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Analysis of a toy model for optimal crop protection

Luis Almeida*, Aymeric Jacob de Cordemoy�, Ayman Moussa�, Nicolas Vauchelet�

October 15, 2024

Abstract

In this paper we investigate an optimal control problem involving a toy model for the
protection on a crop �eld. Precisely, we consider a protection on a crop �eld and we want to
place intervention zones represented by a control, in order to maximise the protection on the
�eld during a given period. Using a relaxation method, we prove that there exists a control
which maximises the protection and, moreover, it must be a bang-bang control. Furthermore,
with additional assumptions on the crop �eld geometry, some results on the shape of the
optimal intervention are proved using comparison results for elliptic equations via Schwarz
and Steiner symmetrizations. Finally, some numerical simulations are performed in order to
illustrate those results.

Keywords: Optimal control, bang-bang controls, Schwarz symmetrization, Steiner symmetriza-
tion, elliptic equations, population dynamics.

AMS Classi�cation: 35Q92; 49J99; 49J30; 49K20; 49Q10.

1 Introduction

Motivation Population dynamics is a branch of mathematical biology that studies the �uctu-
ation over time of the number of individuals in a population of living beings. The encounter of
optimal control techniques with population dynamics led to remarkable examples of applications
in applied mathematics. For instance: optimal intervention strategies have been studied to control
epidemics (see, e.g., [11, 22] for more general settings and [36] for an application to COVID19);
in [37] the use of insecticide is optimized in the �ght against arboviruses; in [2, 13, 19] the authors
design release protocols in a population replacement strategy. We refer also to [31] where the
author studies how migration and spatial heterogeneity of the environment a�ect the total popu-
lation of a single and multiple species, to [32] that deals with the problem of optimising the total
population size for a standard logistic-di�usive model, to [33] that investigates the optimisation of
the carrying capacity in logistic di�usive models, or to [35] which focuses on how to maximize the
total population of a single species with logistic growth living in a patchy environment.

In this paper, we are interested in controlling crop diseases such as Cercospora leaf spot, beet
yellows virus, powdery mildew, etc., which are one of the main causes of yield loss in vegetable
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crops. Phytosanitary products are classically used to �ght their spread, but due to their negative
impact on the environment it is important to reduce their use and to �nd alternative strategies.
For instance, in [21] the authors develop an agro-ecological approach to control aphid populations
in sugar beet �elds using natural predators in order to prevent the spread of viruses transmitted
by these pests. Inspired by this problematic and the references cited above, we consider in this
paper an optimal control problem involving a toy model for the protection on a crop �eld.

Description of the optimal control problem Let n ∈ N∗ be a positive integer and Ω be a
nonempty bounded connected open subset of Rn, with a lipschitz boundary ∂Ω. Let T > 0 be the
�nal time and consider the following toy model for the protection on a crop �eld given by{

pu −D∆pu = ϕ(u) in Ω×]0, T [,
pu = 1 on ∂Ω×]0, T [,

(1.1)

where ϕ(u) : Ω×]0, T [→ ϕ(u)(x, t) := e−α(1−u(x))t ∈ R+, for some u ∈ L∞(Ω) such that 0 ≤ u ≤ 1
a.e. on Ω and D > 0 is the di�usion coe�cient. This model has the following interpretation.
The domain Ω represents a crop �eld, the function ϕ(u) represents the active ammount of a
phytosanitary product and pu(x, t) the protection due to ϕ(u) at time t > 0 and at a position x ∈ Ω
in the �eld. This protection is assumed to be perfect at initial time, i.e. pu(x, 0) = 1 a.e. on Ω,
and degrades over time with a rate denoted α > 0. We want to place some intervention zones (for
instance a predator reservoir) in the domain such that the protection remains as high as possible
throughout the season. Then, we introduce a control variable u ∈ L∞(Ω) such that 0 ≤ u ≤ 1
a.e. on Ω, describing those interventions: in particular if u = 1 the intervention is maximal and
if u = 0 there is no intervention. Obviously at the position where u = 1 the protection does not
degrade, whereas at the position u = 0 the degradation of the protection is maximal. Given an
amount of possible total intervention, i.e.

∫
Ω
u ≤ L, where L ∈ [0, |Ω|], we focus on the question of

knowing where and how to intervene in order to maximise the protection during a given period of
time [0, T ]. Thus this leads to the following optimal control problem

max
u∈Uad

J (u), (1.2)

where

Uad :=

{
u ∈ L∞(Ω) | 0 ≤ u ≤ 1 a.e. on Ω, and

∫
Ω

u(x)dx ≤ L

}
,

and where J is the cost functional de�ned by

J : L∞(Ω) −→ R

u 7−→ J (u) :=

∫ T

0

∫
Ω

pu(x, t)dxdt,

and pu is the solution of the protection problem (1.1) for the control u ∈ Uad.

Notations We denote by L2(Ω),H1(Ω),H1
0(Ω), the usual Lebesgue and Sobolev spaces endowed

with their standard norms, by Bn(0, r) the open ball of Rn centered at 0 with radius r > 0, and
by χC the characteristic function of C ⊂ Rn de�ned by χC(x) = 1 if x ∈ C, and 0 if x /∈ C. At some
points of this paper, we will use the notation Rn = Rn1×Rn2 , if n ≥ 2, where n1 ∈ N∗, n2 ∈ N∗, such
that n1+n2 = n. In that case x = (x1, ..., xn1

) will refer to the variables in Rn1 and y = (y1, ..., yn2
)
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to the variables in Rn2 . Finally, we denote Vad ⊂ Uad the set of controls that saturate the integral
constraint, i.e.,

Vad :=

{
u ∈ L∞(Ω) | 0 ≤ u ≤ 1 a.e. on Ω, and

∫
Ω

u(x) dx = L

}
, (1.3)

and we call bang-bang control an element u ∈ Vad such that u ∈ {0, 1} a.e. on Ω and
∫
Ω
u(x) dx =

L.

Main results Our main results are summarized in the following theorem.

Theorem 1.1. There exists at least one solution to the optimal control problem (1.2), and solutions
are bang-bang controls. Moreover:

(i) If Ω := Bn(0, r), where r > 0. Then u∗ := χ
Bn

(
0,( L

Cn
)
1
n

) is the unique solution of the optimal

control problem (1.2), where Cn := |Bn(0, 1)|;

(ii) If n ≥ 2, and Ω = Bn1
(0, r1)×Ωn2

⊂ Rn1×Rn2 , where r1 > 0, and Ωn2
is a nonempty bounded

connected open subset of Rn2 , then there exists a subset E ⊂ Ω satisfying |E| = L, which is
symmetric with respect to the hyperplane xi = 0 and that is convex in the xi-direction, for
all i ∈ {1, ..., n1}, such that u∗ = χE is solution of the optimal control problem (1.2);

(iii) If n ≥ 2, and Ω = Bn1
(0, r1) × Bn2

(0, r2) ⊂ Rn1 × Rn2 , where (r1, r2) ∈ R+
∗ × R+

∗ , then
there exists a subset E ⊂ Ω satisfying |E| = L, which is symmetric with respect to the
hyperplane xi = 0 and with respect to the hyperplane yj = 0, and that is convex in the xi-
direction, convex in the yj-direction, for all (i, j) ∈ {1, ..., n1} × {1, ..., n2}, and star-shaped
at 0 ∈ E, such that u∗ = χE is solution of the optimal control problem (1.2).

Symmetrization methods In this paper, symmetrization methods are used in order to deter-
mine the shape of the optimal intervention for particular crop �eld geometry. They consist in
transforming one set into another with symmetry properties. Two methods are mainly used: the
Schwarz symmetrization and the Steiner symmetrization. In particular, they are used in the litera-
ture to compare solutions of partial di�erential equations, establishing relations between the norm
of the original solutions and that of their symmetrized counterparts. The Schwarz symmetrization
(see, e.g., [12, 24, 26, 27]) consists in rearranging the level sets of a function in balls of the same
measure in order to create a new function that is radially symmetric and non-increasing. In par-
ticular, this method is used to prove the well-known Faber-Krahn inequality (see, e.g, [24, Chapter
3, Section 3.2]). Comparison results using Schwarz symmetrization started with the pioneering
work [38] where the symmetrized problem is given by the Dirichlet Laplacian operator. This result
is extended in [6, 10, 17, 30, 40] and [39, Section 9]) for second-order elliptic operators including
lower-order terms. We also refer to [4, 7, 28] for Neumann and Robin boundary conditions and
to [6, 9, 34, 41] for parabolic equations. The Steiner symmetrization (see, e.g., [8, 24, 26]) is a
partial symmetrization which consists in symmetrizing a set with respect to a hyperplane. In par-
ticular, when applied to a level set of a function leads to a new function that is symmetric with
respect to a hyperplane. In [5] a comparison result is proved for Dirichlet boundary conditions
and second-order elliptic operators without lower-order terms. Generalizations can be found, for
instance, in [15, 16], where the authors deal with the �rst and zeroth-order term. We also refer
to [20, 29] for Neumann boundary conditions and to [18] for parabolic equations. We conclude this
paragraph by mentioning that in [42] the authors maximize a linear cost functional which depends
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on a solution of an elliptic equation on a ball, with controls acting on the divergence operator.
Using Schwarz symmetrization they prove that the optimal control is the characteristic function
of a ball.

Summary of the methodology Our methodology is based on the theory of optimal control, the
relaxation methods and on comparison results for elliptic equations via symmetrization methods.
Precisely, we prove that if there exists a solution to the optimal control problem (1.2), then it
must saturates the integral constraint and, on the other hand, we prove that the cost functional J
is stricly convex by computing its twice Fréchet di�erential. Thus, the supremum of J on Uad

coincides with the supremum of J on the bang-bang controls set. Then, using a relaxation method
(see, e.g., [25, Chapter 7, Section 7.2]), we prove the existence of a solution among bang-bang
controls. For particular domains, we are able to prove some results about the shape of the optimal
intervention using symmetrization methods.

Paper structure The paper is organized as follows. In Section 2, we prove all preliminary
results required to takle Theorem 1.1. In Section 3, we focus on the proof of Theorem 1.1 and,
in Section 4, additional results and remarks are presented. In Section 5, numerical simulations
are performed in order to illustrate our results. Finally, some notions and results on Schwarz and
Steiner symmetrizations are recalled in Appendix A.

2 Preliminary results

This section is devoted to the statement of some preliminary results needed to prove the main
Theorem 1.1. In a nutshell, we �rst prove here that if solutions to the optimal control problem (1.2)
exist, then they must saturate the integral constraint. Thus, our analysis is reduced to the set Vad ⊂
Uad which is the set of controls that saturate the integral constraint (see (1.3)). Then, we prove
that the cost functional J is strictly convex on Vad and thus its supremum on Vad coincides with
its supremum on the set of extreme points of Vad, i.e. on bang-bang controls set.

Let us recall that, for all u ∈ Uad, the existence and uniqueness of the weak solution pu ∈
L2(]0, T [,H1(Ω)) of the protection problem (1.1) are guaranteed by the Riesz representation theo-
rem.

Proposition 2.1. Let us assume that there exists u∗ ∈ Uad such that J (u∗) ≥ J (u) for all u ∈ Uad.
Then, ∫

Ω

u∗(x) dx = L.

Proof. Assume that
∫
Ω
u∗(x) dx < L. Then there exists λ > 0 such that

∫
Ω
(u∗ + λ) = L. Let us

denote uλ := u∗+λχ{x∈Ω|u∗(x)+λ≤1} ∈ Uad, then uλ ≥ u∗ a.e. on Ω and uλ > u∗ on a set of positive
measure. Thus, since ϕ(u∗) ≤ ϕ(uλ), one deduces from the maximum principle that puλ

≥ pu∗

a.e. on Ω×]0, T [. Hence J (uλ) ≥ J (u∗). It follows that J (uλ) = J (u∗), therefore puλ
= pu∗ a.e.

on Ω×]0, T [ and one deduces that uλ = u∗ a.e. on Ω×]0, T [ which is a contradiction.

From Proposition 2.1, it follows that

sup
u∈Uad

J (u) = sup
u∈Vad

J (u).

Now let us prove that J is Fréchet di�erentiable and twice Fréchet di�erentiable in L∞(Ω).
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Proposition 2.2. For all u ∈ L∞(Ω), the cost functional J is Fréchet di�erentiable at u and its
di�erential dJ (u) is given by

dJ (u) (h) =

∫
Ω

h(x)q(x)w ◦ u(x) dx, ∀h ∈ L∞(Ω),

where q ∈ H1
0(Ω) denotes the adjoint state solving the Dirichlet problem{

q −D∆q = 1 in Ω,
q = 0 on ∂Ω,

(2.1)

and w ∈ L∞(R) is the switching function given by

w : R −→ R+

s 7−→

 αT 2

2 if s = 1,

(1+e−α(1−s)T (−α(1−s)T−1))
α(1−s)2

if s ̸= 1.

Proof. By standard computations, the map u ∈ L∞(Ω) 7→ pu ∈ L2(]0, T [,H1(Ω)) is Fréchet dif-
ferentiable at every u ∈ L∞(Ω) with its di�erential at u given, for all h ∈ L∞(Ω), by ṗu(h) ∈
L2(]0, T [,H1(Ω)) solution of{

ṗu(h)−D∆ṗu(h) = αhte−α(1−u)t on Ω×]0, T [,
ṗu(h) = 0 on ∂Ω×]0, T [.

Then, it follows that J is Fréchet di�erentiable at any u ∈ L∞(Ω) with its di�erential at u given
by

dJ (u)(h) =

∫ T

0

∫
Ω

ṗu(h)(x, t) dx dt, ∀h ∈ L∞(Ω).

For all (u, h) ∈ L∞(Ω)× L∞(Ω), let us take the adjoint state q ∈ H1
0(Ω), solution to (2.1), as test

function in the weak variational formulation of ṗu(h) and, for almost all t ∈]0, T [, ṗu(h)(t, ·) ∈
H1

0(Ω) as test function in the weak variational formulation of q. Then, one can deduce that∫ T

0

∫
Ω

ṗu(h)(x, t)dxdt =

∫ T

0

∫
Ω

αh(x)te−α(1−u(x))tq(x)dxdt.

We de�ne the switching function by w(s) := α
∫ T

0
te−α(1−s)tdt ∈ R+, for almost all s ∈ R, thus

dJ (u)(h) =

∫
Ω

h(x)q(x)w ◦ u(x)dx,

which concludes the proof.

Proposition 2.3. For all u ∈ L∞(Ω), the cost functional J is twice Fréchet di�erentiable at u
and its second di�erential d2J (u) is given by

d2J (u) (h1, h2) =

∫
Ω

α2q(x)h1(x)h2(x)

(∫ T

0

t2e−α(1−u(x))tdt

)
dx, ∀ (h1, h2) ∈ L∞(Ω)×L∞(Ω).

Moreover, for all u ∈ L∞(Ω), d2J (u) is positive de�nite thus J is a strictly convex function
on L∞(Ω).
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Proof. One can easily prove that the map u ∈ L∞(Ω) 7→ pu ∈ L2(]0, T [,H1(Ω)) is twice Fréchet
di�erentiable at every u ∈ L∞(Ω) with its second di�erential at u given, for all (h1, h2) ∈ L∞(Ω)×
L∞(Ω), by p̈u(h1, h2) ∈ L2(]0, T [,H1(Ω)) solution of{

p̈u(h1, h2)−D∆p̈u(h1, h2) = α2h1h2t
2e−α(1−u)t in Ω×]0, T [,

p̈u(h1, h2) = 0 on ∂Ω×]0, T [.

Thus, it can be deduced that J is twice Fréchet di�erentiable at any u ∈ L∞(Ω) with its second
di�erential at u given by

d2J (u)(h1, h2) =

∫ T

0

∫
Ω

p̈u(h1, h2)(x, t)dxdt, ∀ (h1, h2) ∈ L∞(Ω)× L∞(Ω).

Then, using the adjoint state q ∈ H1
0(Ω) one can prove in the same way as in Proposition 2.2, that∫ T

0

∫
Ω

p̈u(h1, h2)(x, t)dxdt =

∫
Ω

α2q(x)h1(x)h2(x)

(∫ T

0

t2e−α(1−u(x))tdt

)
dx,

for all u, h1, h2 ∈ L∞(Ω). Finally, by considering h2 = h1, one gets

d2J (u) (h1, h1) =

∫
Ω

α2q(x)h1(x)
2

(∫ T

0

t2e−α(1−u(x))tdt

)
dx.

From the strong maximum principle one has q > 0 a.e. on Ω, thus d2J (u) (h1, h1) ≥ 0 with
equality if and only if h1 = 0 a.e. on Ω. Thus d2J (u) is positive de�nite and, since u ∈ L∞(Ω) is
arbitrary, one concludes that J is a stricly convex function.

Since J is stricly convex on Vad, it is well known that

sup
u∈Vad

J (u) = sup
u∈Extr(Vad)

J (u),

where Extr(Vad) is the set of extreme points of Vad de�ned by

Extr(Vad) :=

{
u ∈ Vad | v1, v2 ∈ Vad, u =

v1 + v2
2

=⇒ u = v1 = v2

}
,

which corresponds to the set of bang-bang controls (see, e.g., [14]),

Extr(Vad) =

{
u ∈ L∞(Ω) | u ∈ {0, 1} a.e. on Ω, and

∫
Ω

u(x)dx = L

}
.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. From the previous section, we know that if there exists
a control which maximizes J on the bang-bang controls set, then it is also solution to the optimal
control problem (1.2). Thus, inspired by [33], let us prove that there exists a solution among
bang-bang controls.

Proof of the existence of a bang-bang solution. Let us consider Pu :=
∫ T

0
pu(·, t)dt/T ∈ H1(Ω), for

all u ∈ Extr(Vad). Then Pu is solution of the Dirichlet problem Pu −D∆Pu =
1

T

∫ T

0

e−α(1−u)tdt in Ω,

Pu = 1 on ∂Ω.
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Denote φ(u) :=
∫ T

0
e−α(1−u)tdt/T ∈ L∞(Ω), for all u ∈ Extr(Vad). Therefore,

φ(u) :=

{
1 if u = 1,

1−e−αT

αT if u = 0,

and ∫
Ω

φ(u)(x)dx =

∫
{u=1}

dx+

∫
{u=0}

1− e−αT

αT
dx = L+

1− e−αT

αT
(|Ω| − L) =: M.

Now consider

F :=

{
f ∈ L∞(Ω) | f ∈

{
1− e−αT

αT
, 1

}
a.e. on Ω, and

∫
Ω

f(x)dx = M

}
.

Then φ is a bijective function from Extr(Vad) to F with its inverse given by

φ−1(f) :=

{
1 if f = 1,

0 if f = 1−e−αT

αT ,

for all f ∈ F . By [25, Proposition 7.2.17] the closed convex hull of F for the weak L∞(Ω) − ∗
topology is

conv∗(F) :=

{
f ∈ L∞(Ω) | 1− e−αT

αT
≤ f ≤ 1 a.e. on Ω, and

∫
Ω

f(x)dx = M

}
,

and F = Extr(conv∗(F)). Let us introduce the relaxed problem given by

max
f∈conv∗(F)

J(f), (3.1)

where J : f ∈ conv∗(F) 7→
∫
Ω
Zf (x)dx ∈ R, and where Zf ∈ H1

0(Ω) is the unique solution of{
Zf −D∆Zf = f in Ω,

Zf = 0 on ∂Ω.
(3.2)

Since J is linear and continuous on conv∗(F) for the weak L∞(Ω)−∗ topology, there exists f∗ ∈ F
such that J(f∗) ≥ J(f), for all f ∈ conv∗(F) (see, e.g., [25, Chapter 7, Section 7.2 Remark p.293]).
Moreover, one has Pu = Zφ(u)+W , for all u ∈ Extr(Vad), where W ∈ H1(Ω) is the unique solution
of {

W −D∆W = 0 in Ω,
W = 1 on ∂Ω.

(3.3)

Therefore, by considering u∗ := φ−1(f∗) ∈ Extr(Vad), it follows that∫
Ω

Pu∗(x)dx =

∫
Ω

Zφ(u∗)(x)dx+

∫
Ω

W (x)dx

≥
∫
Ω

Zφ(u)(x)dx+

∫
Ω

W (x)dx =

∫
Ω

Pu(x)dx, ∀u ∈ Extr(Vad).

Thus, by de�nition of Pu, one gets∫ T

0

∫
Ω

pu∗(x, t)dxdt ≥
∫ T

0

∫
Ω

pu(x, t)dxdt, ∀u ∈ Extr(Vad),

i.e.,
J (u∗) = max

u∈Extr(Vad)
J (u),

which concludes the proof.
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Remark 3.1. Note that a nonhomogeneous Dirichlet condition in problem (3.2) could be con-
sidered in order to avoid introducing W ∈ H1(Ω) solution to problem (3.3). Nevertheless, this
homogeneous Dirichlet condition will be required to prove items (i),(ii) and (iii) of Theorem 1.1.

Now let us prove item (i) using the Schwarz symmetrization which is recalled in Appendix A.1.

Proof of item (i). In the proof of the existence of a bang-bang solution, we deduced that there
exists u∗ ∈ Extr(Vad) satisfying J (u∗) ≥ J (u) for all u ∈ Extr(Vad). Let C ⊂ Ω, |C| = L such
that u∗ = χC. By denoting f∗ = φ(χC) ∈ F , it follows that

f∗ = χC +
(1− e−αT )

αT
χΩ\C,

and ∫
Ω

Zf (x)dx ≤
∫
Ω

Zf∗(x)dx, ∀f ∈ F ,

where Zf ∈ H1
0(Ω) is the unique solution of problem (3.2) for the control f ∈ F . Then, using the

Schwarz symmetrization comparison theorem (see Theorem A.4), one deduces that,∫
Ω

Zf∗(x)dx ≤
∫
Ω#

v(x)dx, (3.4)

where v ∈ H1
0(Ω) is the unique solution of{

v −D∆v = f∗# in Ω#,
v = 0 on ∂Ω#,

and where Ω# is the symmetric rearrangement of Ω and f∗# = χC# + ((1− e−αT )/αT )χΩ#\C# is

the Schwarz symmetrization of f (see Example A.3). Moreover, since Ω = Bn(0, r), then Ω# = Ω,
f∗# ∈ F and v = Zf∗# . Thus, by Inequality (3.4), one has,∫

Ω

Zf∗(x)dx =

∫
Ω

Zf∗#(x)dx ≥
∫
Ω

Zf (x)dx, ∀f ∈ F .

By the equality case in Theorem A.4, it follows that Zf∗ = Zf∗# and f∗ = f∗#. Thus C =

C# = Bn

(
0, ( L

Cn
)

1
n

)
and then u∗ = χ

Bn

(
0,( L

Cn
)
1
n

). Since it is true for any u∗ solution to

maxu∈Extr(Vad) J (u), ones concludes that χ
Bn

(
0,( L

Cn
)
1
n

) is the unique solution of the optimal con-

trol problem (1.2).

To prove items (ii) and (iii) some properties and results on the Steiner symmetrization are used,
and we refer to Appendix A.2, for more details.

Proof of item (ii). The proof is close to the one of item (i). One knows that there exists C ⊂ Ω,
|C| = L such that

f∗ = χC +
(1− e−αT )

αT
χΩ\C,

and f∗ is a solution of the relaxed problem (3.1). From Theorem A.11, it follows that,∫
Bn1

(0,r1)

Zf∗(x, y)dx ≤
∫
Bn1

(0,r1)

v(x, y)dx,

8



for almost all y ∈ Ωn2
, where Zf∗ ∈ H1

0(Ω) is the unique solution of Problem (3.2) for the control f∗,
and v ∈ H1

0(S(n1,·)(Ω)) is the unique solution of{
v −D∆v = S(n1,·)(f

∗) in S(n1,·)(Ω),
v = 0 on ∂S(n1,·)(Ω),

where S(n1,·)(Ω) = Bn1(0, r1) × Ωn2 is the (n1, ·)-Steiner symmetrization of Ω (see Example A.6)
and where

S(n1,·)(f
∗) = χS(n1,·)(C) + ((1− e−αT )/αT )χS(n1,·)(Ω)\S(n1,·)(C),

is the (n1, ·)-Steiner symmetrization of f∗ (see Example A.10). Furthermore, |S(n1,·)(C)| = |C|
and S(n1,·)(Ω) = Ω, thus S(n1,·)(f

∗) ∈ F and v = ZS(n1,·)(f∗). Hence,∫
Ωn2

∫
Bn1 (0,r1)

Zf∗(x, y)dxdy =

∫
Ωn2

∫
Bn1 (0,r1)

ZS(n1,·)(f∗)(x, y)dxdy,

and one concludes that u∗ = χS(n1,·)(C) ∈ Extr(Vad) is a solution of the optimal control prob-

lem (1.2). The symmetry of S(n1,·)(C) with respect to the hyperplane xi = 0 and the convexity in
the xi-direction for all i ∈ {1, ..., n1}, follow from Proposition A.7.

Proof of item (iii). In the proof of item (ii), one constructs

S(n1,·)(f
∗) = χS(n1,·)(C) +

1− e−αT

αT
χΩ\S(n1,·)(C),

solution of the relaxed problem (3.1). Thus, by considering S(n2,·)(Φ(Ω)) and ZS(n1,·)(f∗) ◦ Φ−1,

where Φ : (x, y) ∈ Rn1 × Rn2 7→ (y, x) ∈ Rn2 × Rn1 , it follows from Theorem A.11 that∫
Bn2 (0,r2)

ZS(n1,·)(f∗)(x, y)dy ≤
∫
Bn2 (0,r2)

v(x, y)dy,

for almost all x ∈ Bn1(0, r1), where v ∈ H1(S(·,n2)(Ω)) is the unique solution of{
v −D∆v = S(·,n2)

(
S(n1,·)(f

∗)
)

in S(·,n2)(Ω),
v = 0 on ∂S(·,n2)(Ω),

where S(·,n2)(Ω) := Φ−1
(
S(n2,·)(Φ(Ω))

)
= Bn1

(0, r1)×Bn2
(0, r2) is the (·, n2)-Steiner symmetriza-

tion of Ω, and S(·,n2)

(
S(n1,·)(f

∗)
)
:= S(n2,·)

(
S(n1,·)(f

∗) ◦ Φ−1
)
◦Φ is the (·, n2)-Steiner symmetriza-

tion of S(n1,·)(f
∗). One deduces that

S(·,n2)

(
S(n1,·)(f

∗)
)
= χS(·,n2)(S(n1,·)(C)) +

1− e−αT

αT
χS(·,n2)(Ω)\S(·,n2)(S(n1,·)(C)).

From Proposition A.7, one has |S(·,n2)

(
S(n1,·)(C)

)
| = |S(n1,·)(C)| = |C| and, since S(·,n2)(Ω) = Ω,

then S(·,n2)

(
S(n1,·)(f

∗)
)
∈ F and v = ZS(·,n2)(S(n1,·)(f∗)). Thus, one can conclude that u∗ =

χS(·,n2)(S(n1,·)(C)) ∈ Extr(Vad) is a solution of the optimal control problem (1.2). From Proposi-

tion A.8 it follows that S(·,n2)

(
S(n1,·)(C)

)
is symmetric with respect to the hyperplane xi = 0 and

with respect to the hyperplane yj = 0, and it is a convex set in the xi-direction and in the yj-
direction, for all (i, j) ∈ {1, ..., n1}×{1, ..., n2}, and also star-shaped at 0 ∈ S(·,n2)

(
S(n1,·)(C)

)
.
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Remark 3.2. To the best of our knowledge, we do not know if the optimal control obtained in
item (ii) and (iii) of Theorem 1.1 is unique. Indeed, unlike the comparison result using Schwarz
symmetrization (Theorem A.4) we have not found any results on the equality case occuring in
Theorem A.11. Note that in the particular case where the second-order elliptic operator does not
contain a zero order term, the equality case is mentionned in [5], therefore we can legitimately
wonder whether this result can be extended to our case which would be an interesting topic for
further work.

4 Additional results and remarks

In this section some additional results and remarks are given. Among domains with the same
measure, it is possible to determine on which domain and for which bang-bang control the cost J
is the lowest.

Proposition 4.1. Let A be the annulus A := Ω#\Bn(0, (
|Ω|−L
Cn

)
1
n ). Then,

inf
u∈Extr(Vad)

J (u) ≥
∫ T

0

∫
Ω#

pΩ
#

χA
(x, t)dxdt,

where pΩ
#

χA
∈ L2(]0, T [,H1(Ω#)) is the solution of the protection problem (1.1) de�ned on Ω#×]0, T [

for the control u = χA.

Proof. Let u ∈ Extr(Vad) and Wu := 1−
∫ T

0
pu/T ∈ H1(Ω) which is the unique solution ofWu −D∆Wu = 1− 1

T

∫ T

0

e−α(1−u)tdt in Ω,

Wu = 0 on ∂Ω.

Since u ∈ Extr(Vad), there exists C ⊂ Ω, |C| = L such that

1− 1

T

∫ T

0

e−α(1−u)tdt =

(
1− 1− e−αT

αT

)
χΩ\C,

a.e. on Ω. Therefore, by Theorem A.4, one deduces that
∫
Ω
Wu(x)dx ≤

∫
Ω# v(x)dx, where v ∈

H1
0(Ω

#) is the unique solution of{
v −D∆v =

(
1− 1−e−αT

αT

)
χ(Ω\C)# in Ω#,

v = 0 on ∂Ω#,

i.e., ∫
Ω

dx− 1

T

∫
Ω

∫ T

0

pu(x, t)dxdt ≤
∫
Ω#

dx−
∫
Ω#

v1(x)dx,

where v1 ∈ H1(Ω#) is the unique solution of{
v1 −D∆v1 = 1−e−αT

αT χ(Ω\C)# + χΩ#\(Ω\C)# in Ω#,

v1 = 1 on ∂Ω#,

and where Ω#\ (Ω\C)# = Ω#\Bn(0, (
|Ω|−L
Cn

)
1
n ) =: A since |Ω\C| = |Ω| − L. Moreover,

1− e−αT

αT
χ(Ω\C)# + χΩ#\(Ω\C)# =

1

T

∫ T

0

e−α(1−χA)tdt,

a.e. on Ω#. Thus, v1 =
∫ T

0
pΩ

#

χA
/T ∈ H1(Ω#) which concludes the proof.
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Remark 4.2. Note that, if we consider a homogeneous Dirichlet boundary condition in the pro-
tection problem (1.1), one can determine similarly to Proposition 4.1, on which domain and for
which control the cost J is the highest, i.e.,

max
u∈Uad

J (u) ≤
∫ T

0

∫
Ω#

pΩ
#

χ
Bn

(
0,( L

Cn )
1
n

)dxdt,

where pΩ
#

χ
Bn

(
0,( L

Cn )
1
n

) ∈ L2(]0, T [,H1
0(Ω

#)) is the solution of the protection problem (1.1) de-

�ned on Ω#×]0, T [ with a homogeneous Dirichlet boundary condition and for the control u =
χ
Bn

(
0,( L

Cn
)

1
n

) (see [42] for a similar result on an optimal control problem where the control acts

on the divergence operator).

Remark 4.3. If one does not restrict Proposition 4.1 to bang-bang controls, then one can prove
in the same way that,

min
u∈Uad

J (u) = J (0) ≥
∫ T

0

∫
Ω#

pΩ
#

0 (x, t)dxdt,

where pΩ
#

0 is the solution of the protection problem (1.1) de�ned on Ω#×]0, T [ for the null con-
trol u = 0 a.e. on Ω.

We conclude this section with the following remark.

Remark 4.4. By integrating on Ω×]0, T [ the protection problem (1.1) and using Green's formula,
we obtain ∫ T

0

∫
Ω

pu(x, t)dxdt =

∫ T

0

∫
Ω

e−α(1−u(x))tdxdt+D

∫ T

0

∫
∂Ω

∂npu(x, t)dxdt,

for all u ∈ Extr(Vad). Since∫ T

0

∫
Ω

e−α(1−u(x))tdxdt = T

∫
{u=1}

dx+

∫ T

0

∫
{u=0}

e−αtdxdt = TL+ (|Ω| − L)
1− e−αT

α
,

for all u ∈ Extr(Vad), then the optimal control problem (1.2) is equivalent to maximizing the

functional
∫ T

0

∫
∂Ω

∂npu(x, t)dxdt on Extr(Vad). In particular, if the Dirichlet boundary condition
is replaced by a Neumann boundary condition in the protection problem (1.1), then all bang-bang
controls are solutions of the optimal control problem (1.2). Indeed, if ∂npu = g on ∂Ω×]0, T [,
where g ∈ L2(]0, T [,H−1/2(Ω)), then we can still prove that J attains its maximum on the set of
bang-bang controls and, moreover,∫ T

0

∫
Ω

pu(x, t)dxdt = C, ∀u ∈ Extr(Vad),

where C > 0 is a constant independant of u ∈ Extr(Vad).

5 Numerical simulations

In this section we numerically solve an example of the optimal control problem (1.2) in the
two-dimensional case n = 2, in order to illustrate Theorem 1.1. The numerical simulations have
been performed using Freefem++ software [23] with P1-�nite elements and standard a�ne mesh.
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5.1 Numerical methodology

Starting from an initial data u0 ∈ Uad, note that Proposition 2.2 allows to obtain an ascent
direction hd(u0) of the cost functional J at u0, given by hd(u0) := qw ◦ u0 ∈ L∞(Ω), since it
satis�es dJ (u0)(hd(u0)) = ∥qw ◦u0∥2L2(Ω) ≥ 0. To deal with the inequality constraint

∫
Ω
u(x)dx ≤

L, the Uzawa algorithm (see, e.g., [1, Chapter 3 p.64]) is used, while the bound constraints are
dealt with the projected gradient. In a nutshell, we consider the augmented functional J − λ0F ,
where F : u ∈ L∞(Ω) 7→

∫
Ω
u − L ∈ R and λ0 ∈ R+ is an initial Lagrange multiplier. Since the

Fréchet di�erential of F at u0 is the map h ∈ L∞(Ω) 7→ λ0

∫
Ω
h ∈ R, one can obtain an ascent

direction of the augmented functional at u0 given by hd(u0) − λ0. Then the new control is given
by

u1 = projV (u0 + η (hd(u0)− λ0)) ,

where η > 0 is a �xed parameter and projV is the projection operator onto V := {u ∈ L∞(Ω) | 0 ≤
u ≤ 1 a.e. on Ω} considered in L2(Ω). Finally, the Lagrange multiplier is updated as follows

λ1 := λ0 + µF (u1),

where µ > 0 is a �xed parameter, and the algorithm restarts with u1 and λ1, and so on. To
conclude, note that the algorithm stops when, for all i ∈ N∗, the di�erence between the cost
functional J at the iteration 20× i and at the iteration 20× (i− 1) is small enough.

5.2 Numerical results

For numerical simulations, we consider a di�usion coe�cient D = 0.01 and a death rate α = 1.
In the following, the domains considered have the same measure |Ω| = 4 and the maximal surface
of the intervention zones is L = |Ω|/4 = 0.4.

In Figure 1 (resp. Figure 2), the numerical simulation is performed on the domain Ω1 =
] − 1, 1[×]0,−1[∪]0, 1[×]0, 2[ (resp. Ω2 =] − 3c, 3c[×] − c, c[∪] − c, c[×]c, 3c[∪] − c, c[×] − 3c,−c[
for c = 1/

√
5). Figure (1a) (resp. (2a)) shows the optimal control, (1b) (resp. (2b)) the optimal

protection at the �nal time T . One observes that the optimal control takes exclusively the two
values 0 (in orange) and 1 (in red) in the domain and thus it is a bang-bang control which is in
accordance with Theorem 1.1. Furthermore, one sees that the zone of intervention is connected,
and in the case of the symmetric domain Ω2, it is also symmetric. (1c) (resp. (2c)) shows the
evolution of the value of J and (1d) (resp. (2d)) the surface of the intervention zone with respect
to the iterations. We observe that J seems to converge with some oscillations due to the Lagrange
multiplier in order to satisfy the surface constraint.

In Figure 3, a circular domain is considered Ω3 = B2(0, 2/
√
π). As in Figure 1 and Figure 2,

one observes that the optimal control is bang�bang. The zone of intervention is a disk concentrated
in the center of the domain with a surface close to 0.4 as stated in item (i) of Theorem 1.1.

In Figure 4, we consider a rectangular domain Ω4 =] − 2, 2[×] − 1
2 ,

1
2 [. As in previous �gures,

the optimal control is bang�bang. Moreover the zone of intervention is symmetric with respect to
the axis (Ox) and (Oy), convex in the x-direction and in the y-direction and also star-shaped at 0
as expected from item (iii) of Theorem 1.1.

In Figure 5, in (5a) are summarized the values of the cost functional at the optimal control
on their respective domains. The circular domain and the annular intervention zone described in
Proposition 4.1 are computed in (5b), with the value of J who is lower than in the other numerical
simulations, as claimed.
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(1a) (1b)

(1c) (1d)

Figure 1: (1a) The optimal control on Ω1. (1b) The protection for the optimal control at the �nal time T .
The values of the cost functional (1c) and the surface of the intervention zone (1d) with respect to the
iterations.

(2a) (2b)

(2c) (2d)

Figure 2: (2a) The optimal control on Ω2. (2b) The protection for the optimal control at the �nal time T .
The values of the cost functional (2c) and the surface of the intervention zone (2d) with respect to the
iterations.
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(3a) (3b)

(3c) (3d)

Figure 3: (3a) The optimal control on the circular domain Ω3. (3b) The protection for the optimal control
at the �nal time T . The values of the cost functional (3c) and the surface of the intervention zone (3d)
with respect to the iterations.

(4a) (4b)

(4c) (4d)

Figure 4: (4a) The optimal control on the rectangular domain Ω4. (4b) The protection for the optimal
control at the �nal time T . The values of the cost functional (4c) and the surface of the intervention zone
(4d) with respect to the iterations.
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The domain Ω1 Ω2 Ω3 Ω4

value of J at the optimal control 2.93643 2.95918 2.83285 2.93773
Surface of the intervention zone 0.400416 0.399502 0.399777 0.399541

(5a)

(5b)

Figure 5: (5a) The value of J at the optimal control and the surface of the intervention zone on the
di�erent domains considered. (5b) A circular domain with an annular intervention zone and the value of J
for this control.
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A Notions and results on Schwarz and Steiner symmetriza-

tions

The aim of this section is to recall and to prove some results on the Schwarz and Steiner
symmetrizations. For more details we refer to standard references such as [8, 12, 24, 26, 27].

A.1 Schwarz symmetrization

De�nition A.1 (Symmetric rearrangement). Let A be a measurable subset of Rn such that |A| <
∞. The symmetric rearrangement of A is the subset A# ⊂ Rn de�ned by

A# := Bn

(
0,

(
|A|
Cn

) 1
n

)
,

where Cn := |Bn(0, 1)|.

De�nition A.2 (Schwarz symmetrization). Let A be a measurable subset of Rn such that |A| < ∞,
and let f : A → R be a nonnegative measurable function. The Schwarz symmetrization of f is the
function f# de�ned by

f#(x) :=

∫ +∞

0

χ{f>t}#(x) dt,
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for all x ∈ A#.

Example A.3. Let Ω be a nonempty bounded open subset Rn and let A be a measurable subset
of Ω. Consider the map f : x ∈ Ω 7→ αχA(x) + βχΩ\A(x) ∈ R+, where α, β are constants such
that α ≥ β ≥ 0, and χA (resp. χΩ\A) is the characteristic function of A (resp. of Ω\A). Then the

Schwarz symmetrization of f is f# : x ∈ Ω# 7→ αχA#(x) + βχΩ#\A#(x).

The next comparison theorem for elliptic equations is proved in [6, 17, 40] or [39, Section 9]),
and it is one of the key points to derive item (i) of Theorem 1.1. The proof for the necessary and
su�cient conditions of the equality case can be found in [3, Theorem 4].

Theorem A.4. Let us consider Ω a nonempty bounded connected open subset of Rn, with a
lipschitz boundary ∂Ω, f ∈ L2(Ω) a nonegative function, D > 0 a constant, Zf ∈ H1

0(Ω) the unique
solution of the Dirichlet problem, {

Zf −D∆Zf = f in Ω,
Zf = 0 on ∂Ω,

and v ∈ H1
0(Ω

#) the unique solution of the Dirichlet problem{
v −D∆v = f# in Ω#,

v = 0 on ∂Ω#,

where Ω# is the symmetric rearrangement of Ω and f# is the Schwarz symmetrization of f . Then,∫
Ω

Zf (x)dx ≤
∫
Ω#

v(x)dx,

with equality if and only if Ω = x0 +Ω#, Zf (·+ x0) = v, f(·+ x0) = f# for some x0 ∈ Rn.

A.2 Steiner symmetrization

In this subsection, let us assume that n ≥ 2 and let us denote Rn = Rn1 × Rn2 , where n1 ∈
N∗, n2 ∈ N∗, such that n1 + n2 = n. We refer to the variables in Rn1 as x = (x1, ..., xn1

), and to
the variables in Rn2 as y = (y1, ..., yn2).

De�nition A.5 (Steiner symmetrization of sets). Let A ⊂ Rn be a measurable set such that |A| <
∞. The (n1, ·)-Steiner symmetrization of A is de�ned by

S(n1,·)(A) :=
{
(x, y) ∈ Rn1 × Rn2 | x ∈ A(y)#, y ∈ Rn2

}
,

where, for all y ∈ Rn2 , A(y) = {x ∈ Rn1 | (x, y) ∈ A} is the y-slice of A, and A(y)# is the symmet-
ric rearrangement of A(y). One de�nes the (·, n2)-Steiner symmetrization of A as S(·,n2)(A) :=

Φ−1
(
S(n2,·)(Φ(A))

)
where Φ : (x, y) ∈ Rn1 × Rn2 7→ (y, x) ∈ Rn2 × Rn1 .

The next example is involved in item (ii) and item (iii) of Theorem 1.1.

Example A.6. Let A = An1 ×An2 ⊂ Rn such that An1 ⊂ Rn1 (resp. An2 ⊂ Rn2) is a measurable
set of Rn1 (resp. of Rn2) with a �nite measure. Then the (n1, ·)-Steiner symmetrization of A is
given by S(n1,·)(A) = A#

n1
×An2

, where A#
n1

is the symmetric rearrangement of An1
.

From the Steiner symmetrization de�nition, one deduces the following proposition.

Proposition A.7. Let A ⊂ Rn be a measurable set such that |A| < ∞. Then:
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1) |S(n1,·)(A)| = |S(·,n2)(A)| = |A|;

2) S(n1,·)(A) (resp. S(·,n2)(A)) is symmetric with respect to the hyperplane xi = 0 for all i ∈
{1, ..., n1} (resp. with respect to the hyperplane yj = 0 for all j ∈ {1, ..., n2});

3) S(n1,·)(A) (resp. S(·,n2)(A)) is convex in the xi-direction for all i ∈ {1, ..., n1} (resp. in
the yj-direction for all j ∈ {1, ..., n2}).

Proposition A.8. Let A ⊂ Rn be a measurable set such that |A| < ∞. Then the (·, n2)-Steiner
symmetrization of S(n1,·)(A), i.e. S(·,n2)(S(n1,·)(A)), is:

A) symmetric in the hyperplane xi = 0 for all i ∈ {1, ..., n1} and in the hyperplane yj = 0 for
all j ∈ {1, ..., n2};

B) convex in the xi-direction for all i ∈ {1, ..., n1} and convex in the yj-direction for all j ∈
{1, ..., n2};

C) star-shaped at 0 ∈ S(·,n2)(S(n1,·)(A)).

Proof. A) can be easily proved using item 2) of Proposition A.7.
B) By item 3) of Proposition A.7, the set S(·,n2)

(
S(n1,·)(A)

)
is convex in the yj-direction for

all j ∈ {1, ..., n2}. Let i ∈ {1, ..., n1} be �xed and consider (x′, y), (x′′, y) ∈ S(·,n2)

(
S(n1,·)(A)

)
where x′ = (x′

k)k∈{1,...,n1} and x′′ = (x′′
k)k∈{1,...,n1}, such that x′

k = x′′
k , for all k ∈ {1, ..., n1}\{i}.

Then y ∈ S(n1,·)(A)(x′)# and y ∈ S(n1,·)(A)(x′′)#. Without loss of generality, we can assume
that |x′′

i | ≤ |x′
i|, then since S(n1,·)(A) is symmetric with respect to the hyperplane xi = 0 and

convex in the xi-direction, then

S(n1,·)(A)(x′) ⊂ S(n1,·)(A)(x′
1, ..., x

′
i−1, zi, x

′
i+1, ..., x

′
n),

for all zi ∈ [−x′
i, x

′
i]. In particular, since |x′′

i | ≤ |x′
i|, then x′′

i ∈ [−x′
i, x

′
i] and [x′′

i , x
′
i] ⊂ [−x′

i, x
′
i]. It

follows that
S(n1,·)(A)(x′) ⊂ S(n1,·)(A)(x′

1, ..., x
′
i−1, zi, x

′
i+1, ..., x

′
n),

for all zi ∈ [x′′
1 , x

′
1], thus

S(n1,·)(A)(x′)# ⊂ S(n1,·)(A)(x′
1, ..., x

′
i−1, tx

′
i + (1− t)x′′

i , x
′
i+1, ..., x

′
n)

#,

and then y ∈ S(n1,·)(A)(x′
1, ..., x

′
i−1, tx

′
i + (1− t)x′′

i , x
′
i+1, ..., x

′
n)

# for all t ∈ [0, 1]. One gets that

(x′
1, ..., x

′
i−1, tx

′
i + (1− t)x′′

i , x
′
i+1, ..., x

′
n, y) = t(x′, y) + (1− t)(x′′, y) ∈ S(·,n2)

(
S(n1,·)(A)

)
,

therefore S(·,n2)

(
S(n1,·)(A)

)
is convex in the xi-direction.

C) Let (x′, y′) ∈ S(·,n2)(S(n1,·)(A)). Since S(·,n2)(S(n1,·)(A)) is symmetric with respect to the
hyperplanes xi = 0 and convex in the xi-direction, for all i ∈ {1, ..., n1}, then one gets (0n1 , y

′) ∈
S(·,n2)(S(n1,·)(A)), where 0n1

is the null vector of Rn1 . In the same way, using the symmetry with
respect to the hyperplane yj = 0 and the convexity of S(·,n2)(S(n1,·)(A)) in the yj-direction for
all j ∈ {1, ..., n2}, it follows that 0 = (0n1

, 0n2
) ∈ S(·,n2)(S(n1,·)(A)). Now, let us consider z ∈

[0, (x′, y′)]. Then, there exists t ∈ [0, 1] such that z = t(x′, y′). Using the symmetry with respect
to the hyperplanes xi = 0 and the convexity in the xi-direction, for all i ∈ {1, ..., n1}, one gets
that (tx′, y′) ∈ S(·,n2)(S(n1,·)(A)). Then, in the same way one gets (tx′, ty′) ∈ S(·,n2)(S(n1,·)(A))
and it follows that z ∈ S(·,n2)(S(n1,·)(A)), thus [0, (x′, y′)] ⊂ S(·,n2)(S(n1,·)(A)) which concludes the
proof.
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De�nition A.9 (Steiner symmetrization of functions). Let A be a measurable subset of Rn such
that |A| < ∞, and let f : A → R be a nonnegative measurable function. The (n1, ·)-Steiner
symmetrization of f is the function S(n1,·)(f) de�ned by

S(n1,·)(f)(x, y) :=

∫ +∞

0

χS(n1,·)({f>t})(x, y)dt,

for all (x, y) ∈ S(n1,·)(A).

Example A.10. Let Ω be a nonempty bounded open subset Rn and let A be a measurable subset
of Ω. Consider the map f : (x, y) ∈ Ω 7→ αχA(x, y) + βχΩ\A(x, y) ∈ R+, where α, β are constants
such that α ≥ β ≥ 0, and χA (resp. χΩ\A) is the characteristic function of A (resp. of Ω\A).
Then the (n1, ·)-Steiner symmetrization of f is S(n1,·)(f) : (x, y) ∈ S(n1,·) (Ω) 7→ αχS(n1,·)(A)(x, y)+

βχS(n1,·)(Ω)\S(n1,·)(A)(x, y) ∈ R.

The next Steiner symmetrization comparison theorem for elliptic equations (see [16]) is the
main theorem needed to prove item (ii) and item (iii) of Theorem 1.1.

Theorem A.11. Let Ω ⊂ Rn and assume that Ω = Ωn1
×Ωn2

, where Ωn1
⊂ Rn1 (resp. Ωn2

⊂ Rn2)
is a nonempty bounded open subset of Rn1 (resp. of Rn2). Let f ∈ L2(Ω) be a nonnegative
function, D > 0, and consider Zf ∈ H1

0(Ω) the unique solution of the Dirichlet problem{
Zf −D∆Zf = f in Ω,

Zf = 0 on ∂Ω,

and v ∈ H1
0(S(n1,·)(Ω)) the unique solution of the Dirichlet problem{

v −D∆v = S(n1,·)(f) in S(n1,·)(Ω),
v = 0 on ∂S(n1,·)(Ω),

where S(n1,·)(Ω) = Ω#
n1

× Ωn2
. Then, one has∫

Ωn1

Zf (x, y)dx ≤
∫
Ω#

n1

v(x, y)dx,

for almost all y ∈ Ωn2
.
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