢; ) = mE (logYy) ,

1

VR(0, ¢52) = ——— logE(Y)
1 VY
,y(a)(H’ ¢7 $>2 - 1 — ]E<(Y))2 )
as well as
OE(Y) = (1 —a)E(X), (105)

E(Y?) =2(1—a)E(XY) ,

(
IE (logY,) = 1—a)E(§> :

n

and pairing this with (97), (100) sand (101), we deduce (102)—(104).
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B.2.3 Proof of Theorem 2

Note that the conditions of Theorem 2 on h, ' are stronger than those required in Theorem 1. We thus
already have that (99) holds as N — oo, which as seen in the proof of Theorem 2 gives under (ASF) that

|E(¢-g5, (o REP) (0, ¢; x))| behaves as the numerator of the r.h.s of (19). To conclude the proof, it remains to

(a,REP) (

study the asymptotlc behavior of V(w 9N ,¢;x)) as N — oco. As in the proof of Theorem 1, this is

done in two steps: (i) we show a first asymptotic behavior for V(¢-g;, (e REP)( 0,¢;x)) as N — oo which
holds under (A3) and (A;)—(AXF") with h, i’ > 2 and (ii) we show how the conclusions of Proposition 1
allow us to express this asymptotic result under the convenient formulation (20).

First step. By (A3), (A;) and (A}FY) with h, i’ > 2, we can apply Assertion (vi) of Proposition 6 with
¢ = 1. Using (82) and (98) we have that, as N — oo,

X 1 V(X -vyEX 1
V(y- MJP\{/EP)(97¢5I>>: MN ( E(Y)? (Y)> +O(MN)

“an” (e awe) )

Second step. We prove that, under (A}F"), the constant defined in (20) can be written as

VORI ¢ 2) =V (Eé) — Yg(g)l) : (106)

By using the definitions of X and Y in Appendix B.2.1 and (44) of Proposition 1, we have
Y OpY IyE(Y) X E(X)
— | = -Y =(1- -Y
o (&7) = 2m " EE ~ 0 (&9

meaning that the two variables in the variances of the right-hand sides of (20) and (106) coincide up to the
(1 — o) multiplicative term, which is squared when put in front of the variance. The identity (106) follows.

Remark 3  As a byproduct of the proof of Appendix B.2.3, we have established (106), that is using the
definition of X and'Y in Appendix B.2.1,

BV G, i)
T (aw(%"b(g; 2)'70) g ole ) By (0,50 x)laﬂ)
(]- — ()[)2 E(w97¢7¢<5; x)l—a) ]E(’L'[]e’qs’(b(g; x)l—a)Q

_v ( Wo (e )
E(wg,4,6(c;2)' )

(a¢(1og g g.0(: 7)) — E <Ewﬁv¢’¢(5; ) (log G 0le: x))) > ) |

(W0g,,6(¢; )1 7%)
Now considering the case py(-|x) = q(+|x) in the above and using (16), it follows that
p-VIORERN (G, ¢ ) = ([%' log gy (f(e, b; x)!x)]!¢/:¢> when p(-lx) = qo(-|z).  (107)
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B.2.4 Proof of Theorem 3

We first introduce some additional notation for the DREP estimators. Namely, we set

]_ . —Q
X0 = [0 (g (e3)' )]

1 ) . ) B
2(1 — ) [0 (0.0, 2)" )] |y = W0.0(e52) X

g = Wo.p,0(€:2)' 7 [0y log W g0 (€5.2)]| 4y
x @2 —

As for X; and Y; in Appendix B.2.1, the random variables X i(l) and X i(Q) are defined for all i > 1 as X(V)

and X ) respectively but with ¢; replacing ¢, and we set 75\? = % Zfil X ,L-(Z) for £ = 1, 2. Then, using the
above definitions in (14), we have

() —(2)
X l—a X
E( _g\@PREP) (g . ):E N N 1

(1) (2)
__(.DREP) _ _ 1 Xy l—a Xy
V(-grn (0, 02) = 37V (a T TN Ty (109)
and we further define
E(X(l))
_+(a,DREP) ) —
-Gy 0, ¢; ) &—]E(Y) , (110)
]E(X(Q))
_3(0.DREP) 0, 1) ——r ) 111
¥-Gy (0, ¢; ) EV)) (111)
as well as
x@ E()((l))
_1/(a,DREP) Y 2 B
(2) E(X®
((@DREP) v o o X= (X))
and -V, (0, ¢;2) =(1 - )"V (E(Y)2 BV ) (113)

As for the proofs of Theorems 1 and 2, the proof of Theorem 3 is made of two steps. In the first step, we
establish that under the conditions of (i) in Theorem 3: as N — oo,

-G, 01)| + 0(1)

SNR[g-gyry (0, 63 7)) = VMN , (114)
VOVEPRED 6 2) 4 o(1)
while under the conditions of (ii) in Theorem 3: as N — oo,
-G (0, 6r) | + 0 (1)
SNR [4-g{i 3" (0, 612)| = VAN (115)

VOV 0, 6:) 4 o(1)

In the second step we use the conclusions of Proposition 2 to rewrite (114) and (115) under the convenient
formulations (22) and (24).
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First step. Using the definitions above for X () and X (?) paired up with the notation from Appendix B.2.1,
(A;) means that E <|Y|h> < 0o, (ADFEP) that E (| XM |") < oo and (/K\EDREP) that E (|X(2)|h> < oo.

Furthermore, Assertions (i) and (v)—(vi) from Proposition 6 with X or X ® replacing X and ¢ = 1 or
¢ = 2 read:

(1) 1
X E (XW)
h>1, K >1 ElZXE ) = 1 N , 116
>1 = (YN> E(Y) +0(1) asN — o0 (116)
< (2) 2
s X E(X®
h21,h>1:>E<_N2>: ( 2+o(1) as N — oo, (117)
(Yn) (E(Y))
) <
h>2:>V<_—N>:O(1) as N — oo, (118)
YN
E(x®
X\ 1 v (X(” - Y55 )> |
h,h' >2=—YV = — 5 4ol = as N — oo, (119)
Y N (E(Y)) N
_ X(2)
) < 1V(X —2vEED) )
hh >2= V| -—=|= 7) +ol| — as N — oo, (120)
(Yn) N (E(Y)) N

From (108), (116) and (117), using the quantities defined in (110) and (111) we get that if 1 > 1 and
h,h>1:as N = oo,

( aDREP( 0. )> {T/JGQDREP (0, ¢;2) +o(1) ifo<a<l,

121
V-G N N¢G2ODREP)(9’¢;:E)+O(%) o . (121)

If « € (0,1) and h, K/, h > 2, pairing (118) and (119) up, we get that: as N — 0o,

) 2V<X YW‘”))
V( XN+1 aXN)za— = —|—0(l>.

a—= —
Yy N 7 N (E(Y))* N

Combining this with (109) and (121) yields (114). Finally, if « = 0 and A, h > 2,(109), (113) and (120) in
the case o = 0 imply that

o -y {O-DREP) 0,¢;x) 4+ o(1
V(lb-gé ,DREP)(9,¢; :)3)) _ V-V, ]\4(N(§ ) ( )7

which, combined with (121) yields (115).

ADREP)

Second step. Under (A;;**"), the conclusions of Proposition 2 hold and we can show that:

(i) If a € (0,1), (114) is the same as (22), that is, we have:
VR (6, ¢; ) = -G (6, 65 ) (122)
YV PG, 1 2) = -V PR (9, s ) (123)
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Indeed by definitions (7) and (110), (122) reads

| OE (nples)™) _ a E(0winss(e0 )

1—a E(Y) Cl-a E(Y) ’

which holds by (54). As for (123), by (23) and (112), it easily follows by differentiating inside the variance
in (23) and using (53).

(1) If a = 0, (115) is the same as (24), that is, we have:

0y (700, ¢ 2)%) = =2 -G PHE (9, 1 2) (124)
w_V(D,DREP)(e’ b; 1) = ¢_V2(07DREP) (0, : ) . (125)
Indeed, by (9), with a = 0, we have 7(0)(9, o; x)2 = (% — 1). Observe moreover that since o« = 0,

we have E(Y) = [ py(x, z) v(dz) and thus E(Y") does not depend on ¢ and therefore not on . We thus
get that 9, (v(6, ¢;2)%) = 9,E(Y?)/ (E(Y))”. By definition of X® and (111), (124) then follows
from (55). As for (125), it simply follows by identifying (25) with (113) using o = 0 and the definitions of
Y and X®,

B.3 Proof of examples

Before providing the proofs for Examples 3 and 4, we review the assumptions that need to be checked in
order to obtain these examples.

B.3.1 Checking assumptions

First note that (i) the assumption (A1) holds with v as the Lebesgue measure on R? for both Examples 1
and 2 and (ii) 0 — pe(x), (2,0) — pe(z|z), and (2, @) + g4(z|x) are differentiable on ©, R? x © and
R? x @, with, © = & = R? for Example 1 (py(x) is arbitrary in Example 1 since only py(z|z) is given) and
© = R? and ® = R?? for Example 2 (here (41, . . ., ¢oq) = (dl, gy b, ,Bd) since A is diagonal).
Examples 3 and 4 build on the settings described in Examples 1 and 2 respectively, hence these assumptions

also hold for Examples 3 and 4. In addition, (A2) holds with the reparametrization proposed in Example 3
(that is, ¢ = N'(0, I;) and f(e, ¢; x) = € + ¢) and the one proposed in Example 4 (that is, ¢ = N (0, I 1)

and f(e,¢;x) = \/gg + Az + b). The assumptions that remain to be checked are then (A3), (A;), (ARFP)

(AGFT), (ADFEP), (APREP) and (ARREP).

* Checking (A3). By Lemma 1, it is equivalent to check (26), which by setting v = — log(u) is equivalent
to finding > 0 such that

Psgya) (wo,6(Z;2) <€) =O0(e™")  asv — oo.
Since by the Markov inequality, we have: for any n > 0,
Psgy () (W0.6(Z;2) < €7°) = Pyl (wo.s(Z;2) """ > 1)

< e Epngyeo) (wop(Z52) ")
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to check (A3) it is sufficient to prove that

there exists 7 > 0 such that  Ez.,, (.|2) (w97¢(Z; x)_”) < 0. (126)

¢ Checking (A;), (ARFF) and (ARFF). Using the Holder inequality, (A), (ARET) and (AREP) hold for all
h,h' > 0 if we can show that, for all (6, ¢) € © x ® and all real value p > 0, there exists a ¢)-neighborhood
V of (6, ¢) such that

]Eg,vq sup ID@/@/@/ (8; ZL’)p < 00 (127)
(0",6")€V

Equ sup |6¢/ 10g U~19/7¢/7¢/ (5; l‘) |p < 0Q, (128)
(0",0")€V

where 1) is a given component of (6, ¢).

¢ Checking (ADREP), (K];?REP) and (AJREP). Using the Holder inequality once more, (APREP), (,KEDREP)
and (ADRPP) hold for all 2/, h > 0 if we can show that, for all (6, ¢) € © x ® and all real value p > 0,
there exists a 1)-neighborhood V of (6, ¢) such that (127) and (128) hold and, in addition,

Ecwg | sup Wpee(c;x)’ | < oo (129)
(0,¢")eV
Ecvg | sup [0y logwyee ()" | < oo (130)
(0,¢")€V
Ez gy(z) | sup w97¢/(Z;x)p> < o0 (131)
(0,9")€V
4o (Z|x) \*
Ezo. 1z sup <— < 00 (132)
“O\ ey \ a5(2]2)
Ezngstla) | sup [0y 10gq¢'(Z|l‘)\p> < 00, (133)
(0,9")€V

where 1) is a given component of ¢.

When proving Examples 3 and 4, we will then notably show that the conditions (126)-(133) are satisfied,
so that all the theorems of Section 3.1 apply to the settings described in Examples 1 and 2 with the
reparameterizations of Examples 3 and 4.

B.3.2 Proof of Example 3

Recall that in this setting 1) is a component of ¢, say ¢y for some all k = 1...d, py(z|r) = N (z;0,1,)
and g4(z|z) = N(z; ¢, 1), where I, denotes the d-dimensional identity matrix.
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o Checking (A3), (As), (AREP) (AREP), (ADREP)] (;&gREP) and (ADREP). Let us prove (126)-(133). To this
end, observe that

po(zlz)\ _ 110 — 9| d
log (q¢(z|x)> __T_<Z_¢’¢_9>’ z € R% (134)

Since (Z — ¢, ¢ — 0) is a Gaussian variable if Z ~ g4(-|z), it admits exponential moments of any exponent
and we have that (126) holds. We further get from (134) that log @y 4 4 (£; x) = co(0, ¢, ¢') + (¢, ¢ — 0) for
some continuous function ¢, defined on © x ®2. Conditions (127)—(133) follow using that  is a Gaussian
variable.

* Closed-form expressions for the quantities appearing in Theorems 1 to 3. First recall that

VR@(8, ¢: z) = £(6; ) — al|f ; ¢H2’ exp ((1 - Ofi”i_ ol*) —

Y0, ¢y 2)? = (135)

Computing 9, VR® (6, ¢; ) and [y (8, ¢; 2)?] follows directly from differentiating in (135) w.r.t. ¢y
Doy R@(¢) —a(dr — O) (136)
%[ (0,03 2)°] = 2(1 — a)(¢x — O) exp (1 — a)?[|¢ — 0]|*). (137)

Furthermore, using (134): for all y > 0 and all ¢/ € R,

log<(%<€;x))))y> = —M—y(€+¢’—¢,¢—9>

E(wg,g4(c; x 2
:yg(ea ¢7 ¢/) _y<€7¢_0>7 (138)

where g(0, ¢, ¢') = —M —y(¢' — ¢, — 0). Setting y = 1 — o in (138), we deduce that:

Tnp(sa) = ep(—(-a)ep—) _ o (-1 a0 05) (139
E(@g 4.0 (e2)' ) Elexp(—(1—a){e,6—=0)))  exp (5(1—a)?[0 - ¢[?)
with S = <|T(;¢i;ﬂ> ~ N(0,1). Hence,
We.p0(c; ) " > ) We.p0(c;2)' "
0, = =—(1- + (11— -0 =
o (e ) = = ) (0 (et =) e
Wo,,00 (£37)' ™ )]
0, (e o,
{ P\ E(tp.00(5;2) ) ) ||y
where £(*) denotes the k-th element of ¢ € R?. Consequently,
& V(a,REP)(Q &: )—E ( (k) + (1 - )((/5 _9 ))2 U~107¢,¢(5§$)17Q ?
' R GO TR\ Bl 2)10)
o=V PRED(0, 652) =0, a €(0,1). (140)
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Thus, using (139), we have that: forall ) € {60y,...,04,¢1,..., 04},

¢k_v(a,REP ( ¢’ ) —(1—a)?||0— ¢H2E ((E(k) + (1 i Oé)(¢k . 9k> 2672 (1—a){e,0— 9))
_ e,( ~aP 09I 20210~ (1 1 (1 — a)2(dy — 6,)?)
— 6(1701)2“9*¢”2 (1 + (1 _ Q)Z(Qbk o 9]@)2) ] (141)

Now considering the special case o = 0, it holds that using (16):

PV OPRE) g 5 ) (Aeqs(f‘? 7) - QEZU:T—Q%E <A9,¢<e;x>>)

(g ,,4(g;

~E ((Ae o(e7) — 2%1@(@“5;@)) > — E(Agy(e;z))? (142)

with

L Uegs(s)’ - . .
Agg(e;m) = E(.5.5(:2))2 <8¢k log Wo,p,6(€; ) + [y l0g gy (f (g, ¢ ) |z)]

Since E(wp,,4(e;2)) = exp(€(6; x)) and thus does not depend on ¢, we deduce that

A 1 Wy p.4(€; T) ? Wy p,0(€; ) _
0o(&2) =500 \ (5 ooy ) | T 5 04, 1og g (f (e, ¢ 2) )]

(Wo,4,6(¢; 7)) E(p,4,6(¢; 7))

¢’=¢> ’

gy (143)

Using (139) with o = 0, taking the square and differentiating, we have that

1 Wpg0(57) \’ R 3 Wpg0(s7)
28¢k<(E(@9,¢,¢(5;$)))> (54 0= ) <E(@0,¢,¢(€;IE))>'

= 940

= () and thus

Furthermore, [c%;v log gy (f (e, ¢ )|$>] =0

A97¢(€;SC) = (ek - (bk) (%) '

Consequently, since for all ¢ € N*,

~ ¢
Wo,p,6(€; 7) UeD) jg—g)2
El(=2202) | = 144
((E(ﬁ)e,qxas(g;x))) ) T (4
we obtain that
$-VOPRER) (g 0y — (g, — ) 221021 <e4||9—¢u2 _ 421001 | gelo—el® _ 1) _ (145)

Lastly, we obtain the desired expressions in Example 3 by taking 6 — ¢ = € - uy with € > 0 in (136), (137),
(140), (141) and applying Theorems 1 to 3.
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B.3.3 Proof of Example 4

Recall that in this setting ) is a component of (6, 5)1 say 0 or by, forsome k = 1...d, pg(z) = N(2:0,1,),
po(z|z) = N(x;2,1,) and qy(z|x) = N(z; Ax + b,2/3 1) with A = diag(a) and a = (a1, ..., dq). We
thus have that

1 1 9 9
ot 2) = gz oxw (=3 (1= 01 + 1~ alP))
peo(z) = /p,g(x,z)dz = N(x;6,21,), (146)
po(z|z) =N (2 (0 +2)/2,1/2 1) . (147)

« Checking (A3), (Ay), (ARFF) (AREP), (ADREF), (ADREP) and (ARREP), Let us prove (126)-(133). To this
end, using the densities and conditional densities above, we obtain that

1
log w,(25) = C1(6, ¢i2) = 12> + (6 +a— 5 (Am + b)>

where C'(-; ) is a C*> function from © x ® to R. For Z ~ ¢,(-|x), it is a Gaussian vector with scalar
covariance matrix equal to 2/3 on its diagonal, and we get that (126) holds for any n < 3. Next, using that

fle,¢sx) = \/gé + A’z + b/, we have

1 8 -
log We ¢ (;2) = Ca(0, ¢, ¢"; ) — 6”5”2 — <5, Az +b —20+1x)+3 (Ax + b>> :

1
V6
where Cy(+;z) is a C* function from © x ®* to R. Since ¢ = N(0, I,;), we easily get (127)—(130).
Conditions (131)—(133) are obtained similarly.

* Closed-form expressions for the quantities appearing in Theorems 1 to 3. First recall that

d 4 1 3 3a -~ O+ x2
(@) co) — A et = 4L B _
VRE @ 4i2) 6(9,91:)+2(log(3>+1_alog(4_a)> 4_&HAx+b 9
— 2
7(@)(97¢; :E)2 _ : 1 {(4 ) (15 — 6a)~ ¢ exp( 24(1 — «) 0+x ) B 1:| .
(0]

- (5—2a)(4 — 2
Computing 81/,VR(°‘)(9, ¢;x) and Jy[y¥) (0, ¢; x)? follows directly from differentiating the equations
above w.r.t. 6/¢ paired up with (146). so that

HA +b—

xk—ﬁk 3o
2 4—a«

05, VR0, ¢ 7) =

~ 0
(&kxk + bk — K _g xk)

o 3o . ~ 0, + i,
05 VR(0, ;) = —2- T (akxk by = = )

and

@ o2 o 241 —a)(4 — ) 24(1 — )2 N ETIE
b o =t P\ B2 - HA +5-

0 —|—$k)

X (dkxk + i)k — 5
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As for computing Wy 4 4 (¢; ) above, we have that, for all ¢, ¢/ € R,

po(f(e, ¢';2)|7)
qs(f(e, ¢'52)|x)

X exp (—% <||5||2 + 2<5, \/g <A’x + 0 +3(Az +b) —2(0 + x)) >>) , (148)

where C' does not depend on A nor b. Hence,

E (( E E 3}?) ) C' exp (MHA’HB'—A%BHQ)
x E (e ( (HaHQ + 2< \/g (A’x + 0 4 3(Az +b) —2(6 +x)> >>>) :
with

E (exp( 5 ; <\|5||2+2 2(Am+b/+3(Ax+b)—2(0+x)> >>>>

2)
Consequently: for all ¢, ¢’ € R??,
g0 (€:2) 1 - ) \/g " )
= 2 -4 A —2
W ERED eXp( Sy (Il +2(en/5 (AT 43040+ D) - 20+ )

x <4_To‘>d/2 exp (—% 2) . (149)

Hence, forall k =1,....d,

69 ( we@@(‘g;x)l_a )
"\ E(to,g,6(c; 7))

3 . .
= Cexp (ZHA/I' +0 — Ax — b||2)

Az +V + 3(Az +b) — 2(0 + 2)

Az +V + 3(Az +b) — 2(0 + 2)

2 l—a, . - Wop.0(E; ) 7
=(1— Ze®) 4 by) — 2(0 LA 150
(1-a) <\/;5 + @k + b) = 2(0 + )] E (0,94 2)17) (150)
and we also have
Wo,p6(c32) Wy, g,4(€; )
o- - = —20 - , (151)
(g, (€5 1)1 ~) " E(p,,6(e; 7))
where %) denotes the k-th element of ¢ € R%. Furthermore,
=, , 11—« 1 ~ . 11—«
k E(wg &9’ (8 l’) ) #=¢ 2 E(w97¢,¢(8; I) —a)
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In addition,

Ox-V @RI (9, ;1)

2
2 l—a, - Wo.0(2; 2)1 70 2
— A () Il _ 0,¢,¢
=E <\/;€ + 1 a [4(akxk + bk) Z(Qk + ZE}C)]) (E(waqg@(& $)1_0‘)> (153)

and now using (149), we have that: for all / € N*,
- I—a ¢ de)2 2
Wo p.0(€; T 4—« 1— )/
MEY L2y e R M E
E(wp,p,4(e; )" ) 3 44— )

(21)~ Y2 exp (_%Hg”z) exp <—% (||<€||2 + 2<5, \/§M>>>

where for convenience we have denoted py, = 4(arzy + Bk) —2(0p + ) forall k = 1...d and p =
(1, .-, ptg). Thus,

) W,0.6(3 '36)1:; ‘
q(e (]E(we,<z>,¢(€, ) )) N et e
— (o) <m> exp (—THg a2V e ) (154)

AT
0= (57) o () (=)o (s e amr)

(5 ) ()

Consequently, taking ¢ = 2 in (154) and plugging this in (153), we get that

aREP) (g . o (d—a)? a-a? sy 2 (1 - )3 >
OV 6, 6.) = (15 — 6a)d/2 el 5_2a " (5 —2a)2(4 — a)2”’f ’

from which we can also deduce l;k—V(O"REP)(G, ¢;x) using (151). Similarly, using (152), we can deduce
from the above by,-V (“PREP) (9 - 2 for all o € (0, 1). Now considering the case o = 0, we deduce using
(150) and (152) with a = 0 that:

1 opole;r) \° 2 1 opole;r) \°
s W L LA eV R \/j (k) L = ( AN ) ‘
27" (E(we,¢,¢<e;x>>) ( 37 T ) \E(@ypu(z0)

Hence, Ay 4(¢; ) as defined in (143) with ¢, = by, becomes
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= /3/2 ™). Now using (154) with o = 0 and
¢'=9¢

where we have used that | log 4w (f(e, ¢ x) |a:)]
¢ = 2, we obtain that

34
——-e8x Lk

2 x 5154/2

E(Ap (e 2)) =

Next, using the above as well as (154) with o« = 0 and ¢ = 2 and (142) with ¢, = Bk, we can compute all
the terms appearing in by-V “PREP) (9 - 1) since

E(wg,6,6(c; 7))

Wo,p, (e;) ? L2
y <4E ((méf;@;x») ) - 1) Fldgole; )

b=V OPRED (9, 6 ) = B(Ap g (e;2)%) — 4B (Ae@(f;l")w) E (Ap.o(e52))

with
2
E(Ago(c:2)?) = ~E \/gg(k)—l-,uk (_‘DG@,QS(&;@“) )4
o 3 E(,0(c: 7))
2d d/2 )

LAY e (242

4\3 7 7 ' o72lk
and

- - 3
Wo,4,6(¢; ) 1 \/5 *) Wo,4,6(¢; ) 1
E(A )" | = —=E = —_— = —h(3) -
( 9’¢(6’x>]E(1D97¢7¢(5;x))) 2 (( 37 ) \ElGope(ea) 1"
Thus, we finally get
) 14N 3\ o 0 (2 3
0,DREP C) — 17 2
bVl )(9; ¢ix) = 1 (g) (;) el (; + ﬁﬂk) (155)

3d/2 /2 d
(4 1 Sz 3 4% P o
3 2) ° 2.51542° M

47 5 32 4% 5
_I_ (4W68.5”H” _ 1) 22 » 521_5de4><5”.u” ILL%.

Lastly, we obtain the desired expressions in Example 4 by taking Az + b = (0 4 2)/2 + euy with e > 0 so
that y1;, = 4e and ||p||* = 16de. Notice in particular that (155) becomes:

2d d/2 2
o4 (52

AN\ 342 71\ 42 2 3 44 s 40 g, 2 g,
_(é) <5> A st ’“‘“(ﬂwz”d ‘1) T M (150)
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C Deferred proofs and results for Section 3.2

C.1 Preliminary results for the proofs of Theorems 4 and 5
In the following we will use the asymptotic equivalence
1—®(u) =u"p(u)(1+o(l) asu— oo, (157)

where ¢ denotes the standard Normal density and ¢ denotes the cumulative distribution function of the
standard Normal distribution. In fact it is easy to show that the o-term in this asymptotic equivalence is
non-negative as soon as u > 0, since, in this case,

1B (u) = / o) dy <! / "y ely) dy = u (). (158)

We then have the following two lemmas.

LemmasS LetY),...,Yy bei.i.d normal random variables and set My = maxi<;<,, Y;. Then for all
¢ > 0, we have, as N — oo,

P (MN >V2(1+c) logN) =0 ((log Ny N‘C> , (159)
P (MN <21 +o " log N> —0 (e—NC/(”C)/V‘lﬂog’V) . (160)

Proof. For any u € Rand N > 1, we have
P(My >u)=1—exp(Nlog(1—(1—-(u)))) .
Then using (157) with u = \/2x log N and x > 0, we have, as N — oo,

—T

VAam xlog N

We successively get the following assertions depending on where z lies w.r.t. 1
1—x

if 2 > 1,28 N — oo, IP(M > /221 N>=—
if x as 00 N xlog T
ifz € (0,1),as N = 00, P (MN < \/2xlogN> ~0 <exp <—N1_x/\/47rlogN>> ,

1—®(u) = (14 0(1)).

(1+0(1)),

The two bounds (159) and (160) easily follow. O
The next lemma extends Daudel et al., , Lemma 1, which follows from the case m = 1.
Lemma 6 LetY,...,Yy be ii.d. normal random variables and set My = maxi<;<, Y;. Let m €

[1,00). Then, as N — oo,

log log N

my m/2 g 108

E (|[My|™) = (2log N) (1+0 (—ng )> (161)
E((My)") =0 (p") foranype (1/2,1), (162)

where (x)_ = max(—x, 0) denotes the negative part of x.

49



Proof. The Gaussian distribution belongs to the maximum domain of attraction of the Gumbel distribution.
More precisely, we have (see Haan and Ferreira, )

lim P (ay' (My —by) < z) = exp(—e™™),
N—00

with ay = 1/y/2log N, by = v/2log N — $(loglog N + log4m)/(v/2Iog N). Since the Gaussian distri-

bution has finite moments of all orders and so does the Gumbel distribution, Pickands III, , Theorem
2.1 yields

lim E(|Ly|™) = / |z|™ exp(—z —e™") du,

N—o0 oo

where we have set Ly = a]_vl(MN — by ). Now writing b;,lMN =1+ Z—]JL’LN and since m € [1,00) by
assumption, the Minkowski inequality yields

(& (jo5 Mw™))

1/m 1/m an

— 1] = (E (o My = 17) = @ (L)
Hence E (|[My|™) = b7 (1 +0 <%)>m’ which leads to (161). To get (162), we use that E ((My)™) =

E (|Mn|™ 1{ary<oy), and, for any p > 1, the Holder inequality leads to

1\ N o-1)/p
)

E ((My)™) < (E(My|"")"" (B (My < 0)) 7 = (E(|My|"?)"" (—

Since (161) also holds with m replaced by m p, we get the claimed bound by choosing p large enough to

have (%)(p_l)/p € (3,p) with p € (3,1). O

We next present a key proposition, which provides a general bound that will be used to show the collapse
of self-normalized weighted averages (in the sense that one weight dominates over all others in the
self-normalized weighted averages).

Proposition 7 Let <<VVZ, fﬁ)) be a sequence of i.i.d. R’ X R-valued random variables. Let I’
i>1

denote the distribution function of log W1, and its generalized inverse by F* . In addition, let Z ~ N(0,1)
and let us define, for all s € R,

E [eFHOQD(Z)—F“o{)(S) ‘ 7 < 8}

= . 163
Let us further define, for all N > 1, Y = max ( ?1 e Y/ND andforallu e Ry, s e R, m € [1,00)
and p € (1,00),
~ ~ 111/m ~
J(Vm,p) (u,s) =N <‘ Y, sP=1/p ‘ Y, 1{?* o) ’ ) . (164)
pm N m

Then, there exists a non-decreasing random sequence (Iy) N>1 such that, for all N > 1, Iy is valued in
{1,..., N} with Wy, = max (Wy,..., W) and, for allm,d € [1,00),b<2<b, p e (1,00), u > 0and
N € N*, we have

<C |u suwp (cw@ﬁhéﬁ’” (w(og )2 NE) |, (169)

b
m €[b.?]
q=1m

]

N
—5 o~ ~
WinYi =Yy
=1
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where C' > 0 is a constant only depending on p, b, b, § and m, and Wl-, N denotes the self-normalized weight
defined by

-1
Wi,N3:<ZWk> WZ‘, 1§Z§N

1<kE<N

Proof. Let us denote by () the probability kernel of a regular version of the conditional distribution of Vi
given W (which exists since the real line is a Polish space, see Douc et al., , Thorem B.3.11), that

isP [}71 <y ’ WI] = Q(Wy, (—o0,9]) P-a.s. for all § € R. Further denote the associated conditional
generalized inverse by (), that is

Vw e RY,Vu € (0,1), Q7 (w,u)=inf{g eR : Q(w,(—00,7]) > u}.
Recall that Z ~ N/(0, 1) and let U be independent of Z with uniform distribution on [0, 1]. By definition of

F and Q, (Wl, }71> have the same distribution as (e °®(%), Q (ef" °®(2) U)). Therefore, from now on,

we let (Z;),;>, and (U;);, be two independent i.i.d. sequence distributed as Z and U, respectively and set,
without loss of generality,

Vi>1, W;=e"®@) and Y, =Q"(W,U;). (166)
Now denoting by Iy the (random) index in {1, ..., N} such that Z;, = max(Z,..., Zy), we have that
Iy is a.s. uniquely defined since 71, . . ., Zx are independent and ® is continuous. Furthermore, as required

in the proposition, (/) N>1 is a non-decreasing random sequence such that: for all N > 1, Iy is valued in
{1,..., N} with W, = max (Wy,...,Wy).
Next let m,§ € [1,00),b < 1 < band p € (1,00). It remains to show that there exists a constant C' > 0

only depending on these constants such that the bound (165) holds for all w > 0 and N € N*. To this end,

we first write
N

Z (W@N)é Y, =Y, — Ax + By ,
=1

where, denoting Jy := {1,..., N} \ {In}, we set
AN = <1 — (WIN7N)§> S}IN and BN = Z (

i€Jn

Win) Vi

To evaluate the left-hand side of (165), that is HZ’]\; Wﬁ N f/l — Y/IN

, the idea is to separate the integration
domain in { b < % < 5} N {}7;, < u} and its complementary set. More specifically, to prove (165) it
suffices to show that

q
E| AN 1¢ 2, y . <6Cyu™ sup C(b+/log N (167)
’ N’ {bﬁ\/%ﬁb}ﬂ{YN<u}> 2 be[b,b],qzl,m< ( )>
q
m < m
2 (1" 4 sy <O e (00 o
N m
E Vil 1., 4 . <y (8P, log N)2 NV (169)
() i) <€ @ )
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where C) only depends on p, b and b and C; only depends on m. The desired result will then follow
by combining (167), (168), the Minkowski inequality, (169) and the fact that since |Ay| < ‘YGN‘ and

|By| < ZiEJN ’Y/,’, we have |[Ay| + |By| < sz\il ‘}71‘ Let us thus prove separately that (i) the
inequalities (167) and (168) hold and (ii) the inequality (169) holds.

(1) Proof of (167) and (168). For all N > 2, set

Dy = Z Wi (170)

i€JN In

Then, for all N > 2,

|An| = (1= (14 Dn)™) ‘Y/}N <6DNY7,

< ((1 + D)’ — 1) ‘EN

where in the last inequality we used the definition of Y and the fact that (1 + z)° < 14 dz forall § > 1

and = > 0. Furthermore, for all N > 2,
5 G G
|By| < (14 Dy)~ ( ) < ( )
> () Pil= 2 (i

ieJn

Y; Y| < Dy Yy,

where we used that 6 > 1, and W; < Wi, foralli € Jy. To get (167) and (168), notice that

m o *x\m < m m
. (DN( W) l{bé%éb}ﬂ{%saJ s Uk (DN ﬂ{bi#ﬁé&ﬁb}) ’

thus it only remains to show that there exists Cs > 0 which only depends on m such that

E (Dﬁ l{bg Zry <b}) < sup <C(b \/logN)>q. (171)

be [Q,E] ,q=1,m
By definition of Dy in (170) and using (166), we have that

— N
-DN — § eF od(Z;)—F O<I>(Z1N)
keJn

hence conditioning on Z;,,, we get

N-1 m
< eF‘_o‘i(Zi)F‘_oq)(s)>
=1
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Since the Z;,...,Zy are 1.1.d. with the same distribution as Z, by the Rosenthal inequality (see
Therorem 2.12 Petrov, ), we have, for a constant C; > 0 only depending on m,

N-1 m
( eF“o@(ZﬁF“o@(s))
=1

S 04 [(N . 1) E [em (F0®(Z2)—Fod(s)) | 7 S ZIN}
+ ((N _ 1) ]E |:eF<*o<I>(Z)—F‘*o<I>(s) ‘ Z S Z[N:|)m:|
<c, Z (N - 1E [eF“o<I>(Z)*F“o<I>(S) ‘ 7 < ZIN])q7

qg=1m

ZZSZIN71§Z§N_1

where, in the last inequality, we used that m > 1 and that the exponent of the exponential in the first line
is non-positive when conditioning on {Z < Z;_}. The expectation appearing in the last line is equal to
(1—-®(Z1,)) ¢(Z;, ). Using this with (172), we get that

E(D21, o <y E s AN = 1) (1= ®(Z;,)) C(Z1,)}
() <60 32 (1t (-0 - o)

qg=1,m — VIog N —
<20, max | (N —1)7E((1 - ®(Z;,))") sup ( b+/log N) )
g=1m be[bb]
Since ® is continuous, we further have that, for any ¢ > 1,

Pg+ DN _Tg+1)
TT(N+q+1) ~ (N+1)y

where Uy, n) is the maximum of N i.i.d. random variables with uniform distribution in [0, 1]. Hence (171)
holds with Cy = 2Cy I'(m + 1), which concludes the proof of (167) and (168).

E((1-®(Z1y))") =E((1-Uwn))? N/ )Nt da

(ii) Proof of (169). Since m > 1, x + 2™ is convex and we have (% Zfil % )m < %Z Y; m,
leading to
N o m N Cm
() o) < S (0
i=1 i=1
:NmE<f/1m ILDN> ,

where we used that the domain Dy = {\/% ¢ [l_), 1_7] } U {Y/J(k, > u} is stable by permutation of the

1p, has the same distribution as

m ~ |Mm

Vi
+ gy, and, by definition of ¢ in (164), to get (169) with

indices i within {1,..., N'} so that |Y;

lp, forall: =1,... V.

Now we note that 1p, <1 2 _

= el

O} = max (1, Cép —U/p ) , it only remains to show that
pmy\ 1/p =0\ (P=1)/p

E ( )) (03 (log N)™"/? le‘-"/?) . A7)

1

m 1{%%4}) < (& (%
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for a certain C5 > 0 only depending on b and b. Using Lemma 5 with ¢ = /2 — 1 and ¢ = 2/b — 1
successively in (159) and (160), we indeed find for such a constant 5,

Zr _ 3
<\/ﬁ ¢ [b, 7) < Cy ((log N) > N1P2)
Then we get (173) by applying the Holder inequality and the proof of (169) is concluded.

]
Remark 4  Proposition 7 investigates the behavior of the weighted average of <}~/;> when using
i=1,...,N

self-normalized positive weights (WZ N)i=1 [0 some power § > 1. More precisely, (165) provides a

.....

bound of the L™ -norm of the error when approximating this average by a single f/IN, with Iy corresponding
to an index with maximal weight.

Under standard moment conditions, and using the law of large numbers, such an average should be well
approximated as N — oo by N'™°E (Wfffl) (E (Wl))_5 rather than by the (random) Y/IN as in (165).
However, we will apply (165 with I depending on N in such a way that the maximal weight W, tends to
dominate over all other weights.

In particular, in our applications of Proposition 7, we will take advantage of the fact that the constant C'
does not depend on F' in the bound (165). Furthermore, since (165) holds for any u > 0, we will choose
u for a given N so that the right-hand side of (165) is as small as possible. This will be achieved by
compromising between the u in the first term (which increases as u increases) and the second expectation
in (164) defining ¢ (m.p) (u, s) which decreases as u increases. Finally, the first term between the parentheses
of (164) will be made small by taking b large enough to compensate the N in front of the parentheses.

C.2 Additional notation, useful first properties and derivations

In the remaining of Appendix C, we let € ~ ¢ and 1, €5, . .. be i.i.d. copies of € and we assume that (B1)
holds and so does (BEF") (when dealing with the REP gradient estimator) and (BJRE") (when dealing with
the REP gradient estimator).

We now introduce the following helpful notation:

N g (5 2) = log g s (5 ) (174)
-1
ga]\)[ _ <Ze (1—a) Ng.g o (ks x)) o(1=0) Ao 6.6 (c550) : 1<j<N (175)
~ Ng oo E(Agge(e;x
Koy () = 2L )( 5 ;,.9;3’“ ) (176)
B0, ¢0)* =V <8w/~\9,¢,¢(5;$)> 77

BP9, ¢y 2)? = ([3¢'/~\0,¢,¢'(55$)]

) . (178)
¢'=0

Under (B1), the expectation and variance of Ay, 4 (¢; ) are well defined. Recalling from Section 3.2
that By(0, ¢, ¢'; x) denotes the variance of Ay 4 »(c; x), we have that Ay, » in well defined in (176) if
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By(0,¢,¢';x) > 0. Since we consider the setting where N,d — oo under Condition (29) in Theo-
rems 4 and 5, this implies that, eventually, B,(0, ¢, ¢’; x) > 0. Consquently, we will always assume that
By(0, ¢, ¢';x) > 0 in the following without loss of generality. Furthermore, using Propositions 3 and 4, we
get the following assertions:

(i) We have that 0, B4(6, ¢, ¢; x) and [0y Ba(0, ¢, ¢'; w)]\¢,:¢ are well defined;
(ii) We have that B (6, ¢; 2)2 and BP™) (0, ¢; )2 are also well defined;

(iii) We have that (<K9’¢7¢(€;$),8w/,{9’¢7¢(8;$)>) is a Gaussian process, and so is

(0,9)eOX P
((‘/N\M,sb(g% z), [3wfxe,¢,¢/ (g; x)}

¢’:¢>> ) (0,¢)€@><<I’.

(iv) We can interchange the derivatives 0 and [0y (+)][,,_, with the expectation signs for /~X9,¢,¢(8; x)

and /N\9’¢7¢/ (¢; ), respectively, as well as their squares.

Using Assertion (iv) above and since /~\97¢,¢,/(5;x) is centered with variance 1, we then get that
E(awxg,d),qs(é‘;l')) = Cov (K9,¢,¢(5;x),8wxg,¢,¢(g;:c)) = 0 and E([&wﬁ(g@@/(a;x)] ) =
¢'=¢

Cov (Kg,ws(s; x), [&/,/KM,W(E; x)} ) = 0. Combining this with Assertion (iii), we thus have the

following first properties:

=

and <8¢K9,¢,¢(€; :L‘)) are two independent and centered Gaus-

PREP (K . >
( ) (Nogo(E; ) (6.6)cOx® (0.6)€Ox®

sian processes with variances equal to 1 and ( (REP) ( , ;1) ) , respectively.
(0,0)€OX P

(PPREP) (/N\e,¢,¢(€; x))(e seons 9 ( [%'/N\e,qs,dﬂ (s; m)} ‘ o 4>>( : are two independent and cen-
) 0,0)cOxP

tered Gaussian processes with variances equal to 1 and (EC(IREP) (0, @; x)2>( : , respectively.
0,0)€OX D

Finally, let us rewrite the REP and DREP gradient estimators (defined in (12) and (14) respectively) using
the above notation. Since their expectation and variance can be deduced from the case M = 1:

E(U-gyrng (0, 6:7)) = E(g-g\ % (0, ¢:7))
V(W-gyrag (0, ¢:2)) = M7V (y-gi (0, ;2)) |
E(-giyma (0, 6:2)) = E(-giis (0, ¢;2))
V(W-girng (0, 0;2)) = M7V (y-gi50y ™0 (0, 61 ) |
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we in fact only consider the case M = 1 for simplicity and we obtain that

N
o,REP)
w‘gi,N,d Z 4, N OyNop0(cj; @)

Jj=1

= OyE(Apg.6(c; 7)) y (Nogo(ej; ) —E(Agg4(e;7)))

uMz

2

= 0pE(Agp6(c32)) + 0pBa(0, ¢, 03 2) Z ¥ ool )

=z

+ Bal0,6,6;2) Y WiN Oyhaglesin) . (179)

J=1

as well as

N
a (@)
Vg0 "0, 05 0) = 3 (WS + (1= @) OVIR)?) DM )]y

Jj=1

( (1—0a)) ( we ) [0y E(Ag,p,0 (€3 2))]| =g

Jj=1

+ (0w Bal0, 6,832, Z (W + (1= ) W2)?) Kpoless o)

+Bd ¢ ¢a

Mz

<aW]N+ (1— )W ))) [aw/ (AQW(EW ))HW . (180)

Jj=1

C.3 Proofs of Theorems 4 and 5
We start by presenting two lemmas.

Lemma7 Let Z ~ N(0,1). Then, forall s € R and o > 0,

25 —0) _ls)
o) oo sy

E (eo(ZfS) ’ A < S) —

It follows that, defining ¢ by (163) with F*~ = ji + c®~! where ;1 € R and o > 0, there exists a universal
constant C' > 0 such that, for all 0 > 2s > 1,

(182)



Proof. We have, for all s € R and o > 0,

_ és) B(2002 -, )
1

= 36) plo ) E (Lizto<sy)

where, in the last line, we used that Z+o has density u — ¢(u—o) hence the likelihood ratio ¢ (Z —o) /p(Z)
amounts to change Z into Z + o. We thus get (181). Now, defining ¢ by (163) with F*~ = y + c®~1, we
get, forall s > 0and o0 > 0,

1 m(o—s)
C(S) - @(S) m(s) )
where the function m corresponds to the Mills ratio m(u) = %ﬁ)“) with u > 0. Since
Yu > 0, e < m(u) <o
(see Gordon, ) we finally deduce that: for all ¢ > 2s > 1,
1 s2+1 1 s
< <C -
Cs) = (1) s o—s— o
where C' = 6®(1) " and where we have used that s > 1 and s < 0/2. O
Lemma8 Ler &y, &, ... beiid. standard normal random variables and set, forall N = 1,2, ..., and
b eR,
N -1
Win(B) = (Zeﬁfk> 9, 1<j<N. (183)
k=1
Let 6 > 1, A € [0,1] and ¢ > 1. Then we have, as N, B — oo with \/log N = o(3),
N
E (Y (W;n(3) &-) = (21log N)"* (1 +o(1)), (184)
j=1
N
VD DWn(B8) + (1= N (W,n(8))] @-) =o(logN), (185)
j=1
al 5
E(> (Win(8)) ) =1+o0(1), (186)
j=1
N
— 5 Viog N _
V> (Win(8) ) =0 ( 5 VN C’) . (187)
j=1
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Proof. We will first show that, for any m € [1,00), as N, § — oo with y/log N = o(f3),

~(B)° & —max(&, ..., En)

_ 0<\/logN> , (188)
=O<(VlogN>m+N—fn> . (189)

Then we will show that (188) implies (184)-(185), and that (189) implies (186)-(187).

M=
El
=

{Q
Il
—

(Win(8))° -1

WE

1

(2

(1) Proof of (188) and (189). We use Proposition 7 successively in the two settings

Setting 1) forall j = 1... N, W, = ¢% and Y; = &;;
Setting 2) forall j =1...N,W; = e’% and Y; = 1.

In both settings, we have F'"(u) = S®'(u). Then Proposition 7 gives us that there exists a non-
decreasing random sequence (/) such that, for all N > 1, Iy is valued in {1,..., N} with W}, =
max (W1, ..., Wy) and, for all m,0 € [1,00),b < 2 < b, p € (1,00), u > 0and N € N*, we have
in Setting 1) and Setting 2),

<C |u sup (C(b vlogN))i —{—@(Vm’p) (U, (IOgN)ié Nl_é) ;

b€ [b,b]
q=1m

m

where ( is defined in (163), (/ F(mP) is defined in (164) and C' > 0 is a constant only depending on p, b, b, 6
and m. By Lemma 7, using F' as above, we have that there exists a universal constant Cj, > 0 such that,
forall b > 0,

bIog N
B> 2by/log N > 1 = ((b+/log N) < Cy ;g

Note that if b < b and £>2 (l_) V Cy)v/log N > 1, then the condition on the left-hand side is satified and
the upper bound in the right-hand side is at most 1. Using this in the previous display for the special case
p = 2, we get that for all m,d € [1,00) and b > 2, there exists C,Cy > 0 such that, for all v > 0, if

B>2(bVCy)ylogN > 1,
)) . (190)

N 7 o
e (u (b Cov/Tog N_) Fn2)
To prove (188) and (189) we now con51der Setting 1) and Setting 2) separately by taking Y = §; and

l\)\»—l
[NIISy]

NI

> (Win(#) i = Vi | < g + 0 (u, (log V)~

i=1

Y = 1 respectively in C N < (log N)~ 3 N-1- ) and choosing adequate values of b and  in the upper
bound above. Namely, we will show that

. Iff/j = ¢; forall j > 1, then: as N — oo,
g2 <\/1010gN, (log N) ™2 N*Q) —o(log N) . (191)
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. Iff/j = 1forall 5 > 1, then: forall N > 2,
o2 (2, (log N)l’%> = (log N)"1 N34 . (192)

Observe then that (192) follows directly from plugging in (u, s) = (2, (log N)l_g) in (164). As for (191):

setting Y; = &; for all j > 1 and plugging in (u, s) = (v/101log N, (log N)fé N~2) in (164) yields that for
all N > 2,

5 (V/1010g N, (log N) 7% N72) = [l&ally (log N) 4 + N

51 ]]'{é}‘\,>\/1010gN} Hm )

where £y = max (|&], ..., [&n]). Since || ﬂ{ﬁPW}Hm < 1&illom IL{GP\/W} - the
desired result (191) will follow if we can show that: as N — oo,

P (¢ > V/10log V) = o (N"/2) .
Writing that £ = max(My, M)) where we have set My = max(&,...,&) and My =
max (—&1,...,—&y), it holds that P (£ > u) < P(My > u) + P(My > u) = 2P(My > u) for

any u > 0, hence the last display follows from (159) in Lemma 5 with ¢ = 4.

Now, for any given b > 2, if N, 5 — oo with y/log N = o(pB), we eventually have 3 > 2 (bV Cy)v/Tog N >
1 so that (190) eventually applies. If Y; = &; for all j, we have Y7, = max(&y, ..., &), and the bound (190)
with b = 6 among with (191), gives us that, as N, 8 — oo with y/log N' = o(3), (188) hold. If now Y; = 1
for all j, we have Y7, = 1 and the bound (190) with b large enough among with (192), gives us that (189)
holds.

(ii) Proofs of (184) and (185). Since the expectation is 1-Lipschitz for the L!-norm, the asymptotic
behavior (188) with m = 1 implies that, for any 6 > 1,

E (Z(Wi,N(ﬁ))‘s&) = E (max(&,...,¢n)),, +0 (\/log N) )

i=1
Applying Lemma 6 with m = 1 the first term in the right-hand side is asymptotically equivalent to /2 log N
and we get (184). The cases 0 = 1, 2 in particular together give that, for any A € [0, 1],

N
E (Z[AWJ;N(B) + (L= N)(Wn(8)7] @») = (21og N)'2 (14 0(1)) . (193)
j=1
By the Minkowski inequality for the L?-norm, we obtain that
N
D Wi (B) + (L= NWin(B)7&| — llmax(&r,... n)ll
j=1
. B 2
<ID_PWn(8) + (1= MW n(8))°]1 & — max(éy, ..., éx)
=1
] N N i
<MD Win(B) & —max(ér, .., &n)|| + (1 =X | D _(W;n(8)*E — max(&, ..., &w)
Jj=1 2 Jj=1 2
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Hence, using (188) again, this time with m = 2, we deduce

N

Y W (B) + (1= N (Wi (8)7]

Jj=1

— [max(&a, ..., )| = o (VIog V) |

2
which we can rewrite equivalently as

N

D DWin(8) + (1= N (Wi ()] &

j=1

= ||max(&i, ..., &n)|l, + 0 (VlogN) )

2

Using Lemma 6 with m = 2 to evaluate the first term in the right-hand side and taking the sqaure, we get
that

E (Z[/\Wj,zv(ﬂ) + (1= N)(W;n(8))7] fj) =2log N (1+0(1)).

j=1

This asymptotic behavior with the square of (193) yields (185).

(i) Proofs of (186) and (187). The proofs of (186) and (187) are obtained similarly to the proofs of (184)
and (185), but starting from (189) instead of (188).

]

We can now prove Theorems 4 and 5.

C.3.1 Proof of Theorem 4

The proof is made of two steps. Firstly we show that: as N, d — oo with (29) holding,

E (405" (0.0:2)) = O (Mo(zi ) + log N)'* 0uBal0,6,632) (1+0(1)  (194)
V (g5 (0, 650) ) = (9uBal0,6,632))° 0 (log N)
+ Ba(0, 6, ;2 By (0, ¢12)” (14 0(1)) - (195)
Secondly, further assuming (30), we show that (31) holds as N, d — oo.

(i) Proof of (194) and (195). Recall that €, ¢, ... are i.i.d. copies of €. Since Wﬁ‘?v, . ,Wﬁ?)N as
defined in (175) can be expressed as functions of Mg 4(c; @) for all k = 1... N, by Property (PREP)

they are independent of the centered random variables 8¢A9 s.0(€1;2), ..., 0pNg s s(en; ). Furthermore,
Property (PREP) also gives us that Ag s 4(e1; ), . .., Agg.s(en; 2) are iid. N(0,1). Next noticing that
W1 N WNN can be rewritten using A9,¢7¢(5k; x)forall k = 1... N, we can apply Lemma 8 with

& = A9,¢,¢(5k, x),and § = (1 — a)By(0, ¢, ¢; x) to prove (194) and (195). More precisely, by taking the
expectation in (179) we get that

E (=gl (0, 650) ) = 0B (o gs(5)) + 0, Bal), (ZW Nosolesia >)
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and, as N, d — oo with (29) holding, (184) with 6 = 1 gives us that (194) holds. Similarly, by taking the
variance in (179) we have that

N
V (g5 0. 632)) = (0uBal0, 6,032))° V (Z Win Rogaless o:))
j=1

+ (Bd(ea ¢, ¢; x))Q v <Z W(a) 8¢A9¢¢>(€J7 ))

Jj=1

and (185) with A = 1 in Lemma 8, gives us that the first variance in the right-hand side is o (log V) as
N, d — oo with (29) holding. Now observe that, using Property (P*F) again,

N N 5
! (Z W;a]\), 8¢K0’¢’¢(€j; x)) —E (Z Wﬁ)v 8wK9,¢,¢(5j§ x))
j=1 =
= (@) ) 2 ~ 2
5 (X (W) B (2Rossteio) )

j=1
- N N2
= B0, 650)°E (Z (W) )
and we can conclude by using (186) with 6 = 2.
(i1) Proof of (31). The marginal log-likelihood satisfies

04(0;2) = 10g Bz, (o) (wo,6(Z; ) = log E (g 4,6(c; 2)) = log E (e0esl&7)

Since Ag 4 4(c; x) is a Gaussian variable with variance By(6, ¢, ¢; 2)?, we get that

{alb; 1) = E(Magole:0) + 5 Balb,6,650)" (196)

Now, using (179) in the case N = 1, we obtain that

V-0, ¢ 1) = OB (Mg g o(e; 7))
+ 0pBa(0, ¢, 85 2) Mo g.6(c15 ) + Ba(0, ¢, ;) OpNog.6(c1;2) -

It follows from Property (PREP) that
|0uE (Mg p0(c; 7))l

SNR[y-g,7 (0, ¢52)] = : —
V (9uBul0,6,6:2) + Ba(6, 6,65 2) BR(6, 61 2)?

(197)

and, using (196), that
|Bd(97 ¢a ¢7 'T)ade(ea ¢7 ¢7 x)|

SNR[-g\ 50, s ) — Dyla(6;2)] = 2 —— .
(0yBa(0, 6, 6;7))° + Bal0, 6, & )2 By (0, ;)2
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Using the latter equation, we get that (30) is equivalent to have
V108 N10,sBa(6; 6, 6:2)] = o ((Bul0, 6,6:2) B (0, ¢5)) (198)
and it also implies that
05B4(0. 6. ¢52)] = o (Bal0,6,6:2) B{*™ (6, 612)) . (199)
Plugging (198) into (194) and (195) thus yields
(OB (Ao, g0(22))| + 0 (Bal6, 6, 65 2) B (6, 6:))

Bu(0, ¢, ¢;) By (6, ¢52) (1+0(1)
On the other hand, plugging (199) in (197) yields

SNR[-g\ (0, ¢;.2)] =

|3wE(A9¢¢(8;£C))\ .
Bu(0, ¢, 6;2)BY™ (0, ¢s2) (1+0(1))

SNR[¢-gi g (6, 6:)] =
We deduce (31) from the last two displays.

C.3.2 Proof of Theorem 5

The proof is made of three steps. Firstly, we show that: as N, d — oo with y/log N < By(0, ¢, ¢; x) < N,
it holds that

E (v-gii " (0. ¢3))
([3w'E(A9¢¢'(€ Dy + (210g N)2 [0 Ba(6, 6,3 2)]|,_, ) (L +0(1)  (200)

V (gl (0, 0:2)) = Ba(6, 0, 65.2) B (0, 650)%(1 + o(1)
log N
TR TR ((— )
+ (100Baf0.6.0:2)]l,_,) " o(log N)
: (log N
+ [OWEAa .0 0)]l oy [00Ba(0, 6,85 2)]],_, 0( Bd(z; — w)) . (201)

Secondly, we show that: further assuming (33) and (34) as in assertion (i) of Theorem 5, we obtain
(35). Thirdly, we show that: further assuming that V(- glo‘IBREP (0, »;x)) = 0 for d large enough as in

assertion (ii) of Theorem 5, we obtain (36) and (37).

(i) Proof of (200) and (201). We proceed as in the first step of the proof of Theorem 4, but this time using
Property (PPREP) and (180). This leads to

E (4905000, 6:0)) = <a +(1-a)E (ZW“)) )) 00 E (R g (E:2))]Lyy

7j=1
N

+ [0y Ba(8,6,'3)]] y_, E (Z[aWEZ% + (1 - a) W) xw@;x)) ,

=1
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and
N
V (gl (0, 6:2)) = (1= 0)? [0 E (Mg (= 2))][50, V (Z(Wﬁf’;&f)

+ (100Ba(0.6.0:2)]l,_,) v (Z[aWE?}V (11— ) V)] Rooles: x>>

J=1

N
+ Ba(0, 9, 6:) B (0, 65.2) B (Z (Wi + (1 - a)(Wﬁfi%)Z)Q)

j=1

+ (1= @) [OpENg g0 2)| gy [0wBa(0, 0,0 2)]l 5y

N N
(@) (@) (@21 %
x Cov <§ (Wj,N)2a E [aW;y+ (1 - a)(Wj,N)Q] Agg.0(€5; x)) :

Jj=1 Jj=1

a)Bq(0, ¢, ¢; x), we get that (186) with
r, (185) with A = a, (186) successively
r) < N",

Now applying Lemma 8 with &, = Kg,¢,¢(8k; z)and f = (1 —
0 = 2, (184) successively with 6 = 1,2, (187) with § = 2 and
with § = 2, 3,4 yield: as N, d — oo with y/log N < By(#, ¢,

E (Z(Wﬁ?}%)?) =1+o0(1),

Jj=1

q:
¢;

E (Z[aWﬁ% + (1= )W) Kooy x>) = (2log N)> (1 + o(1)) ,

Y @) Viog N
V(J;(W )) O(W)’

(Z Wi + (1 — )V >2]7\e,¢,¢<ej;x)) — 0(logN) |
(3 (o8 - 0R)) <ot

Jj=1

Pairing up the last two equalities with the Cauchy-Schwarz inequality further imply

(@) 2 N @) (@) 2 _ (1og V)
Cov (Z(wj,N) D W+ (1= )V A (e )> —O< Bd<9,¢,¢;x)> ‘

J=1 J=1

Plugging these asymptotic behaviors into the previous expressions of the expectation and variance of the
DREP gradient estimator, we then obtain (200) and (201).

(i) Proof of (35). The marginal log-likelihood satisfies
10g Eznq, (1z) (Wo,6(Z; 7)) = log E (g ,¢ (5 7)) = log E (eA9»¢>’¢>’(E?””)) :
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Since Ay 4.4 (g; x) is a Gaussian variable with variance By(6, ¢, ¢'; x)?, we get that

log E (We,6,¢ (3 2)) = E(Nogp(52)) + 5 Bd( ¢, ¢ x)% . (202)
Furthermore, (180) with NV = 1 yields
gt (0,630) = (00BN (5 0) ]|y + 00 Bal0, 6,85 2)]| oy Ropolers 7)
+ B4(0, 0, ¢; x Oy (A (e x ‘ . (203
(0, 0,9 )[¢<9,¢>,¢(1 )>}¢>’:¢> (203)
Using Property (PPREP), we thus have that

[0y BN g0 (€3 2))]] -
SNR |u-g{10"" (0, 61)| = ‘ 2 (204)

V10wBa0.6, 65 0)] %, + Bal0. 6, 6:2)2 B (0, 6, 0)?

and, using moreover (202), that

SNR [v-g1%70 (0, 65) — [0 108 (05055 0))]
‘Bd<97 (,bv ¢/7 I) [aw'Bd(GJ (ba ¢/7 JI)] |¢’:
V100 B0, 6.0 2)],_, + Bal6, 6, ¢5.2)2 BP0, ;)2

From the last display, we can express (33) equivalently as

=Bt mem) |

aw/Bd( 3 (ba ¢ ) $)] ’¢':¢

Observing that (205) also implies that
0w Bal0,6, )l =y = 0 (Bal0,6,650) BP0, 6:2))

and using this condition in (204) gives us that

[CROYPPICE P

Ba(0,6,¢;2) B (60, 05.)

SNR (0017756, 0:0)] = — +o(1) . (206)

Using (206), we can express (34) as

(logN)t  _
Bd(07 ¢a ¢7 QZ’)
Plugging (205) and the latter condition into (200) and (201), we obtain

E (v-g500 ™ (0. 632)) = (0B (Mg (52) ]|y (1+0(1) + 0 (Bal6, 6,032) BP0, 012))
V (gl (0, 6:2)) = Ba(6, 6, 012 B (0, 652)(1 + o(1)),
which, together with (206), imply (35).

(O E(No g (83 2)|y_y a(0,6,¢:2) B0 (0, 652) )
| | o (B
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(iii) Proof of (36) and (37). Suppose now that V(zﬁ—gﬁ’BREP)(Q,qﬁ; x)) = 0 for d large enough.
Using (203) with Property (PPREP) this variance being zero is equivalent to having

[0y Ba(0, 6,5 2)]| y_, = Ba(0, 6, ¢12) BL™(0, ¢10) = 0.

Plugging this into (200) and (201) and since (203) implies that E(@/J—gﬁ’EREP)(Q,gb;x)) =
[0y E(Ag g, (€5 2))]| 45— g» we get (36) and (37).

C.4 Proof of Example 5

We get from Example 1 that:

- 16 — ¢I1” {e,0—0)
log Wy ge(c;x) — la(0; ) = ————— — || — 9||S, S =-—"—-".
e 2 16 — ¢
Consequently, (B1) holds with B2(0, ¢, ¢; x) = ||# — ¢||* and differentiating (207) with respect to ¢y, we
also obtain that

(207)

¢k-9§,af,};EP) (0, ¢; ) = Dy, log g p6(c; ) = O — P — ™

so that SNR[qﬁk-gf‘l’EEP) (0, ¢;x)] = |0 — ¢x|. Now using that § = € - uy and ¢ = 0 - ug, we get that (29)
is exactly (38), that (30) holds and so does (BYF""). Applying Theorem 4, (38) then implies

SNR[pw-g\ (0, ¢52)] = € + o(1).

Furthermore, since we also have from Example 1 that:

~ 0 — 2 c + /I , o 9
1ng97¢,¢/(g;x) —éd(e;g;) — _M _ Hg_ngS’ S = < Qb ¢ Qb >’
2 16—l
differentiating w.r.t ¢; and taking the result at ¢/ = ¢, we get that
[0, log o600 (52)] | ,_, =0 =0+ — O,

thus V(w-gﬁ’BREP) (0, ¢;z)) = 0 and (BYREY) holds. As a result, (ii) from Theorem 5 applies.

D Additional numerical experiments

D.1 Gaussian experiment from Section 4.1

We provide here additional experiments for the case @ = 0. By Example 3: as N — oo,

M exp (d—§2>

SNR[%-Q%S’,?VEP)(@? ¢; )] = Wﬁ(l +0(1)) (208)
SNR[r-gyrn (0, 65 2)] = MN(1L +o1)) - (209)

(exp (4de?) — dexp (2de?) + dexp (de?) — 1)2

We let d € {10,100,500}, ¢ = 0.2, N € {2/, = 1...15}, M = 1 and our results are plotted on Figure
5. Similarly to the REP case with o € (0, 1) detailed in Section 4.1, in the favourable setting of a low
dimension d = 10, the behavior of the REP and DREP gradient estimators predicted by (208) and (209)
respectively match as /V increases. As expected, this is no longer true as d increases.
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SNR: ¢ gradient (=10, ¢=0.2) SNR: ¢ gradient (d=100, e=0.2) SNR: ¢ gradient (d=500, e=0.2)
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Figure 5: Plotted are SNR[¢- g]\‘} ?VE; (0, ¢; )] and SNR[gzﬁk—g](\g’;i,leP) (0, ¢; x)] computed over 2000 Monte
Carlo samples for the Gaussian example described in Section 4.1 as a function of N and with € = 0.2. The
solid lines correspond to the SNRs, while the dashed lines correspond to predictions of the form (208) and
(209).

D.2 Linear Gaussian experiment from Section 4.2

We provide here additional experiments for the cases ¢ = 6, with « € [0,1) and ¢ = by with a = 0. By
Example 4: as N — oo, for all « € [0, 1),

|zt 4 Sea ) (1 4 o(1))

(4—a)d/2 12(1—a)? 2 12(1—a)e 2
(15—6a)2/1 €XP <( Y(5—2a) de 2) \/5—2a + ((5—2a)(4—a)>
24e4%—1 exp < 24d552 )

SNR[b-girn (0, ¢52)] = VMN 3/259 ! (1+0(1)) 211)
\/bk 0DREP)< . & )

We let d € {10, 100,500}, € € {0.2,1}, N € {2/,1...15}, M = 1 and our results are plotted on Figures 6
and 7. Similarly to the cases detailed in Section 4.1, in the favourable setting of a low dimension d = 10, the
behavior of the REP and DREP gradient estimators predicted by (210) and (211) respectively match as N
increases. This is no longer true as d increases. Interestingly, we see that when it comes to the learning of 6,
the SNR is not monotonic in «, which is not surprising given the numerator term ‘ 2u—bi + = Sear } appearing
in (210).

(210)

SNR[Oy-g\7n (0, ¢32)] = VMN
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