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Abstract. This work deals with image generation, two main problems
are addressed: (i ) improvements of specific feature extraction while ac-
counting at multiscale levels intrinsic geometric features, and (ii ) equiv-
ariance of the network for reducing the complexity and providing a geo-
metric interpretability. We propose a geometric generative model based
on an equivariant partial differential equation (PDE) for group con-
volution neural networks (G-CNNs), so called PDE-G-CNNs, built on
morphology operators and generative adversarial networks (GANs). The
proposed geometric morphological GAN model, termed as GM-GAN,
is obtained thanks to morphological equivariant convolutions in PDE-
G-CNNs. GM-GAN is evaluated qualitatively and quantitatively using
FID on MNIST and RotoMNIST, preliminary results show noticeable
improvements compared classical GAN.

Keywords: PDEs, Equivariance, Morphological operators, Riemannian
manifolds, Lie group, Symmetries, CNNs.

1 Introduction

Significant advances in deep learning progress are attributed to CNNs [23]. De-
spite its successful applications in many real life problems, it is still not very clear
why deep learning techniques work. Pursuing this goal, many works attempt to
give an answer to this so challenging question by setting mathematical frame-
works that underlie the process. A promising direction is to consider symmetries
as a fundamental design principle for network architectures. Among noticeable
properties in CNNs, the equivariance concerning translations played an impor-
tant role. Equivariance means that the operation of performing a transformation
of the input data then passing them through the network is the same as passing
the input data through the network and then performing a transformation of the
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output. CNNs are inherently translationally invariant; however, invariance does
not extend straightforward to other types of transformations. G-CNNs [9,3,10]
were introduced to tackle this issue by generalizing CNNs in a way such that
symmetries are incorporated and fully exploited in the learning process. Very re-
cently, PDE-G-CNNs [31,4] were proposed as PDEs-based framework based that
generalized G-CNNs. The proposed PDEs were solved by providing analytical
kernels approximations [31] and exact kernels sub-Riemannian approximations
[4]. Intensive research on equivariant operators other than transformations is
still conducted [29,20,33].
GANs [22,21] brought a new perspective to the deep learning community, deep
learning with adversarial training is considered today as one of the most ro-
bust technique. With adversarial generative networks, there exists not only a
good neural network-based classifier, referred to as the discriminator network,
but also a generative network capable of producing realistic adversarial sam-
ples, all within a single architecture. This means that we now have a network
that is aware of internal representations through its training to distinguish real
inputs from artificial ones. Many extensions have been built for increasing its
performances. Conditional GAN (CGAN) [19] was proposed as an extension of
original GAN for generating facial images on the basis of facial attributes. Deep
Convolutional GAN (DCGAN) [28] was proposed for image generation where
both the generator and discriminator networks are convolutional. GRAN [24] is
a GAN model based on a sequential process. Bidirectional GAN (BiGAN) and
extensions [12,6] were proposed to map data into a latent code similar to an au-
toencoder. Generative Multi-Adversarial Network (GMAN) [16] was proposed
for extending the minimax game to multiple players in GANs. In a different
perspective, Wasserstein Generative Adversarial Network (WGAN) [1] was in-
troduced to reduce the instability problems that occur during the training step,
and also to eliminate the mode collapse effect. GANs and variants lack an infer-
ence mechanism.
In this work4, we aim at providing noticeable improvements of former GAN
models by using a geometric approach based on equivariant operators defined in
a Lie group, and on mathematical morphology formulated in Riemannian mani-
folds. Main contributions can be summarized as follows: 1) proposition of a new
geometric generative model based on a new PDE-G-CNNs built on multiscale
morphology operators and geometric image processing techniques, 2) improve-
ments of specific feature extraction while accounting intrinsic geometric features
at multiple scales/levels, and 3) equivariance of the network resulting in a com-
plexity reduction and a geometric interpretability. Additional details and results
that did not fit into the main paper can be found in supplementary material.
The paper is organized as follows. In Section 2, we define the notion of equiv-
ariance in Lie groups and present the group invariance property on Riemannian
manifolds. In Section 3, we present the viscosity solutions for morphological
dilations and erosions formulated as Lie group morphological convolutions in

4 This work was partially supported by the ANR project Human4D ANR-19-CE23-
0020
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Riemannian manifolds. The proposed geometric generative (GM-GAN) model
in presented in Section 4. Section 5 is dedicated to numerical experiments and
comparisons with classical GAN models. The paper ends in Section 6 where
concluding remarks and perspectives are discussed.

2 Equivariance and homogeneous spaces on Riemannian
manifolds

Let M be a smooth manifold and x ∈ M . A linear mapping v : C∞(M ;R) → R
satisfying the Leibniz rule:

∀ f1, f2 ∈ C∞(M ;R) v(f1f2) = f1(x)v(f2) + v(f1)f2(x) (1)

is called a derivation at x. For all x ∈ M , the set of derivations at x forms a
real vector space of dimension d denoted TxM so called the tangent space at x;
its elements can be also called tangent vectors. In Euclidean space, an operator
satisfying (1) is the derivative along a specific direction, and this definition is a
generalization of derivatives on smooth manifolds in general.

Let G be a connected Lie group. We assume that the group G acts regularly
on the spaces P and Q, meaning that there exists regular maps ρP : G×P → P
and ρQ : G×Q → Q respectively defined for all r, h ∈ G, by:

ρP (rh, x) = ρP (r, ρP (h, x)) and ρQ(rh, x) = ρQ(r, ρQ(h, x)), (2)

making ρP and ρQ group actions on their respective spaces. In addition, we
assume that the group G acts transitively on the spaces (smooth manifolds),
meaning that for any two elements in these spaces, there exists a transformation
in G that maps them to each other. This implies that P and Q can be viewed
as homogeneous spaces.

Definition 1. A Riemannian metric on a differentiable manifold M is given by
a scalar product µ on each tangent space TxM depending smoothly on the base
point x ∈ M , that is, ∀ x ∈ M , µx : TxM × TxM → R is a symmetric, bilinear
and positive definite map, and µx varies smoothly over M .
A Riemannian manifold (M,µ) is a differentiable manifold M equipped with a
Riemannian metric µ.

Definition 2. Let G a connected Lie group with neutral element e and (M,µ) a
connected Riemannian manifold. A left action of G on (M,µ) is an application
φ : G× (M,µ) → (M,µ) satisfying:

1. φ(e, x) = x, ∀ x ∈ (M,µ).
2. φ(g, φ(h, x) = φ(gh, x), ∀ g, h ∈ G and ∀ x ∈ (M,µ).

Let φ : G× (M,µ) → (M,µ) be a left action of G on (M,µ). For a fixed g ∈ G,
we define φg : (M,µ) → (M,µ); x 7→ φg(x) = φ(g, x).
The function φ : G× (M,µ) → (M,µ) is a left action if ∀ g, h ∈ G, one has:
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φe = idM and φg ◦ φh = φgh.
Let φh : (M,µ) −→ (M,µ) be the left group action (considered here as a multi-
plication) by an element h ∈ G defined ∀ x ∈ (M,µ) by:

φh(x) = h · x. (3)

Let Lh be the left regular representation of G on functions f defined on M by
(Lhf)(x) = f(φh−1(x)), with h−1 as the inverse of h ∈ G.

We consider a layer in a neural network as an operator (from functions on M1

to functions on M2). To ensure the equivarianc of the network, we shall require
the operator to be equivariant with respect to the actions on the function spaces.

Let x0 be an arbitrary fixed point on the connected Riemannian manifold
(M,µ). Let π : G → (M,µ) be the projection defined by assigning to each
element h of G an element of (M,µ) in the following:

∀ h ∈ G π(h) = φh(x0). (4)

In other words, once a reference point x0 ∈ (M,µ) is chosen, the projection π(h)
assigns to every element h in G the unique point in (M,µ) to which h sends the
chosen reference point x0 under the action of φh given by (3).

In this work, we consider a connected Lie groupG that acts transitively on the
connected Riemannian manifold (M,µ). This means that for any points x and
y ∈ (M,µ), there exists an element h ∈ G such that φh(x) = y, corresponding
to the definition of an homogeneous space under the action of the group G.

Definition 3. Let G be a connected Lie group with homogeneous spaces M and
N . Let ϕ be an operator on functions from M to functions on N . We say that
ϕ is equivariant with respect to G if for all functions f , one has:

∀ h ∈ G, (ϕ ◦ Lh)f = (Lh ◦ ϕ)f, (5)

Let h ∈ G, x ∈ (M,µ) and TxM be the tangent space of (M,µ) at the
point x. The pushforward of the group action φh denoted (φh)∗ is defined by:
(φh)∗ : TxM → Tφh(x)M such that for all smooth functions f on (M,µ) and all
v ∈ TxM , one has: ((φh)∗v)f := v(f ◦ (φh)∗).

For all x ∈ (M,µ), we refer to G-invariance of vector fields X : x 7→ TxM if
∀ h ∈ G and for all differentiable functions f , one has X(x)f = X(φh(x))[Lhf ].

Definition 4. A vector field X on (M,µ) is invariant with respect to G if ∀ h ∈
G and ∀ x ∈ (M,µ), one has: X(φh(x)) = (φh)∗X(x).

Definition 5. A (0, 2)-tensor field µ on M is G-invariant if ∀ h ∈ G, ∀ x ∈ M
and ∀ v, w ∈ Tx(M), one has: µ|h(v, w) = µ|φh(x)((φh)∗v, (φx)∗w).

It follows from Definition 5 that properties derived from metric tensor field G
invariance and vector field G invariance are the same.
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Definition 6. Let (M,µ) a connected Riemannian manifold, x, y ∈ (M,µ). The

distance between x and y is defined as: dµ(x, y) = inf
γ ∈ Γt(x,y)

∫ t

0

√
µ|γ(t)(γ̇(t), γ̇(t))dt,

with Γt(x, y) = {γ : [0, t] −→ (M,µ) of class C1, γ(0) = x and γ(t) = y}.

Definition 7. The cut locus is defined as the set of points x ∈ M (or h ∈ G)
from which the distance map is not smooth (except at x or h).

Proposition 1. Let x, y ∈ (M,µ) such that φh(y) is away from the cut locus of
φh(x). Then, ∀ h ∈ G, one has: dµ(x, y) = dµ

(
φh(x), φh(y)

)
.

Remark 1. Staying away from the cut locus provides a unique distance in Def-
inition 6. Also, thanks to Proposition 1, dµ shares the same symmetries, since
we derive it from a tensor field invariant under G.

3 Group morphological convolutions and PDEs

Link between morphological multiscale flat erosions and PDEs was established
by running in Rn a first order Hamilton-Jacobi PDE type. Let (M,µ) be a
compact and connected Riemannian manifold endowed with a metric µ, and
f, b : (M,µ) −→ R.

Definition 8. The group morphological convolution ♢ between b and f is defined
∀ x ∈ (M,µ) by: b♢f(x) = inf

p∈G
{f(φp(x0)) + b(φp−1(x))}.

Denote TM the tangent bundle (M,µ) and L : TM → R a Lagrangian function.
Let H : T ∗M → R be the Hamiltonian associated to the Lagrangian L, H is de-
fined on the cotangent bundle T ∗M of (M,µ), H(x, q) = sup

v∈TxM
{q(v)−L(x, v)}.

The Hamilton-Jacobi PDE can be extended in Riemannian manifolds as follows:
∂tw + H (x,∇w) = 0 in (M,µ) × (0,+∞); w(·, 0) = f on (M,µ). Riemannian
multiscale operations can be performed by choosing a specific Hamiltonian, re-
spectively, H = ∥∇µw∥kµ for the multiscale dilations and H = −∥∇µw∥kµ for
multiscale erosions, and taking k > 1 allows to deal with more general structur-
ing functions than the quadratic ones.

Proposition 2. Let f ∈ C0((M,µ),R) a continuous function and let
ck = k−1

k
k

k−1
, k > 1. Viscosity solutions of the Cauchy problem:

∂w

∂t
+ ∥∇µw∥kµ = 0 in (M,µ)× (0; ∞); w(· , 0) = f on (M,µ), (6)

are given by: ft(x) = bkt♢f(x) := inf
h∈G

f
(
φh(x0)

)
+ ck

dµ
(
φh−1(x), x0

) k
k−1

t
1

k−1

,

where bkt = ck
dµ(x0, · )

k
k−1

t
1

k−1

are the multiscale structuring functions.



6 E.H.S Diop et al.

Proof. Viscosity solutions of the PDE (6) are given by HLO formulas [11]:

ft(x) = inf
y∈M

{
f(y) + ck

dµ(x, y)
k

k−1

t
1

k−1

}
. The projection π (4) is defined by asso-

ciating any h ∈ G to an element x ∈ (M,µ). Then, using the definition and
accounting the invariance property in Proposition 1, one gets:

ft(x) = inf
h∈G

{
f
(
φh(x0)

)
+ ck

dµ(x, φh(x0))
k

k−1

t
1

k−1

}

= inf
h∈G

f
(
φh(x0)

)
+ ck

dµ
(
φh−1(x), x0

) k
k−1

t
1

k−1


= inf

h∈G

{
f
(
φh(x0)

)
+ bkt

(
φh−1(x)

)}
= bkt♢f(x).⊓⊔

By reversing the time, we can prove that the viscosity solutions of the Cauchy
problem corresponding to multiscale dilations:

∂w

∂t
− ∥∇µw∥kµ = 0 in (M,µ)× (0; ∞); w(· , 0) = f on (M,µ) (7)

are given by [11]: f t(x) = sup
x∈(M,µ)

{
f(y)− Ck

dµ(x, y)
k

k−1

t
1

k−1

}
, and thus, using the

same arguments as in the preceding proof, one has: ft(x) = −(bkt♢(−f))(x).

Proposition 3. Let k > 1. For all t, s ≥ 0, the family of structuring functions
bkt satisfy the following semigroup property: bkt+s = bkt♢bks .

4 Morphological equivariant PDEs for generative models

We aim at proposing generative models for images that are based on PDEs
satisfying an equivariance property. Our approach is resumed in two major steps:
1) design of morphological PDEs in Riemannian manifolds akin to Section 3 as
alternatives for introducing non-linearities in traditional CNNs that preserve an
equivariant processing in the composition of the feature maps in layers, and 2)
proposition of a generative model based on this structure and classical GANs.

4.1 Morphological PDE-based layers

Feature maps are carried out in traditional CNNs throughout the classical con-
volution, pooling and ReLU activation functions. Our goal is to propose PDEs
that behave like traditional CNNs, in one hand, and preserve an equivariance
property, on the other hand. For that purpose, PDEs will be formulated on group
transformations to ensure equivariance and make PDEs consistent with G-CNNs
[9,3,10]. Equivariance is a robust way to incorporate desired and essential sym-
metries into the network so that there is no more need to learn such symmetries;
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consequently, the amount of data is reduced. Viewing layers as image processing
operators allows us use well elaborated image analysis and processing techniques
to design the network. Thin image analysis is needed to achieve our objective.
Due to its nonlinearity aspects, good shape and geometry description capabil-
ities, mathematical morphology appeared as an efficient and powerful tool for
multiscale image and data analysis [30]. For a better analysis of geometrical
image structures, it is also interesting to consider works from geometric image
analysis [34,17,13,5,15]. Image and data analysis and processing methods based
on non-Euclidean metrics; for instance, Riemannian metrics, are well known to
improve a lot Euclidean based approaches. Riemannian manifolds are proved
to behave very well for capturing thin data structures, providing then better
representations and analysis of geometrical structures present in the data. This
fact is shown in many image processing studies with real life applications; for
instance, in video surveillance, shape and surface analysis, human body and face
analysis, image segmentation [32,2,7,26,35,27]. For these reasons, we choose ho-
mogeneous spaces to avoid Euclidean metrics so that the network is provided
with image processing capabilities for a better handling of geometric thin struc-
tures [8,25,18,14,11]. Doing so should make feature maps richer, and combined
with the equivariance property of the morphological PDEs will provide neat
improvements of classical GANs in terms of quality of the content generation.
Morphological PDEs are thus used to replace the pooling operations and ReLU
activation functions in the proposed generative model.

4.2 PDE model design

PDE-G-CNNs were formally introduced in homogeneous spaces withG-invariance
metric tensor fields on quotient spaces [31]. Built on the primary approach, the
proposed model is based on a combination of traditional CNNs and morpho-
logical PDE layers of Hamilton-Jacobi type in Riemannian manifolds, and is
composed of the following PDEs:

• Convection:
∂w

∂t
+ αw = 0 in (M, µ)× (0, ∞); w(·, 0) = f on (M, µ).

• Diffusion:
∂w

∂t
+ (−∆µ)

k/2w = 0 in (M, µ)× (0, ∞); w(·, 0) = f on (M, µ).

• Morphological multiscale erosions and dilations for (+) and (−) sign:

∂w

∂t
± ∥∇µw∥kµ = 0 in (M, µ)× (0, ∞); w(·, 0) = f on (M, µ), (8)

where α a is vector field invariant under G on (M, µ), ∆µ represents the Laplace-
Beltrami operator, ∥·∥µ the norm induced by the Riemannian metric µ and k > 1.
The above system of PDEs consitutes the PDE model solved in a step basis using
the operator splitting method, where each step corresponds to one of the PDEs.
In this work, we only use the morphological multiscale operations steps (8),
the convection and diffusion terms are left for future work. PDEs (8) introduce
nonlinearities into the generator network of the GM-GAN using morphological
convolutions, which are obtained a viscosity sense and given respectively for
multiscale dilations and erosions thanks to Proposition 2.
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Proposition 4. Let f ∈ C∞((M, µ)) and B ⊂ (M, µ) an non-empty set. Con-
sider the flat structuring function b : (M, µ) → R ∪ {∞}. Then, one has:
− (b♢(−f)) (x) = sup

h∈G
φh−1 (x)∈B

f (φh(x0)).

The max pooling of function f with motif B can in fact be seen as a flat
morphological dilation with a structurant element B. It is truly the case for
example for Rn. Indeed, for f ∈ C0 (Rn) and B ⊂ Rn a compact set, for every
x ∈ Rn, one has:− (b♢Rn(−f)) (x) = sup

y∈B
f(x− y), where the right hand side is

in fact a flat dilation with a structurant element B.

Proposition 5. Let f ∈ C0
c ((M, µ)). Morphological dilation with the following

structuring function: b(x) = 0, if x = x0; and b(x) = sup
x∈M

f(x), otherwise, is

exactly the same as applying a ReLU to f : − (b♢(−f)) (x) = max{0, f(x)}.

4.3 Architecture of morphological equivariant PDEs based on GAN

Similarly to GAN, the proposed geometric morphological GAN (GM-GAN) is
composed of two networks: a generator (G) and a discriminator (D) which are
both multi-layer perceptrons. As detailed in the preceding section, we introduce
into the network G morphological PDE-based layers through the resolution in a
step basis of Hamilton-Jacobi PDEs (8), whose viscosity solutions are given for
multiscale erosions and dilations thanks to Proposition 2. To deal with compu-
tation issues and practical implementation of the proposed framework, we take
advantage of the geometric properties of hyperbolic spaces and generate vari-
ous and rich content on data with multiple transformations. For doing so, we
provide the distance dµ in the geodesic ball by considering the hyperbolic ball
B = {(x1, x2) ∈ R2 such that x2

1 + x2
2 < 1}, which is endowed with the metric

µ =
4(dx2

1 + dx2
2)

(1− ∥x∥2)2
, where ∥·∥ denotes the Euclidean norm in R2. The distance

is obtained as follows: dµ(x, y) = Argcosh

(
1 +

2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
.

Concave structuring functions bkt = ck
dµ(x0, · )

k
k−1

t
1

k−1

are represented in Fig. 1 for

different values of t and k in ]− 1; 1[.

GM-GAN training procedure remains the same as in traditional GANs.
Specifically, the training procedure is carried out separately but simultaneously.
The model takes as input some noise z defined with a prior probability pz, and
then, attempts to learn the distribution of the generator pg, by representing a
function G(z; θg) from z to the data space. The discriminator network D takes
an input image x and finds a function D(x; θd) from x to a single scalar, which is
the probability that the image x comes from pdata which defines the origin of the
sampled images. The output of the D network returns a value close to 1 if x is a
real image from pdata, and a value very close to 0 if x comes from pg; otherwise.
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(a) (b)

Fig. 1: bkt (x), x ∈]−1; 1[: (a) for t = 1.5 and k ∈]1; 2[. (b) for t = 0.5 and k ≥ 2.

The main objective of network D is to maximize D(x) for an image coming
from the true data distribution pdata, while minimizing D(x) = D(G(z; θg))
for images generated from pz and not from pdata. The objective of the genera-
tor G is to deceive the D network, meaning to maximize D(G(z; θg)). This is
equivalent to minimize 1−D(G(z; θg)) as D is a binary classifier. This conflict
between these objectives is called the minimax game and formulated as fol-
lows: minmaxEx∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z; θg)))]. The case
pg = pdata corresponds to the global optimum of the minimax game. Main
contributions of the proposed GM-GAN rely on the equivariance property and
non linearity characteristics brought out by group morphological convolutions
and their ability to extract thin geometrical features, which lead to richer feature
maps and a reduction of the amount training data.

For the GM-GAN generator, let x be the input data into the morphological
layer called Morphoblock. Then, x goes first through a multiscale morphological
erosion operation, followed by a multiscale morphological dilation. Afterwards,
both erosion and dilation are followed by a linear convolution. The output of the
PDE layer is obtained by a linear combination of the two outputs. The overall
architecture of the GM-GAN generator is illustrated in Fig. 2.

5 Numerical experiments

GM-GAN and GAN are applied to MNIST dataset. MNIST database consists
of 70, 000 black-and-white 28x28 images that represent handwritten digits from
0 to 9. It is divided into a training set of 60, 000 images and a test set of 10, 000
images. Same training parameters are set for GM-GAN and GAN: number of
epochs to 200, the batch size to 64, the latent space dimensionality to 100, and
the interval between image samples to 400. Generated images with GM-GAN
and GAN are displayed in Fig. 3 showing higher generation quality with GM-
GAN in comparison to traditional GAN. This can be seen by comparing images
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Fig. 2: Architecture of GM-GAN generator.

produced at epochs 70 to 95 with GM-GAN (Figs. 3a, 3e, 3i, 3m and 3q) and
those generated with GAN at same epochs (Figs. 3b, 3f, 3j, 3n and 3r). For
instance, some digits are clearly identifiable with GM-GAN based generation,
whereas it is almost impossible to recognize the digits with GAN based ones.
We also observe that the images generated with GM-GAN at epochs going from
100 to 120 (Figs. 3c, 3g, 3k, 3o and 3s) are of better quality than generated ones
with GAN for the last five epochs going from epoch 195 to 199 (Figs. 3d, 3h,
3l, 3p and 3t). To better discriminate that fact, we zoom in on some areas in
images generated at epochs 85, 92 and 96 (Figs. 4-(a)-(b), (c)-(d) and (e)-(f);
respectively), and highlight the realistic variations between the generated images
of the same digit. This indicates that GM-GAN has a deeper understanding of
the sample characteristics and is capable of generalizing them beyond the specific
examples they are trained on. This can be observed in Fig. 4-(b) with digits 3
and 6, in Fig. 4-(d) with digits 2 and 8, and in Fig. 4-(f) with digits 9 and 7.

GM-GAN complexity is also reduced throughout the equivariance property
by eliminating the need to learn symmetries. This is illustrated by reducing
MNIST training dataset by a half and comparing generated images at epoch
42. GM-GAN results (Fig. 5a) show again better image quality and high varia-
tions of generated digits in comparison to GAN (Fig. 5b). Results highlight the
importance of equivariance in morphological operators, turning out to dataset
reduction without significantly impacting generation results (see Fig. 5c for GM-
GAN and Fig. 5d for images generated at the same epoch using the hole dataset).

To highlight again the usefulness of morphological equivariant operators, we
apply both GM-GAN and GAN models on RotoMNIST; generated images are
displayed in Fig. 6. It can be seen in results obtained with GM-GAN from epoch
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(a) GM-GAN: 75 (b) GAN: 75 (c) GM-GAN: 100 (d) GAN: 195

(e) GM-GAN: 80 (f) GAN: 80 (g) GM-GAN: 105 (h) GAN: 196

(i) GM-GAN: 85 (j) GAN: 85 (k) GM-GAN: 110 (l) GAN: 197

(m) GM-GAN:90 (n) GAN: 90 (o) GM-GAN: 115 (p) GAN: 198

(q) GM-GAN: 95 (r) GAN: 95 (s) GM-GAN: 120 (t) GAN: 199

Fig. 3: Image generation using MNIST: GM-GAN vs. GAN.
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Epoch 85 Epoch 85

Epoch 85

Epoch 85

(a) (b)

Epoch 92 Epoch 92

Epoch 92

Epoch 92

(c) (d)

Epoch 96 Epoch 96

Epoch 96

Epoch 96

(e) (f)

Fig. 4: Zoom in on images generated with GM-GAN at different epochs.

(a) GM-GAN(1/2) (b) GAN(1/2) (c) GM-GAN (d) GAN

Fig. 5: GM-GAN vs. GAN at epoch 42 with half (1/2) and whole MNIST dataset.
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70 to 95 (Figs. 6a, 6e, 6i, 6m, and 6q) that digits are clearly identifiable and
far better than those generated with GAN at the same epochs (Figs. 6b, 6f, 6j,
6n, and 6r) where digits are barely formed. The same is noticed with GM-GAN
from epoch 100 to 120 (Figs. 6c, 6g, 6k, 6o, and 6s), in comparison with GAN
for the last 5 epochs (Figs. 6d, 6h, 6l, 6p, and 6t). This demonstrates that GM-
GAN is more suitable for data under rotation transformations, and highlights
one more time the importance of equivariance for generating satisfactory results
under various transformations.

Quantitative evaluations are provided using the Fréchet Inception Distance
(FID). A low FID indicates a high similarity between generated and real data,
corresponding to good generation quality. In Fig. 7, we present the FID curves
of both models over epochs (taking FID of generated images at intervals of 10
epochs) on both MNIST and RotoMNIST datasets. It can be seen that starting
from epoch 40, FIDs of GM-GAN generated results are significantly lower than
ones generated using GAN, which confirms the qualitative results discussed just
above.

6 Conclusion and perspectives

We have proposed here a geometric generative GM-GAN model based on PDE-
G-CNNs and built from derived equivariant morphological operators and ge-
ometric image processing techniques. The proposed equivariant morphological
PDE layers are composed of multiscale dilations and erosions without any need
to approximate convolutions kernels, and meanwhile, group symmetries are de-
fined on Lie groups allowing a geometrical interpretability of GM-GAN with left
invariance properties. As shown by preliminary results on MNIST and RotoM-
NIST datasets, preliminary qualitative and quantitative results show noticeable
improvements compared classical GAN. Indeed, thin image features are better
extracted by accounting intrinsic geometric features at multiscale levels, and
the network complexity is reduced. The proposed approach can be extended to
various generative models. Future works include applying GM-GAN on other
datasets, designing fully equivariant generative models entirely based on PDE-
G-CNNs, and studying GM-GAN complexity to demonstrate the computational
advantages of the proposed model over classical GAN.
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