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Abstract

Bivariate P -polynomial association scheme of type (α, β) are defined as a
generalization of the P -polynomial association schemes. This generaliza-
tion is shown to be equivalent to a set of conditions on the intersection
parameters. A number of known higher rank association schemes are
seen to belong to this broad class. Bivariate Q-polynomial association
schemes are similarly defined.

1 Introduction

This paper is devoted to the generalization of the notion of P -polynomial association scheme to the case
where the monovariate polynomials appearing in the definition of the latter are replaced by bivariate
polynomials. Numerous examples of bivariate P -polynomial association schemes are provided.
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Let us recall the usual definitions. The set Z = {A0, . . . , AN} is a symmetric association scheme with
N classes if the matrices Ai, called adjacency matrices, are non-zero v × v matrices with 0 and 1 entries
satisfying:

(i) A0 = I where I is the v × v identity matrix;

(ii)

N∑

i=0

Ai = J where J is the v× v matrix filled with 1;

(iii) At
i = Ai for i = 0, 1, . . . N and .t stands for the transpose;

(iv) The following relations hold

AiAj = AjAi =
N∑

k=0

pkijAk, (1.1)

where pkij are constants called intersection numbers.

This notion plays a role in various contexts. It appears in the theory of experimental design for the analysis
of variance [5, 1] and arises in the context of algebraic combinatorics and, in particular, in combinatorial
designs and coding theory [2, 14]. It also generalizes the character theory of representations of groups
[1, 37]. Indeed the matrices Ai of an association scheme generate a commutative algebra, called Bose–
Mesner algebra, which is related to the notion of character algebra.

Association schemes are very general structures far from being completely understood and classified.
However, for a subclass of association schemes called P -polynomial, many connections with other top-
ics allow a deeper understanding. For instance, matrices of a P -polynomial association scheme are in
correspondence with distance matrices of distance-regular graphs. They also satisfy by definition,

Ai = vi(A1) for i = 0, 1, . . . , N, (1.2)

where vi are polynomials of degree i known to verify a three-term recurrence relation. As such, they give
by Favard’s theorem a set of orthogonal polynomials. Imposing further that the association scheme is
Q-polynomial, these polynomials vi must belong to the Askey scheme [22, 2].

There exist many multivariate generalizations of the polynomials of the Askey scheme (see [16, 34, 12,
13, 18, 7, 17]). Some of these polynomials appear already in the context of association schemes, in the
expression of the eigenvalues of the adjacency matrices [8, 24, 25, 4, 28, 21]. The goal of this paper consists
in generalizing the notion of P -polynomial association schemes to a larger subclass of association schemes
such that these multivariate polynomials appear naturally. We focus in this paper on the case of bivariate
polynomials even if we believe that the case of multivariate polynomials can be treated similarly. In Section
2.1, the bivariate P -polynomial association scheme is defined. More precisely, we give the definition of a
bivariate P -polynomial association scheme of type (α, β). The notion of type (α, β) corresponds to a
feature of the bivariate polynomials which is also defined in Section 2.1. Then, in Section 2.2, we define the
notion of (α, β)-metric association scheme imposing constraints on the intersection numbers and show that
this notion is equivalent to be a bivariate P -polynomial association scheme of type (α, β). This implies
that the bivariate polynomials satisfy certain recurrence relations. Section 2.3 recalls the construction of
the idempotents. In Section 3, different examples are treated in detail. We show that the direct product of
association schemes, the symmetrization of association schemes, the 24-cell, the non-binary Johnson scheme
and association schemes based on isotropic or attenuated spaces are bivariate P -polynomial association
schemes. In Section 4, the definition of bivariate Q-polynomial association scheme is provided. The
symmetrization of association schemes is shown to also provide bivariate Q-polynomial association schemes
as well. Section 5 concludes this paper with some perspectives.
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2 Bivariate P -polynomial association schemes

2.1 Definition of bivariate P -polynomial association schemes

This section provides the main definitions and, in particular, the definition of a bivariate P -polynomial
association scheme of type (α, β). Firstly, the notion of degree for a bivariate polynomial is introduced. In
the following, we use the total order deg-lex on the monomials denoted ≤ and defined by

xmyn ≤ xiyj ⇔





m+ n < i+ j

or

m+ n = i+ j and n ≤ j .

(2.1)

The degree, associated to the total order deg-lex, of a polynomial v(x, y) in two variables x and y is the
couple (i, j) such that xiyj is the greatest monomial in v(x, y).

Secondly, the polynomials playing an important role in the following have more structure. Let us
introduce the partial order on monomials

xmyn �(α,β) x
iyj ⇔





m+ αn ≤ i+ αj

and

βm+ n ≤ βi+ j ,

(2.2)

where 0 ≤ α ≤ 1 and 0 ≤ β < 1. The previous constraints on the parameters α and β have been chosen
such that if xmyn �(α,β) x

iyj then xmyn ≤ xiyj . Note that we have obviously

xmyn �(α,β) x
iyj ⇔ xm+1yn �(α,β) x

i+1yj ⇔ xmyn+1 �(α,β) x
iyj+1 . (2.3)

We shall use the same symbol �(α,β) to also order pairs in N2. Examples of subsets of points (m,n) smaller
than (i, j) are displayed in Figure 1 for different values of the parameters α and β.
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(a) (α, β) = (0, 0) (b) (α, β) = (1
2
, 0) (c) (α, β) = (1, 0) (d) (α, β) = (1

2
, 1
2
)

Figure 1: The points in the gray zone correspond to couple of integers (m,n) smaller than (i, j) for �(α,β)

and for different values of α and β.

Thirdly, this leads to the following two definitions for bivariate polynomials and subsets of N2.

Definition 2.1. A bivariate polynomial v(x, y) is called (α, β)-compatible of degree (i, j) if the monomial
xiyj appears and all other monomials xmyn appearing are smaller than xiyj for the order �(α,β).
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Definition 2.2. A subset D of N2 is called (α, β)-compatible if for any (i, j) ∈ D, one gets
(
xmyn �(α,β) x

iyj
)
⇒
(
(m,n) ∈ D

)
. (2.4)

In words, Definition 2.2 means that for (i, j) ∈ D, all (m,n) such that (m,n) �(α,β) (i, j) are also in D if
the subset D is (α, β)-compatible, i.e. that D is a downset of (N2,�(α,β)).

Finally, we are in position to generalize the notion of P -polynomial association scheme.

Definition 2.3. Let D ⊂ N2, 0 ≤ α ≤ 1, 0 ≤ β < 1 and �(α,β) be the order (2.2). The association scheme
Z is called bivariate P -polynomial of type (α, β) on the domain D if these two conditions are satisfied:

(i) there exists a relabeling of the adjacency matrices:

{A0, A1, . . . , AN} = {Amn | (m,n) ∈ D}, (2.5)

such that, for (i, j) ∈ D,
Aij = vij(A10, A01) , (2.6)

where vij(x, y) is a (α, β)-compatible bivariate polynomial of degree (i, j);

(ii) D is (α, β)-compatible.

Let us remark that the previous definition can also be given for other choices of the orders ≤ and
�(α,β). However, all the examples we found (see Section 3) are in agreement with the definition given here.
Let us also remark that the choice of (α, β) is not unique. In the following, we always choose α and β
as the smallest possible parameters. Finally, note that for simplicity we will sometimes omit mentioning
explicitly the domain D when discussing bivariate P -polynomial association schemes.

There are direct consequences of the previous definition:

• The cardinality of D is equal to N + 1;

• A00 = I,
∑

(i,j)∈D

Aij = J;

• A10 and A01 generate the Bose–Mesner algebra;

• v00(x, y) = 1, v10(x, y) = x and v01(x, y) = y;

• all monomials xmyn with non-zero coefficient appearing in vij(x, y) are such that (m,n) ∈ D.

The bivariate polynomials vij appearing in Definition 2.3 satisfy properties that are summarized in the
following proposition and lemma.

Proposition 2.4. Let Z be a bivariate P -polynomial association scheme of type (α, β) on the domain
D ⊂ N2. Then, for all (i, j) ∈ D, the polynomial vij(x, y) satisfying equation (2.6) is unique.

Proof. From the consequences listed above, for all (i, j) ∈ D the polynomial vij(x, y) of equation (2.6)
is a linear combination of the monomials xmyn with (m,n) ∈ D. Therefore, the Bose–Mesner algebra
of the association scheme Z is linearly generated by the matrices Am

10A
n
01 with (m,n) ∈ D. Since the

cardinality of D is equal to the dimension of the Bose–Mesner algebra, this generating set is linearly
independent. Suppose now that there is another (α, β)-compatible bivariate polynomial of degree (i, j)
v′ij(x, y) 6= vij(x, y) such that Aij = v′ij(A10, A01). Since the monomials xmyn are linearly independent,
this implies that there is a linear relation between the matrices Am

10A
n
01 for (m,n) ∈ D, which contradicts

their linear independence.
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Lemma 2.5. Let vij(x, y) be the bivariate polynomials associated to a bivariate P -association scheme of
type (α, β) on D ⊂ N2. For (i, j) ∈ D, there exist constants µmn

ij and νmn
ij such that

xvi−1,j(x, y) =
∑

(m,n)�(α,β)(i,j)

µmn
ij vmn(x, y), (i ≥ 1) (2.7)

yvi,j−1(x, y) =
∑

(m,n)�(α,β)(i,j)

νmn
ij vmn(x, y), (j ≥ 1). (2.8)

Proof. Let (i, j) ∈ D. Any couple (m,n) such that (m,n) �(α,β) (i, j) is also in D by (ii) of Definition 2.3.
Then, by the fact that vmn(x, y) are (α, β)-compatible, the only monomials appearing in all the polynomials
vmn(x, y) for (m,n) �(α,β) (i, j) are xmyn for (m,n) �(α,β) (i, j). Therefore, one gets

span(vmn(x, y) | (m,n) �(α,β) (i, j)) = span(xmyn | (m,n) �(α,β) (i, j)). (2.9)

Remarking that all the monomials xmyn present in xvi−1,j(x, y) satisfy the condition (m,n) �(α,β) (i, j)
(see relation (2.3)) and using (2.9), one gets the equality (2.7). Relation (2.8) is proven similarly.

2.2 (α, β)-metric association scheme

It is well-known that for an association scheme the P -polynomial property is equivalent to the metric one,
i.e. that the intersection numbers satisfy the following constraints:

• pj+1
1j 6= 0 and pj−1

1j 6= 0,

•

(
pkij 6= 0

)
⇒ (|i− j| ≤ k ≤ i+ j).

For a bivariate P -polynomial association scheme, the intersection numbers read as follows

AijAkℓ =
∑

(m,n)∈D

pmn
ij,kℓAmn. (2.10)

This subsection aims to generalize the metric notion to bivariate P -polynomial association schemes.
If the polynomials vij are the bivariate polynomials associated to a bivariate P -polynomial association

scheme of type (α, β), the intersection numbers corresponding to this association scheme are constrained
as explained in the following proposition.

Proposition 2.6. Let Z = {Aij | (i, j) ∈ D} be an association scheme. The statements (i) and (ii) are
equivalent:

(i) Z is a bivariate P -polynomial association scheme of type (α, β) on D;

(ii) D is (α, β)-compatible and the intersection numbers satisfy, for (i, j), (i + 1, j) ∈ D,

pi+1,j
10,ij 6= 0, pi,j10,i+1j 6= 0, (2.11)

pmn
10,ij 6= 0

(
or pij10,mn 6= 0

)
⇒ (m,n) �(α,β) (i+ 1, j), (2.12)

and, for (i, j), (i, j + 1) ∈ D,

pi,j+1
01,ij 6= 0, pi,j01,ij+1 6= 0, (2.13)

pmn
01,ij 6= 0

(
or pij01,mn 6= 0

)
⇒ (m,n) �(α,β) (i, j + 1). (2.14)

5



Proof. (i) ⇒ (ii): From Lemma 2.5, relation (2.7) holds and replacing x and y by A10 and A01 in it, one
gets, for (i, j) ∈ D:

A10Ai−1j =
∑

(m,n)�(α,β)(i,j)

αmn
ij Amn, (i ≥ 1). (2.15)

Comparing this equation with (2.10) and knowing that the matrices Aij are independent, the following
constraints on pmn

ij,kℓ hold:

pij10,i−1j 6= 0 and
(
pmn
10,i−1j 6= 0

)
⇒

(
(m,n) �(α,β) (i, j)

)
. (2.16)

Since the association scheme is symmetric, the intersection numbers satisfy the following symmetry prop-
erty: pmn

10,ij = 0 ⇔ pij10,mn = 0. This leads to relations (2.11) and (2.12). Relations (2.13) and (2.14) are
proven similarly starting from relation (2.8) of Lemma 2.5.
(ii) ⇒ (i): We use induction on ≤ to check that Aij = vij(A10, A01) with vij being (α, β)-compatible of
degree (i, j). It is immediate for i+ j = 1. Now assume that i ≥ 1. Then we have, using (2.12),

A10Ai−1,j = pij10,i−1jAij +
∑

(m,n)�(α,β)(i,j)

pmn
10,i−1jAmn . (2.17)

Condition (2.11) ensures that Aij appears with a non-zero coefficient, so that this relation can be used for
expressing Aij in terms of A10Ai−1,j and Amn with (m,n) �(α,β) (i, j). Since (m,n) �(α,β) (i, j) implies
(m,n) ≤ (i, j), we can use the induction hypothesis on those Amn and clearly also on Ai−1,j. So we have
that Aij is expressed as a polynomial vij(x, y) evaluated in A10, A01. Since x

i−1yj appears with a non-zero
coefficient in vi−1,j , we have that x

iyj appears with a non-zero coefficient in vij(x, y). The fact that vij(x, y)
is indeed (α, β)-compatible follows now easily from the transitivity of �(α,β) and the property (2.3). If
i = 0, we can then assume that j ≥ 1 and use the same argument starting from A01Ai,j−1, using now
conditions (2.13)-(2.14).

For different choices of α and β corresponding to the ones shown in Figure 1, the domains where
pmn
10,ij and pmn

01,ij may be non-zero are displayed in Figure 2. Note that by (2.10), the constraints on the
intersection numbers given in item (ii) of Proposition 2.6 can be equivalently viewed as constraints on the
terms Amn with (m,n) ∈ D appearing in the products A10Aij and A01Aij . The expansions of these two
products in terms of the matrices Amn correspond to the recurrence relations satisfied by the bivariate
polynomials vij . One can read the type of these recurrence relations in Figure 2. Indeed, for example the
case displayed in Figure 2b corresponds to the recurrence relations of the form:

x vij(x, y) = pi+1j
10,ij vi+1j(x, y) + pij10,ij vij(x, y) + pi−1j

10,ij vi−1j(x, y), (2.18)

y vij(x, y) = pij+1
01,ij vij+1(x, y) + pij01,ij vij(x, y) + pij−1

01,ij vij−1(x, y)

+pi−1j+1
01,ij vi−1j+1(x, y) + pi+1j−1

01,ij vi+1j−1(x, y). (2.19)

This proposition leads to the following definition.

Definition 2.7. The association scheme Z = {Aij | (i, j) ∈ D} is called (α, β)-metric inside the domain D
if D is (α, β)-compatible and if the associated intersection numbers pmn

ij,kℓ satisfy the conditions (2.11)-(2.14).

With the above definition, Proposition 2.6 can be reformulated like this: an association scheme is
(α, β)-metric on D if and only if it is bivariate P -polynomial of type (α, β) on D.
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Figure 2: The coordinate (m,n) of the dots in the graphs at the top (resp. bottom) line represent when
pmn
10,ij (resp. pmn

01,ij) may be non-zero for different values of (α, β).

2.3 Eigenvalues and idempotents

Let Z = {Aij | (i, j) ∈ D} be a bivariate P -association scheme of type (α, β). Since the matrices Aij are
pairwise commuting, they can be diagonalized in the same basis. The vector space V of dimension v, on
which the adjacency matrices act, can be decomposed as follows

V =
⊕

λ∈D⋆

Vλ , (2.20)

where D⋆ is a set of labels with the same cardinality as D (i.e. |D⋆| = |D|) and Vλ is a common eigenspace
for all the matrices Aij . D⋆ denotes a choice of labelling for the common eigenspace and will mostly be
a subset of N2 in the following sections. That |D⋆| = |D| corresponds to the fact that the matrices Aij

are linearly independent. Since the sum of Aij is equal to J, the common eigenspace containing the vector
(1, 1, . . . , 1) is of dimension 1. So we can take λ0 ∈ D⋆ with Vλ0 = span(1, 1, . . . , 1).

As usual in the context of association schemes, we denote by Eλ with λ ∈ D⋆ the projector on the
corresponding eigenspace: EλV = Vλ. They satisfy

EλEλ′ = δλ,λ′Eλ ,
∑

λ∈D⋆

Eλ = I , Eλ0 =
1

v
J, (2.21)

Aij =
∑

λ∈D⋆

pij(λ)Eλ , (2.22)

with pij(λ) the eigenvalues of Aij in the subspace Vλ. The idempotents Eλ also form a basis of the
Bose–Mesner algebra.
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With θλ = p10(λ) and µλ = p01(λ) the eigenvalues of A10 and A01, respectively, one gets

A10Eλ = θλEλ , A01Eλ = µλEλ . (2.23)

Since A10 and A01 generate the whole Bose–Mesner algebra, their eigenvalues characterize the eigenspaces
Vλ i.e. the couples (θλ, µλ), λ ∈ D⋆, are different pairwise.

Proposition 2.8. The eigenvalues pij(λ) associated to a bivariate P -polynomial association scheme of
type (α, β) satisfy

pij(λ) = vij(θλ, µλ) , (2.24)

where vij(x, y) is the bivariate polynomial of Definition 2.3.
Reciprocally, if an association scheme {Aij | (i, j) ∈ D} with D (α, β)-compatible has eigenvalues

satisfying (2.24) where vij(x, y) is a bivariate polynomial (α, β)-compatible of degree (i, j), this scheme is
a bivariate P -polynomial association scheme of type (α, β).

Proof. This result is a direct consequence of equation (2.22) and Aij = vij(A10, A01).

Relation (2.22) can be inverted and one gets

Eλ =
1

v

∑

(i,j)∈D

qλ(ij)Aij . (2.25)

The parameters qλ(ij) are called dual eigenvalues.

3 Examples of bivariate P -polynomial association schemes

It is obvious that all the association schemes with two classes A0, A1, A2 are bivariate P -polynomial by
setting A10 = A1 and A01 = A2. In the following subsections, a number of examples are given.

3.1 Direct product of P -polynomial association schemes

Let A0, . . . , AD define an association scheme with intersection numbers pkij and let Ã0, . . . , ÃD̃
provide

another association scheme with intersection numbers p̃kij. The direct product is the association scheme
defined by the Kronecker product of matrices:

Aij = Ai ⊗ Ãj , for (i, j) ∈ {0, . . . ,D} × {0, . . . , D̃} . (3.1)

Its intersection numbers are pmn
ij,kl = pmik p̃

n
jl.

Assume that both association schemes are P -polynomial, so that we have:

Ai = vi(A1) and Ãj = ṽj(Ã1) , (3.2)

where vi (respectively, ṽj) is a polynomial of degree i (respectively, of degree j). We obtain immediately
that the direct product is a bivariate P -polynomial association scheme of type (0, 0), since we have:

Aij = vij(A10, A01) , where vij(x, y) = vi(x)ṽj(y). (3.3)

The recurrence relations are given by

A10Aij = pi−1
1i Ai−1,j + pi1iAij + pi+1

1i Ai+1,j , (3.4)

A01Aij = p̃j−1
1j Ai,j−1 + p̃j1jAij + p̃j+1

1j Ai,j+1 . (3.5)

8



3.2 Symmetrization of association scheme with two classes

In [8, 25], the symmetrization of an association scheme has been defined and it has been shown that
the expressions of the eigenvalues of the associated adjacency matrices are given by the multivariate
Krawtchouk polynomials. We shall show that the symmetrization of an association scheme with two classes
is a bivariate P -polynomial association scheme of type (1/2, 1/2). Note that any association scheme with
two classes has the property of being (monovariate) P -polynomial and is equivalent to a strongly regular
graph [15].

Let us recall the definition of the symmetrization. Let A0, A1 and A2 define a P -polynomial association
scheme whose associated matrices Li, with entries (Li)hj = phij , read as follows (see e.g. [15])

L1 =



0 k 0
1 k − 1− b b
0 c k − c


 , L2 =



0 0 bk

c

0 b bk
c
− b

1 k − c bk
c
− 1− k + c


 . (3.6)

The matrices Ai are v× v matrices with

v =
k(b+ c) + c

c
. (3.7)

Let us define Aij by

J(x) = (A0 + x1A1 + x2A2)
⊗N =

N∑

i,j=0
i+j≤N

Aij xi1x
j
2, (3.8)

where x1, x2 are abstract indeterminates. The set {Aij | i, j ≥ 0, i+j ≤ N}, which is called symmetrization,
defines an association scheme [8].

An explicit form for the matrix Aij is the following:

Aij =
1

i!j!(N − i− j)!

∑

π∈SN

π · A⊗i
1 ⊗A⊗j

2 ⊗A⊗N−i−j
0 , (3.9)

where the sum is over all the place permutations, and the prefactor ensures that each term appears only
once. The sum over permutations π in SN is the symmetrizer; it commutes with any Aij and, in particular,
with A10 and with A01. A direct computation, with careful consideration of the prefactors, leads to

A10Aij = k(N − i− j + 1)Ai−1,j +
(
i(k − 1− b) + j(k − c)

)
Aij + (i+ 1)Ai+1,j

+c(j + 1)Ai−1,j+1 + b(i+ 1)Ai+1,j−1 , (3.10)

A01Aij =
bk

c
(N − i− j + 1)Ai,j−1 +

(
bi+ j(

bk

c
− 1− k + c)

)
Aij + (j + 1)Ai,j+1

+(j + 1)(k − c)Ai−1,j+1 + (i+ 1)(
bk

c
− b)Ai+1,j−1 . (3.11)

From the previous results, we conclude that we have a bivariate P -polynomial association scheme of type
(1/2, 1/2) (see Figure 1d) and (1/2, 1/2)-compatible polynomials vij of degree (i, j) such that

Aij = vij(A10, A01) , for any i, j with i+ j ≤ N . (3.12)

Remark 3.1. If c = k then two terms cancel in the second recurrence relation. In this case, the association
scheme is bivariate P -polynomial of type (0, 1/2).
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Example 3.2. The scheme associated to the symmetrization of the Hamming scheme is called the ordered
Hamming scheme [4, 24]. Let us recall that the Hamming scheme H(2, q) corresponds to

k = 2(q − 1) , b = q − 1 , c = 2 .

Then the recurrence relations of the ordered Hamming scheme become:

A10Aij = 2(q − 1)(N − i− j + 1)Ai−1,j + (q − 2)(i + 2j)Aij + (i+ 1)Ai+1,j

+2(j + 1)Ai−1,j+1 + (q − 1)(i + 1)Ai+1,j−1 , (3.13)

A01Aij = (q − 1)2(N − i− j + 1)Ai,j−1 +
(
i(q − 1) + j(q − 2)2)

)
Aij + (j + 1)Ai,j+1

+2(j + 1)(q − 2)Ai−1,j+1 + (i+ 1)(q − 1)(q − 2)Ai+1,j−1 . (3.14)

For q = 2, the second relation becomes a three-term recurrence relation (see the preceding remark).

We now compute the eigenvalues of Aij . For an association scheme with 2 classes, one gets [15]

A0 = E0 + E1 + E2 , (3.15)

A1 = kE0 + θE1 + τE2 , (3.16)

A2 = (v − 1− k)E0 − (θ + 1)E1 − (τ + 1)E2 , (3.17)

where the eigenvalues θ and τ are related to the parameters b and c as follows

b = −(θ + 1)(τ + 1), c = k + θτ, v =
k(b+ c) + c

c
. (3.18)

Now, for (i, j) ∈ D one can consider the matrices Eij defined by

Eij =
1

i!j!(N − i− j)!

∑

π∈SN

π · E⊗i
1 ⊗ E⊗j

2 ⊗ E⊗N−i−j
0 , (3.19)

and observe that they are the projectors onto the eigenspaces of A10 and A01 associated to eigenvalues θij
and µij:

A10Eij = θijEij , A01Eij = µijEij , (3.20)

where

θij = (N − i− j)k + iθ + jτ, µij = (N − i− j)
kb

c
− i(θ + 1)− j(τ + 1). (3.21)

Let us take D∗ = D and rewrite the generating function J(x) (3.8) using the idempotents Ei

J(x) = (1 + kx1 +
kb

c
x2)

N

(
E0 +

1 + θx1 − (θ + 1)x2

1 + kx1 +
kb
c
x2

E1 +
1 + τx1 − (τ + 1)x2

1 + kx1 +
kb
c
x2

E2

)⊗N

. (3.22)

By remarking that (E0 +X1E1 +X2E2)
⊗N =

∑
i+j≤N Xi

1X
j
2Eij, one gets

J(x) =
∑

i+j≤N

(1 + kx1 +
kb

c
x2)

N−i−j(1 + θx1 − (θ + 1)x2)
i(1 + τx1 − (τ + 1)x2)

jEij . (3.23)
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Using relations (2.22) and (2.24), one finds another expression for J(x):

J(x) =
∑

i+j≤N




∑

m+n≤N

vmn(θij , µij) x
m
1 xn2


Eij . (3.24)

Comparing both expressions of J(x), the generating functions of the polynomials vij are obtained:

∑

m+n≤N

vmn(θij , µij) x
m
1 xn2 = (1 + kx1 +

kb

c
x2)

N−i−j(1 + θx1 − (θ + 1)x2)
i(1 + τx1 − (τ + 1)x2)

j . (3.25)

The R.H.S. of this relation can be identified with the generating function of the bivariate Krawtchouk
polynomials (see e.g. [11]):

vmn(θij , µij) =

√
N !

(N −m− n)!m!n!

(√
k
)m
(√

kb

c

)n

Pmn(i, j;N). (3.26)

The functions Pmn(i, j;N) defined in [11] are proportional to the bivariate Krawtchouk polynomials [18,
20, 19] and are defined from a matrix R of SO(3) which reads as follows in terms of the parameters used
here

R =




θ
√

τ+1
(τ−θ)(k−θ)

√
(θ+1)(τθ+k)
(θ−τ)(k−θ)

√
k(τ+1)

(τ−θ)(k−θ)

−τ
√

θ+1
(τ−θ)(τ−k)

√
(τ+1)(τθ+k)
(τ−θ)(k−τ) −

√
k(θ+1)

(τ−θ)(τ−k)√
k(τθ+k)

(k−θ)(k−τ)

√
k(θ+1)(τ+1)
(θ−k)(k−τ)

√
τθ+k

(k−θ)(k−τ)


 . (3.27)

Let us remark that the recurrence relations (3.10)-(3.11) of vmn(x, y) can be recovered from the ones of
Pmn(i, j;N) given in [11].

3.3 A generalized 24−cell

In [23] (see Theorem 3.6), an association scheme with 4 classes which generalizes the 24-cell is studied. It
is proven that it is Q-polynomial but not P -polynomial. We shall show that it is bivariate P -polynomial.
The matrices Li, with entries (Li)kj = pkij, are given by L0 = I5,

L1 =




0 16ℓs2 0 0 0
1 2(ℓ− 1)s(4s + 1) (4s − 1)(4s + 1) 2(ℓ− 1)s(4s − 1) 0
0 8ℓs2 0 8ℓs2 0
0 2(ℓ− 1)s(4s − 1) (4s − 1)(4s + 1) 2(ℓ− 1)s(4s + 1) 1
0 0 0 16ℓs2 0




, (3.28)

L2 =




0 0 2(4s − 1)(4s + 1) 0 0
0 (4s− 1)(4s + 1) 0 (4s − 1)(4s + 1) 0
1 0 32s2 − 4 0 1
0 (4s− 1)(4s + 1) 0 (4s − 1)(4s + 1) 0
0 0 2(4s − 1)(4s + 1) 0 0




, (3.29)

L3 =




0 0 0 16ℓs2 0
0 2(ℓ− 1)s(4s − 1) (4s − 1)(4s + 1) 2(ℓ− 1)s(4s + 1) 1
0 8ℓs2 0 8ℓs2 0
1 2(ℓ− 1)s(4s + 1) (4s − 1)(4s + 1) 2(ℓ− 1)s(4s − 1) 0
0 16ℓs2 0 0 0




, (3.30)
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and

L4 =




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




. (3.31)

The fact that this scheme is not P -polynomial reads in the fact that L1 is not tridiagonal. Let us define

A00 = A0 , A10 = A2 , A01 = A3 , A11 = A1 , A20 = A4 . (3.32)

By direct computation (we recall that Ai and Li satisfy the same relations), these matrices satisfy

A11 =
1

(4s− 1)(4s + 1)
A01A10 −A01, (3.33)

A20 =
1

2(4s − 1)(4s + 1)
A2

10 −
2(8s2 − 1)

(4s− 1)(4s + 1)
A10 −A00. (3.34)

This demonstrates that it is a bivariate P -polynomial association scheme of type (0, 0) (see Figure 1a).

3.4 Non-binary Johnson association scheme

The non-binary Johnson scheme is a generalization of the Johnson scheme which has eigenvalues that can
be expressed in terms of bivariate polynomials formed of Krawtchouk and Hahn polynomials [9, 28]. We
show here that it is a bivariate P -polynomial association scheme of type (1, 0).

We start by recalling the definition of the non-binary Johnson scheme, which can be found in [28]. Let
K = {0, 1, 2, . . . , r − 1}, where r is an integer greater than 1 (r ≥ 2), and consider the n-fold Cartesian
product Kn, where n is a positive integer. For a vector x in Kn with components xi, the weight w(x) is
defined as the number of non-zero components of x, that is

w(x) =
∣∣{i | xi 6= 0}

∣∣. (3.35)

For two vectors x,y ∈ Kn, the number of equal non-zero components e(x,y) and the number of common
non-zeros c(x,y) are also defined:

e(x,y) =
∣∣{i | xi = yi 6= 0}

∣∣, c(x,y) =
∣∣{i | xi 6= 0, yi 6= 0}

∣∣. (3.36)

Consider a fixed weight number k. Note that we must have 0 ≤ k ≤ n by definition (3.35). The set

X = {x ∈ Kn | w(x) = k} , (3.37)

together with all the non-empty relations1

Rij = {(x,y) ∈ X2 | e(x,y) = k − i− j, c(x,y) = k − j} , (3.38)

define a symmetric association scheme called the non-binary Johnson scheme and denoted Jr(k, n), follow-
ing the notation of [28]. From this definition, one can construct the adjacency matrices Aij of the non-binary
Johnson scheme. These are |X| × |X| matrices whose entries, labeled by the couples (x,y) ∈ X2, take
the value one if (x,y) ∈ Rij and zero otherwise. In particular, for i = j = 0, the adjacency matrix A00

is the identity matrix since (x,y) ∈ R00 if and only if x = y. More generally, one can observe from the
definitions (3.36) and (3.38) that two vectors x,y such that (x,y) ∈ Rij have:

1The relations Rij of [28] have been relabeled as follows: i 7→ i+ j and j 7→ j.
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(i) e(x,y) = k − i− j equal non-zero components;

(ii) c(x,y) − e(x,y) = i unequal common non-zero components;

(iii) k − c(x,y) = j uncommon non-zero components;

(iv) j uncommon zero components;

(v) n− k − j common zero components.

It is therefore seen that the non-empty relations Rij are such that

0 ≤ i ≤ k − j, 0 ≤ j ≤ min{k, n − k}. (3.39)

When r = 2, it is seen that J2(k, n) is the Johnson scheme J(n, k) (see e.g. [2]). Indeed, in this case
the alphabet K is binary and we must have e(x,y) = c(x,y), which implies that only the relations Rij

with i = 0 and 0 ≤ j ≤ min{k, n− k} are non-empty. Moreover, the couples (x,y) ∈ R0j are such that the
Hamming distance of the vectors x and y (i.e. the number of unequal components) is the constant 2j. In
what follows, we will suppose r ≥ 3.

Using the properties (i)–(v), it is possible to compute the following relations for the adjacency matrices:

A10Aij =(k − i− j + 1)(r − 2)Ai−1,j + (i(r − 3) + j(r − 2))Aij + (i+ 1)Ai+1,j , (3.40)

A01Aij =(k − i− j + 1)(r − 2)jAi−1,j + (k − i− j + 1)(n − k − j + 1)(r − 1)Ai,j−1

+ (i+ 1)jAi+1,j + (j + 1)2Ai,j+1 + (i+ 1)(n − k − j + 1)(r − 1)Ai+1,j−1

+ (j + 1)2(r − 2)Ai−1,j+1 + j (k − i− j + (r − 2)i + (n − k − j)(r − 1))Ai,j. (3.41)

As an example, the coefficient before the matrix Ai−1,j in (3.40) is computed as follows. For two vectors
x and y such that (x,y) ∈ Ri−1,j, one needs to count the number of vectors z such that (x, z) ∈ R10

and (z,y) ∈ Rij . Using the properties (i)–(v), one finds that such vectors z must have all components
equal to those of x except for one component zs at some coordinate s which must be such that zs 6= 0 and
zs 6= xs = ys. There are k−(i−1)−j possibilities for the coordinate s because of (i), and r−2 possibilities
for the value of zs ∈ K. One then takes the product of these possibilities to obtain the total number of
vectors z, which gives the coefficient written in (3.40). The other coefficients are found similarly.

From the relations (3.40) and (3.41), we can deduce using Proposition 2.6 that the non-binary Johnson
scheme is a bivariate P -polynomial association scheme of type (1, 0) (see Figure 2c). Note that if k ≤ n−k,
then the domain D ⊆ N2 of the couples (i, j) for the adjacency matrices Aij is the triangle i+j ≤ k, whether
if n−k < k, the domain is the same triangle truncated horizontally at j = n−k. In both cases, the domain
D is (1, 0)-compatible (see Figure 1c).

In [28], the eigenvalues of the non-binary Johnson scheme Jr(k, n) are labeled by couples of integers
(x, y) ∈ D∗ = D and given explicitly in terms of bivariate polynomials2:

pij(x, y) = (r − 1)jKi(x, k − j, r − 1)Ej(y, n− x, k − x), (3.42)

2The following change of variables has been applied to the eigenvalues given in [28] in order to fit with our conventions:
i 7→ i + j, x 7→ x + y, y 7→ x. The definitions of the polynomials have been also changed: Ki(N, p, x) 7→ Ki(x,N, p) and
Ei(N, p, x) 7→ Ei(x,N, p).
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where (i, j), (x, y) ∈ D and for i = 0, 1, . . . , N ,

Ki(x,N, p) =

i∑

ℓ=0

(−1)ℓ(p − 1)i−ℓ

(
x

ℓ

)(
N − x

i− ℓ

)
, (3.43)

Ei(x,N, p) =
i∑

ℓ=0

(−1)ℓ
(
x

ℓ

)(
p− x

i− ℓ

)(
N − p− x

i− ℓ

)
. (3.44)

Expression (3.43) is the Krawtchouk polynomial while (3.44) is the Eberlein polynomial. The latter can
be expressed in terms of the (dual) Hahn polynomial and is known to provide the eigenvalues of Johnson
scheme. As a byproduct of our approach in this paper, we have obtained recurrence relations for the
polynomial (3.42). Indeed, because of Proposition 2.8, we must have

pij(x, y) = vij(p10(x, y), p01(x, y)), (3.45)

where vij(x, y) is the (unique) bivariate polynomial such that Aij = vij(A10, A01) for the non-binary John-
son scheme (see Definition 2.3). Therefore, the recurrence relations (3.40) and (3.41) for the adjacency
matrices imply the same recurrence relations for the polynomials pij(x, y) given in (3.42), with the replace-
ments Aij 7→ pij(x, y).

Remark 3.3. There is a connection between the non-binary Johnson scheme and the ordered Hamming
scheme, which we recall is the symmetrization of the Hamming scheme H(2, q) (see example 3.2 above).
Indeed, consider the case q = 2, and let {Aij | i, j ≥ 0, i + j ≤ N} be the set of adjacency matrices of the
ordered Hamming scheme, as in Section 3.2. These matrices act on a vector space V of dimension 4N with
basis vectors ei for i = 1, . . . , 4N . Consider now the set Wk = {ei | et1AN−k,0 ei 6= 0} for k any integer
such that 0 ≤ k ≤ N/2, and denote by Aij the restriction of the matrices Aij on Wk. Then, using (3.9),
one can show that the set of matrices {A2s,j | 0 ≤ s ≤ k, 0 ≤ j ≤ N − k − s} is a symmetric association
scheme corresponding to the non-binary Johnson scheme J3(N,N − k) (up to a relabeling of indices). Put
differently, J3(N,N − k) can be viewed as a particular projection of the ordered Hamming scheme. This
connection between these two bivariate P -polynomial association schemes is analogous to the embedding of
the Johnson scheme J(n, k) in the Hamming scheme H(n, 2) that was described algebraically in terms of
projection matrices in [3].

3.5 Association schemes based on isotropic spaces

Association schemes based on dual polar spaces are well-known examples of P - and Q-polynomial schemes
[6, 27]. They are obtained by considering vector spaces of dimension D defined over finite fields Fq and
equipped with a non-degenerate form B.

For such scheme, the set of vertices X (i.e. the labels of the columns and rows of its adjacency matrices
Ai) is composed of the maximal isotropic subspaces of FD

q . These are the largest subspaces V ⊂ FD
q such

that the evaluation of the form B(v1, v2) vanishes for any two vectors v1, v2 ∈ V . By Witt’s theorem,
they all have the same dimension N ≥ D/2. The relations {Ri}0≤i≤N giving the non-zero entries of the
adjacency matrices Ai are given by

Ri = {(V, V ′) ∈ X ×X | dim(V ∩ V ′) = N − i} . (3.46)

A generalization was introduced in [26] by dropping the maximality condition on the subspaces. Indeed,
it was shown that a set of vertices composed of the isotropic d-subspaces of FD

q equipped with a non-
degenerate form B still gives a symmetric association scheme if the following relations are introduced:

Rij = {(V, V ′) ∈ X ×X | dim(V ∩ V ′) = d− i− j, dim(V ⊥ ∩ V ′) = d− i} , (3.47)
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where d ≤ N and V ⊥ is the subspace composed of vectors v1 ∈ FD
q verifying B(v1, v2) = 0 for any vector

v2 ∈ V . Note that this scheme has for domain,

D = {(i, j) | 0 ≤ i ≤ d, 0 ≤ j ≤ N − d, 0 ≤ i+ j ≤ d} . (3.48)

The spherical functions associated to the lattice of isotropic d-subpaces and thus the eigenvalues pij(mn)
of the scheme were computed in [27]. This set of subspaces also has a combinatorial design interpretation
as the dth fiber of the uniform poset consisting of all the isotropic subspaces [29]. One naturally recovers
the dual polar schemes for d = N , but the P - and Q-polynomial properties are lost in general for d 6= N .
Our claim is that the bivariate P -polynomial property holds for all d ∈ {1, 2, . . . ⌊N/2⌋}.

While computing all the coefficients pmn
ij,kℓ of these schemes remains an open problem, general observa-

tions can be made regarding vanishing intersection parameters. For any two isotropic d-subspaces V and
V ′ in relation R01 or R10, one has dim(V ∩ V ′) = d− 1 and thus

V = V ∩ V ′ ⊕ span{v1} and V ′ = V ∩ V ′ ⊕ span{v2} , (3.49)

where v1,v2 ∈ FD
q . For any third isotropic d-subspaces U , it follows that

|dim(V ∩ U)− dim(V ′ ∩ U)| ≤ 1, and |dim(V ∩ U⊥)− dim(V ′ ∩ U⊥)| ≤ 1 . (3.50)

These inequalities and the definition of the relations Rij then imply that

|i+ j − k − ℓ| ≥ 2 or |i− k| ≥ 2 ⇒ pij10,kℓ = pij01,kℓ = 0 . (3.51)

Other vanishing intersection parameters can also be identified for the case pij10,kℓ. Then, one is interested
in the possible relations Rij between U , V and V ′ given that (V, V ′) ∈ R10. In addition to (3.49), we get
that B(v1, v2) 6= 0 and thus

dim(V ∩ U)− dim(V ′ ∩ U) = 1 ⇒ ∃ v3 = v1 + r ∈ V ∩ U, with r ∈ V ∩ V ′ . (3.52)

In particular, v3 is in V ⊥ but not in V ′⊥. To have dim(V ′⊥ ∩ U) ≥ dim(V ⊥ ∩ U), one would therefore
require the existence of at least one vector v′ contained in V ′⊥ ∩ U but not in V ⊥ ∩ U . By construction,
it would verify B(v′, v1) 6= 0 and B(v′, r) = 0 such that B(v′, v3) 6= 0. Since U has to be isotropic and
v3 ∈ U , such vector v′ cannot exist and one finds

|i+ j − k − ℓ| = 1 ⇒ ℓ = j . (3.53)

In terms of conditions on intersection parameters, it reads

|i+ j − k − ℓ| = 1, ℓ 6= j ⇒ pkℓ10,ij = 0 . (3.54)

From these observations and the fact that D is (1, 1/2)-compatible for d ≤ N/2, we get from Proposition
2.6 that the isotropic d-subspaces with the set of relations Rij yields a bivariate P -association schemes of
type (1, 1/2). To illustrate this result, let us consider the case where B is a symplectic form, d = 2 and
D ≥ 6. The domain D is then small enough to allow the direct computation of all intersection coefficients
pkℓ10,ij and pkℓ10,ij explicitly through simple combinatorial arguments. The matrices L10 and L01, of entries

(L10)kℓ,ij = pkℓ10,ij and (L01)kℓ,ij = pkℓ01,ij , are given by
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L10 =

00 10 01 11 20 02






0 (q + 1)qD−3 0 0 0 0 00
1 (q − 1)qD−4 (qD−4 − 1) 0 qD−2 0 10
0 (q − 1)qD−4 qD−4 qD−2 0 0 01
0 0 q (2q2 − 1)qD−5 (q − 1)qD−3 q(qD−6 − 1) 11
0 (q + 1) 0 (q + 1)(qD−4 − 1) (q2 − 1)qD−4 0 20
0 0 0 (q2 − 1)(q + 1)qD−5 0 (q + 1)qD−5 02

L01 =

00 10 01 11 20 02





0 0 (q+1)(qD−3−q)
(q−1) 0 0 0 00

0 qD−4 − 1 qD−4−1
q−1 q2 q

D−4−1
q−1 0 0 10

1 qD−4 qD−4−1
(q−1) + q2 − 2 qD−3 0 q3 q

D−6−1
(q−1) 01

0 q 1 (2q2−1)(qD−5−1)
(q−1) qD−3 q(qD−6−1)

(q−1) 11

0 0 0 (q+1)(qD−4−1)
(q−1) (q + 1)(qD−4 − 1) 0 20

0 0 (q + 1)2 (q + 1)2qD−5 0 (q + 1)
(
qD−5−q2−q+1

q−1

)
02

Since the entries of these matrices give the coefficients in relations of the Bose–Mesner algebra, they allow
to express A10, A01 and A11 as the following polynomials of A10 and A01,

A11 = q−1A10A01 − qD−5A01 − q−1(qD−4 − 1)A10 , (3.55)

A20 =
1

q + 1
A2

10 −
(q − 1)qD−4

(q + 1)
A10 −

(q − 1)qD−4

(q + 1)
A01 − qD−3A00 , (3.56)

A02 =
1

(q + 1)2
A2

01 −
1

q(q + 1)2
A10A01 +

(
qD−5

(q + 1)2
− qD−4 − 1

(q2 − 1)(q + 1)
− q2 − 2

(q + 1)2

)
A01 (3.57)

+

(
(qD−4 − 1)

q(q + 1)2
− qD−4 − 1

(q2 − 1)(q + 1)

)
A10 −

qD−3 − q

q2 − 1
A00 ,

which highlights the bivariate P -polynomial nature of the scheme.

3.6 Association schemes based on attenuated spaces

To explore another family of association schemes, let us consider a vector space of dimension D + L over
the finite field Fq and one of its subspaces W of dimension L. For a subspace V ⊆ FD+L

q , the quotient
of V + W by W is denoted (V + W )/W . The set X of subspaces V of dimension d with intersection
V ∩W = ∅ is the dth fiber of a uniform poset and defines what is called an attenuated space [29, 36]. Let
us focus on the case L ≥ d (see Remark 3.5 below). It was observed in [35] that such a set equipped with
relations Rij given by

Rij = {(V, V ′) ∈ X ×X | dim(V ∩ V ′) = d− i− j, dim((V +W )/W ∩ (V ′ +W )/W ) = d− j} , (3.58)

defines a symmetric association scheme of domain

D = {(i, j) ∈ N
2 | j ≤ min(d,D − d), i+ j ≤ d} . (3.59)
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This domain D is (1, 0)-compatible. A formula for all its intersection parameters pmn
ij,kℓ was also provided

in [35]. In the case of p10ij,kℓ and p01ij,kℓ, the expressions simplify greatly and can be obtained through simple
combinatorial arguments. This yields the following relations between the adjacency matrices,

A01Aij = q2j+i+L−1[d− i− j + 1]q[D − d− j + 1]qAij−1 + [j + 1]2qq
iAij+1

+ [d− i− j + 1]q[j]q(q
L − qi−1)qi+jAi−1j + [i+ 1]q[j]qq

i+j+1Ai+1j

+ [j + 1]2q(q
L − qi−1)Ai−1j+1 + [i+ 1]q[D − d− j + 1]qq

2j+L−1Ai+1j−1

+ [j]q
(
[D − d− j]qq

L+1+j + [d− i− j]qq
j+2i+1 + [i]q(q

L − qi−1)qj+1 + [j]q(q − 1)qL
)
Aij ,

(3.60)

and

A10Aij = (qL − qi−1)[d− i− j + 1]qq
i+j−1Ai−1j + [i+ 1]qq

i+jAi+1j

+
(
(qL − 1)[i+ j]q − [i]qq

i+j−1 + (q − 1)qi+j [d− i− j]q[i]q
)
Aij ,

(3.61)

where [n]q = (qn − 1)/(q − 1) are q-numbers. From (3.60) and (3.61), one can check that the scheme
verifies conditions (2.11)-(2.14) with respect to the partial order �(1,0). Since the domain D is also (1, 0)-
compatible, Proposition 2.6 implies that this scheme is bivariate P -polynomial of type (1, 0).

There thus exist polynomials vij verifying Aij = vij(A10, A01). These are solutions of (3.60) and (3.61)
interpreted as recurrence relations. Alternatively, they can be obtained using (2.24) and the spectrum
pij(m,n) of the adjacency matrices Aij . An expression for the latter can be found in [10, 21] and is given
by, for (i, j) ∈ D,

pij(m,n) = qjLKi(d− j, L; q;n)Qj(D − n, d− n; q;m) , (3.62)

where (m,n) ∈ D∗ = D labels the eigenspaces of the matrices Aij andKi, Qj are respectively q-Krawtchouk
polynomials and q-Hahn polynomials,

Ki(j, L; q;n) =
i∑

k=0

(−1)i−kqkL+(
i−k

2 )
[
j − k
j − i

]

q

[
j − n
k

]

q

, (3.63)

Qi(k, j; q;m) =

i∑

ℓ=0

(−1)i−ℓqℓm+(i−ℓ
2 )
[
j − ℓ
j − i

]

q

[
j −m

ℓ

]

q

[
k − j + ℓ−m

ℓ

]

q

, (3.64)

and [ ab ]q is the q-binomial coefficient. Therefore, the polynomials vij are obtained from the relation

vij(θmn, µmn) = qjLKi(d− j, L; q;n)Qj(D − n, d− n; q;m) , (3.65)

where
µmn = qL

(
qm[d−m− n]q[D − d+ 1−m]q − [d− n]q

)
, (3.66)

and
θmn = −[d]q + qL[d− n]q . (3.67)

Remark 3.4. This scheme was constructed as a generalization of the Grassmann scheme Jq(D, d) and
bilinear scheme Hq(D,L). The former is recovered by taking L = 0 and the latter by imposing d = D.
Similarities in the spectrum of the adjacency matrices and in the relations (3.40)-(3.41) and (3.60)-(3.61)
also suggest that schemes based on attenuated spaces offer q-deformations of non-binary Johnson schemes
J2(D, d).
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Remark 3.5. For L < d, relations Rij given by (3.58) still define an association scheme with adjacency
matrices verifying (3.60)-(3.61) and with a spectrum given by (3.62). However the domain becomes

D = {(i, j) ∈ N
2 | j ≤ min(d,D − d), i ≤ min(d− j, L)} . (3.68)

This domain is not (1, 0)-compatible. Therefore in this case, it is not any more a bivariate P -polynomial
association scheme. There still exists a family of polynomials vij for which Aij = vij(A10, A01), but their
recurrence relations and those of the adjacency matrices lose their correspondence. A similar situation
arises for association schemes based on isotropic spaces with d > N/2.

4 Bivariate Q-polynomial association scheme

4.1 Definition

The notion of Q-polynomial association scheme is developed in [8] (see also [6]) and is dual to the P -
polynomial one. In this section, we provide a generalization of this notion to the case of bivariate polyno-
mials and dual to Definition 2.3.

Definition 4.1. Let D⋆ ⊂ N2, 0 ≤ α ≤ 1, 0 ≤ β < 1 and �(α,β) be the order (2.2). The association
scheme with idempotents E0, E1, . . . EN is called bivariate Q-polynomial of type (α, β) on the domain D⋆

if these two conditions are satisfied:

(i) there exists a relabeling of the idempotents:

{E0, E1, . . . EN} = {Emn | (m,n) ∈ D⋆} , (4.1)

such that, for (m,n) ∈ D⋆,

vEmn = v⋆mn(vE10, vE01) (under the Hadamard product), (4.2)

where v⋆mn(x, y) is a (α, β)-compatible bivariate polynomial of degree (m,n);

(ii) D⋆ is (α, β)-compatible.

By analogy with Section 2.3, the adjacency matrices of the association scheme will here be denoted by
Aλ with λ ∈ D, where D is a set of labels not required to be a subset of N2. Moreover, the dual eigenvalues
defined by (2.25) are here written as qij(λ), where (i, j) ∈ D⋆ with the same D⋆ as in Definition 4.1, and
λ ∈ D. This highlights the fact that bivariate Q-polynomial association schemes of type (α, β) do not
necessitate the existence of a bivariate P -polynomial structure.

Let us recall that the idempotents Eij of an association scheme satisfy a relation dual to (2.10) given
by

Eij ◦ Ekℓ =
1

v

∑

(m,n)∈D⋆

qmn
ij,kℓEmn , (4.3)

where ◦ is the Hadamard product (or entrywise product). The numbers qmn
ij,kℓ are called Krein parameters.

The generalization of the notion ofQ-polynomial given above leads to the following proposition constraining
the Krein parameters.

Proposition 4.2. Let Z be a symmetric association scheme with idempotents Eij, for (i, j) ∈ D⋆. The
following items are equivalent:
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(i) Z is a bivariate Q-polynomial association scheme of type (α, β) on D⋆;

(ii) D⋆ is (α, β)-compatible and the Krein parameters satisfy, for (i, j), (i + 1, j) ∈ D⋆,

qi+1,j
10,ij 6= 0, qi,j10,i+1j 6= 0 , (4.4)

qmn
10,ij 6= 0

(
or qij10,mn 6= 0

)
⇒ (m,n) �(α,β) (i+ 1, j) , (4.5)

and, for (i, j), (i, j + 1) ∈ D⋆,

qi,j+1
01,ij 6= 0, qi,j01,ij+1 6= 0 , (4.6)

qmn
01,ij 6= 0

(
or qij01,mn 6= 0

)
⇒ (m,n) �(α,β) (i, j + 1) ; (4.7)

(iii) D⋆ is (α, β)-compatible and the dual eigenvalues qij(λ) defined by (2.25) satisfy

qij(λ) = v⋆ij(θ
⋆
λ, µ

⋆
λ) , (4.8)

where θ⋆λ = q10(λ) and µ⋆
λ = q01(λ), and v⋆ij(x, y) is a (α, β)-compatible bivariate polynomial of degree

(i, j).

Proof. The proof follows the same lines as the proofs of Propositions 2.6 and 2.8.

This proposition leads to a generalization of the cometric property. An association scheme is called
(α, β)-cometric inside the domain D⋆ if D⋆ is (α, β)-compatible and if the Krein parameters qmn

ij,kℓ satisfy
the constraints (4.4)-(4.7).

From now on, let Z = {Aij | (i, j) ∈ D} be bivariate P -and Q-polynomial, with D,D∗ ⊂ N2. As usual,
one defines renormalized polynomials as follows

uij(x, y) =
vij(x, y)

kij
, u⋆ij(x, y) =

v⋆ij(x, y)

mij

, (4.9)

where
kij = pij(00), mmn = qmn(00) , (4.10)

are the valency and the multiplicity, respectively. Now recall that the eigenvalues pij(mn) and dual
eigenvalues qmn(ij) of any symmetric association scheme are related as follows (see for example [2, Theorem
3.5]),

qmn(ij)

mmn

=
pij(mn)

kij
. (4.11)

Relation (4.11) implies the Wilson symmetry of the polynomials uij and u∗ij (see [8] for the monovariate
case), i.e. one gets for (m,n) ∈ D and (i, j) ∈ D⋆

umn(θij, µij) = u⋆ij(θ
⋆
mn, µ

⋆
mn). (4.12)

Therefore, the polynomials umn(x, y) satisfy recurrence relations but also difference equations (obtained
from the recurrence relations of u⋆ij). They are solutions of a bispectral problem. Moreover, both polyno-
mials uij and u⋆ij satisfy an orthogonality relation:

∑

(r,s)∈D⋆

mrsuij(θrs, µrs)umn(θrs, µrs) =
v

kij
δij,mn , (4.13)

19



and ∑

(r,s)∈D

krsu
⋆
ij(θ

⋆
rs, µ

⋆
rs)u

⋆
mn(θ

⋆
rs, µ

⋆
rs) =

v

mij

δij,mn . (4.14)

Indeed, these are obtained by combining equations (2.22) and (2.25) in two different ways, and by using
(2.24), (4.8) and (4.12).

Following the proof of Section 3.1, it is straightforward to show that the direct product of Q-polynomial
associations is a bivariate Q-polynomial association scheme. We treat in Section 4.3 another example in
detail.

4.2 Subconstituent algebra

As mentioned previously the matrices Aij form a commutative algebra, known as the Bose–Mesner algebra.
For any association scheme it is useful to introduce a more general algebra called the subconstituent algebra
(or Terwilliger algebra) [30, 31, 32].

To do that, fix 1 ≤ i0 ≤ v and define the diagonal matrices A⋆
mn as follows, for 1 ≤ i, j ≤ v,

(A⋆
mn)i,j = vδi,j(Emn)i0,j. (4.15)

These matrices satisfy

A⋆
ijA

⋆
kℓ =

∑

(m,n)∈D⋆

qmn
ij,kℓA

⋆
mn. (4.16)

The commutative algebra realized by these A⋆
ij is called the dual Bose–Mesner algebra. For a bivariate

Q-polynomial association scheme, one gets

A⋆
mn = v⋆mn(A

⋆
10, A

⋆
01). (4.17)

The algebra formed by Aij and A⋆
ij is called the subconstituent algebra and is usually non-commutative.

In the case of a bivariate P - and Q-polynomial association scheme, this algebra is generated by the four
elements: A10, A01, A

⋆
10 and A⋆

01.

4.3 Example: the symmetrization of an association scheme with two classes revisited

Let L⋆
i be the matrices with entries (L⋆

i )jk = qjik. For an association scheme with 2 classes as studied in
Section 3.2, one gets

L⋆
1 =



0 k⋆ 0
1 k⋆ − 1− b⋆ b⋆

0 c⋆ k⋆ − c⋆


 , L⋆

2 =



0 0 b⋆k⋆

c⋆

0 b⋆ b⋆k⋆

c⋆
− b⋆

1 k⋆ − c⋆ b⋆k⋆

c⋆
− 1− k⋆ + c⋆


 , (4.18)

with k⋆ = k(τ+1)(k−τ)
(τθ+k)(τ−θ) , b⋆ = − τ(θ+1)(k−θ)2

(τ−θ)2(τθ+k)
, and c⋆ = τ(τ+1)(k−τ)(k−θ)

(τ−θ)2(τθ+k)
.

In this case, we can naturally parametrize the pairs of eigenvalues for A10, A01 by the same subset
D⋆ = D = {(i, j) | i+ j ≤ N}. Indeed, we recall that the elements Eij are defined by the following formula:

(E0 +X1E1 +X2E2)
⊗N =

∑

i+j≤N

Xi
1X

j
2Eij . (4.19)
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It is immediate that Eij are the idempotents associated to the common eigenspaces of the matrices Aij .
From the formulas defining the idempotents Eij, we have at once for the dual matrices A⋆

ij that:

(A⋆
0 +X1A

⋆
1 +X2A

⋆
2)

⊗N =
∑

i+j≤N

Xi
1X

j
2A

⋆
ij . (4.20)

In other words, the matrices A⋆
ij are obtained by applying the symmetrization process to the matrices

A⋆
0, A

⋆
1, A

⋆
2. The recurrence relations and thus the Q-polynomiality of the scheme, follow exactly as in the

previous section (one simply has to replace the parameters k, b, c by the dual ones k⋆, b⋆, c⋆).
One thus finds that A⋆

ij = v⋆ij(A
⋆
10, A

⋆
01) where the dual polynomials v⋆ij satisfy the following recurrence

relations:

xv⋆ij = k⋆(N − i− j + 1)v⋆i−1,j +
(
i(k⋆ − 1− b⋆) + j(k⋆ − c⋆)

)
v⋆ij + (i+ 1)v⋆i+1,j

+c⋆(j + 1)v⋆i−1,j+1 + b⋆(i+ 1)v⋆i+1,j−1 , (4.21)

yv⋆ij =
b⋆k⋆

c⋆
(N − i− j + 1)v⋆i,j−1 +

(
b⋆i+ j(

b⋆k⋆

c⋆
− 1− k⋆ + c⋆)

)
v⋆ij + (j + 1)v⋆i,j+1

+(j + 1)(k⋆ − c⋆)v⋆i−1,j+1 + (i+ 1)(
b⋆k⋆

c⋆
− b⋆)v⋆i+1,j−1 . (4.22)

Recall that the eigenvalues (θij, µij) of A10, A01, are given by

θij = (N − i− j)k + iθ + jτ, µij = (N − i− j)
kb

c
− i(θ + 1)− j(τ + 1) . (4.23)

Similarly those of A⋆
10, A

⋆
01 read

θ⋆ij = (N − i− j)k⋆ + iθ⋆ + jτ⋆, µij = (N − i− j)
k⋆b⋆

c⋆
− i(θ⋆ + 1)− j(τ⋆ + 1) . (4.24)

Let us also remark that the relation

J(x)E00 = [(A0 + x1A1 + x2A2)E0]
⊗N =

∑

i+j≤N

N !

i!j!(N − i− j)!
(kx1)

i

(
bk

c
x2

)j

E00 , (4.25)

implies that

pij(0, 0) =
N !

i!j!(N − i− j)!
ki
(
bk

c

)j

. (4.26)

Similarly qij(0, 0) is obtained by replacing k, τ, θ by k⋆, τ⋆, θ⋆ in the previous relation. TheWilson symmetry
reads in this case

i!j!(N − i− j)!

ki(bk/c)j
vij(θmn, µmn) =

m!n!(N −m− n)!

(k⋆)m(b⋆k⋆/c⋆)n
v⋆mn(θ

⋆
ij , µ

⋆
ij) . (4.27)

This makes explicit that this scheme obtained by symmetrization is bivariate P - and Q-polynomial.
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5 Outlook

All the notions introduced in this paper should be generalizable to more than two variables. This would lead
to the definition of a multivariate P -polynomial association scheme but would require a generalization of
the definition 2.1 about the compatibility of a multivariate polynomial. The direct product of n different P -
polynomial association schemes or the symmetrization of a P -polynomial association scheme with n classes
would be examples of n-variate P -polynomial association schemes. It would also be interesting to find more
examples of association schemes with the bivariate (or more generally, multivariate) Q-polynomial property.
A first step could be to investigate if this property is present in all the examples presented in Section 3. For
the non-binary Johnson scheme, the dual eigenvalues are given in [9, 28], and for the association schemes
based on attenuated spaces, in [21]. These results may allow us to prove that these schemes are bivariate
Q-polynomial using Propoition 4.2.

In the monovariate case, it is well-known that P -polynomial association schemes correspond to distance-
regular graphs [2]. A bivariate generalization of the concept of distance-regular graph that would be
equivalent to the notion of bivariate P -polynomial association scheme could be explored.

The subconstituent algebra of a P - and Q-polynomial association scheme has been characterized. In-
deed, in this case, the generators of the subconstituent algebra are (A1, A

⋆
1) and they satisfy the tridiagonal

relations [32]. This has also led to the definition and study of Leonard pairs and their relation with the
Askey–Wilson relations [33]. It would be quite interesting to extend this for bivariate P - and Q-polynomial
association schemes. Indeed, as explained in Section 4.2, the subconstituent algebra is generated by four
elements and it would be enlightening to find the relations between them. Those relations might depend
on the parameters α and β defining the type of bivariate association scheme. Such an algebraic approach
holds hopes of a classification of the bivariate P - and Q-polynomial association schemes.

The generalization of Leonard pairs would also be natural in this context (see the conclusion of [20]
where a definition is already proposed). One could then speak of higher rank Leonard pairs. The classifi-
cation of these pairs would be very interesting in the context of the bispectral multivariate polynomials.
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