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Approximation of feedback gains for abstract parabolic
systems

Mehdi Badra, Jean-Pierre Raymond,

¢Institut de Mathematiques de Toulouse, Universite Paul Sabatier €& CNRS, Toulouse
Cedex, 31062, France

Abstract

We consider parabolic controlled systems represented by a pair (A, B), where
(A, D(A)) is the infinitesimal generator of an analytic semigroup on a Hilbert
space Z and B is an unbounded control operator from a control space U
into Z. We consider approximate controlled systems (Ag, B:), for ¢ > 0,
where (Ag,D(A;)) is the infinitesimal generator of an analytic semigroup
on a Hilbert space Z. and B. is an unbounded control operator from the
control space U into Z.. Since Z. is not included in Z, we are in the
case of nonconforming approximations. We assume that both Z and Z. are
Hilbert subspaces of another Hilbert space H, and that there exist projectors
P e L(H) and P. € L(H) such that Z = PH and Z. = P.H, and for which
(A, B, P) and (A., Be, P:) satisfy suitable approximation assumptions.

When the pair (A, B) is exponentially feedback stabilizable in Z, we
first prove that the pair (A., Be) is exponentially feedback stabilizable in
Z., uniformly with respect to € € (0,&), for some €9 > 0. We next prove
that Riccati-based feedback laws stabilizing (A, B) in Z can be approxi-
mated by feedback laws stabilizing (A., B:) in Z.. This type of results has
been established in the eighties and the nineties in the case of conforming ap-
proximation, that is when Z. C Z. To the best of our knowledge nothing is
known in the case of nonconforming approximations. We also extend, to the
case of nonconforming approximations, convergence rates obtained in the
case of conforming approximations. Nonconforming approximations play a
central role in fluid mechanics. In [2], we have shown that the results proved
in the present paper apply to the Oseen system (the Navier-Stokes equations
linearized around a steady state) and its semidiscrete approximation by a
Finite Element Method.
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1. Introduction

In this paper, we consider a controlled system, in a Hilbert space Z, of
the form
2/ =Az4 Bu in (0,00), 2z(0)=2z € Z. (1.1)

In this setting, (A, D(A)) is the infinitesimal generator of an analytic semi-
group (e*4);>0 on Z, the control operator B is a bounded operator from a
Hilbert space U into (D(A*))’, where (A*, D(A*)) is the adjoint of (4, D(A)).

We are going to consider nonconforming approximations of system ,
in a Hilbert space Z., of the form

2L =Acze + Beu in (0,00),  2:(0) = ze0 € Z, (1.2)

where (Ag, D(A.)) is the infinitesimal generator of an analytic semigroup
(etAE)tZO on Z., the control operator B; is a bounded operator from U into
(D(A?Y)), where (A%, D(AY)) is the adjoint of (A, D(A.)).

We speak of nonconforming approximation because Z. ¢ Z, but Z and
Z. are both Hilbert subspaces of a larger Hilbert space H.

The main results of the paper are the following:

- In Theorem [4.1fi), we prove that if the pair (A, B) is feedback stabi-
lizable in Z, then the pair (4., B;) is feedback stabilizable in Z., uniformly
with respect to € € (0,ep), for g > 0 small enough.

- In Theorem (ii), we prove that if there exists a family of feedback
operators F. € L(Z;,U) for all € € (0,¢p), for some gy > 0, stabilizing
the pair (Ag, B:) in Z., uniformly with respect to € € (0,¢¢), then F.P. €
L(Z,U) also stabilizes the pair (A, B) in Z.

- In Section [pl we study feedback operators defined in the LQR theory
by the pair (A, B) and an output operator C € L(H,Y), where Y is another
Hilbert space. We assume that the pair (A, B) is stabilizable and the pair
(A,C|z) is detectable in Z. We denote by II € L£(Z,Z') the solution to
the algebraic Riccati equation associated with the triplet (A, B,C|z), and
by 1. € L(Z., Z) the solution to the algebraic Riccati equation associated
with the triplet (A, B.,C|z.). In Proposition[5.4] we establish a convergence
rate for ||B*IIP — BZI.P:| ;g Thus the assumptions of Theorem
are satisfied by the feedback laws F' = —B*IIP and F. = —BIl.P., and
the main result of Section [l are collected in Theorem [5.41



We would like to emphasize that many applications, for which assump-
tions (Hyp) — (Hs) stated in Section [2] are satisfied, fit with the abstract
framework introduced here. In [2] (see also [4, 5]), we apply the results
of Section [5] to the numerical approximation by a finite element method of
feedback laws stabilizing the Oseen system in a bounded polyhedral domain
of R? (or a bounded polygonal domain of R?).

- The results of Section [5| can also be applied in the case where Z. is
of infinite dimension. It is for example the case when the incompressibility
condition in the Oseen system is approximated by the pseudo-compressibility
method. For application of the results of Section 5] to that case, we refer
to [1]. Let us notice that in [3], using results proved here in Section |3, we
determine feedback laws for both the initial and the approximate system by
using reduced order models based on spectral projections. We still obtain
convergence rate for feedback laws in that case too.

As far as we know, the main results of the present paper — Theorems
and — are the first ones of this type in the case of nonconforming
approximations. But they can also be applied to the case of conforming
approximations, that is when Z = H, P = I, and Z. C Z. Theorem
is new in the case of nonconforming approximations, and its proof relies
on new tools introduced here for nonconforming approximations. We think
that Theorem is new, even in the case of conforming approximations,
because both our assumptions and our method of proof are different from
the existing results in the literature.

Let us make some comparisons with the existing literature. For bounded
control operators and conforming approximations some results similar to
those of Theorem are established in [7, [IT]. For unbounded control
operators and conforming approximations the main contributions are due
to Lasiecka and Triggiani in a series of papers [I3] 14, 12] and in the book
[15]. See also [6]. In Theorem we have collected results which can
be found in a weaker form in the case of conforming approximations in
[15, Section 4.4.1], see also [14, Theorem 4.2] and [12], Theorem 2.3] (only
convergence results are given in these references and not convergence rates.
It is why these results are weaker than those stated in Theorem . Here,
in order to extend the results stated in [I5 Section 4.4.1], we have first to
extend the notion of gap from an operator to another one, see [10, Chap. 1V,
par. 2.4, p.201], when these approximations are not defined in a subspace
of Z (contrarily to the case of conforming approximations). This is done
in Section We also need a new resolvent identity adapted to the case
of nonconforming approximations, which is stated and proved in Section [6}
But, results similar to those stated in and are neither given nor



used in [I2] or in [I5]. The reason is that our method for proving Theorem
and that used in [I4] or in [I5] are different. This is what we explain at
the end of Section As explained in Remark at the end of Section
[5.7] we think that some estimates are missing in [I4] or in [15, Section 4.5].

Let us finally compare the assumptions used in [15, Section 4.5] and those
we state in Section [2] The assumptions concerning the convergence rates
stated in and are, for nonconforming approximations, similar
to those in [I5) (4.1.2.4), (4.1.2.8)] for conforming approximations. Let us
however notice that our choice (e° and €” in place of €% and 5(1=7)) allows us
to treat more general examples. The uniform bound stated in [15] (4.1.1.4)]
is similar to (2.5). The uniform bound is not needed in [15] because the
analogue of our projector P: is an orthogonal projector (denoted by IIj in
[15]). The main difference in the assumptions is in the uniform bound stated
in (2.8). The corresponding assumptions in [15] are stated in [15, (4.1.2.6),
(4.1.2.9)]. First notice that [I5], (4.1.2.6)] is an inverse inequality which can
be satisfied only for finite dimensional approximations, while our assumption
can be used both for finite and infinite dimensional approximations.
Moreover our method allows us to consider cases for which P and P- are not
orthogonal projectors. It is for example the case when we define reduced
order models based on spectral projections, see e.g. [3].

2. Assumptions and preliminary results

2.1. Notation

The inner product and the norm in H (resp. U) will be denoted by
(,)m and || - ||& (resp. (-,-)u and || - ||v) respectively. In Section [5, we will
introduce another Hilbert space Y whose inner product and norm will be
denoted by (-,-)y and || - ||y respectively.

The Hilbert spaces Z and Z., which are continuously embedded in H,
are equipped with the norm in H. Since P € £(H) is a projector in H onto
Z, if we set Z, = (I — P)H, P is obviously the projector onto Z parallel
to Z,. We have H = Z & Z,. In what follows, we identify H with its dual
H', U with U’, and Y with Y’. Since H and H’ are identified, if P is not
an orthogonal projector in H, we cannot identify Z with Z’, but the duality
product (-,+), » is nothing but the inner product (-,-)n.

We need to introduce P* € L(H), the adjoint of P € L(H). We have
H =P*H®(I—P*)H. If P is not an orthogonal projector, we have P # P*
and Z # P*H. We can easily check that P*H can be identified with Z’, and
(I — P*)H can be identified with Z/. With such identifications H = Z'® Z!,
and P* is the projector in H onto Z' parallel to Z/.



Similarly, we set Z, . = (I — P.)H. We introduce P} € L(H), the adjoint
of P. € L(H). We will identify P? H with Z., and (I — PX)H with Z, .. We
can identify Z. with Z., and Z,_ with Z,., only if P. is an orthogonal
projector in H.

To shorten the notation, for 1 < p < co and any Hilbert space X, the
space LP(0,00; X) will be denoted by LP(X):

LP(X) = LP(0,00; X).

Throughout what follows, C' denotes a generic constant which may vary
from one line to another one, but is independent of the parameter ¢ and
of A € C. Sometimes, we emphasize the dependence of a constant on some
other parameters 0, ¢, or K, by writing Cy, Cy or Ck.

2.2. Assumptions

(H1) There exists (wg,d) € R x (0,7/2) such that:

{WO} + SW/2+6 C p(A),

B C (2.1)
[(A = A) gz < ol for all A € {wo} + Sz /245,
and
{0} + /200 C p(AL), Ve € (0,1),
L C (2.2)
(A = A) gz < ol Ve € (0,1), VA€ {wo} + Srjas;

where, for § € (0,7/2), the subset S; /5,5 C C denotes the sector {\ € C |
larg(A)| < m/24 6}, and p(A) and p(A.) are the resolvent sets of A and A
respectively.

In what follows, (A*, D(A*)), the adjoint of (A,D(A)), is an unbounded
operator in Z’, and (A%, D(A?)), the adjoint of (A, D(A.)), is an unbounded
operator in Z!. We set
AL A NI and A A, — NI, with A\ > wo.
We recall that P € £(H) is a projector from H onto Z, and that P €
L(H) is a projector from H onto Z..

(H2) The family of projectors P. € L(H) satisfies the uniform bound

sup || Pl ey < +oo, (2.3)
€€(0,1)



and the pair (g, 26) satisfies the following approximation assumption

|A'P — AZ'P.|| oy < C<®, Ve €(0,1),  with s > 0. (2.4)

(Hs) The control operator B belongs to L(U, (D(A*))'), and it satisfies

(=A)" "B € L(U,Z) for some v € [0,1). (2.5)
(Hy) For all e € (0,1), B belongs to L(U, (D(A%))). The pair (B, B;)
satisfies the following approximation assumption

|A'B — A\E_lBEHLZ(U,H) < Ce" foralle € (0,1), with0<r <s(1—7).
(2.6)
In addition, when v > 0 and r = s(1 — ), we assume that

[2,D(A)]p = D(A%), ¥ € (0,1), (2.7)
where [+, -]g stands for the complex interpolation.

Remark 2.1. Assumption is equivalent to the local boundedness of
imaginary powers of A (see [17, Theorem 1.15.3, p.103]). It is needed in
the proof of Proposition 2.1} Proposition [2:1] is used to prove Proposition
and Proposition Assumption is satisfied in usual cases, for
instance when A is maximal accretive (see [8, Proposition 6.1, p171]). Let
us notice that this type of condition is needed in [I5, Chap 4] even if this
assumption is not explicitely stated there. For instance, it is required to
derive [I5] (4.3.3) and (4.3.6)].

(Hs) The family of operators (Bc).¢(o,1) satisfies (=A.)B. € L(U, Z.), for
all € € (0,1), and the uniform bound

wot

le Bellew,z) < C S VE€ (0.8) = (0,707, Ve e (0,1),  (28)
for some 7 € [y, 1).

Remark 2.2. When v = 0, the operator B belongs to L(U, Z). And if in
(2.8), 7 is also equal to zero, this means that B, € L(U, Z.), and that

1Bellcw,z.) < C, Ve €(0,1).

But (2.8)) allows us to consider sequences of operators (B:).¢(o,1) Which are
not necessarily bounded, even if B € L(U, Z).



Remark 2.3. From (H3) and (Hy), it follows that

sup [(—A:) T Bl pw.zy < +oo. (2.9)
€€(0,1)

We can also notice that if

sup [[(—A2) T Bellzw.z.) < +00, (2.10)
e€(0,1)

is satisfied, then Assumption (2.8)) is verified as a consequence of (2.14))
below. However, we will see in some applications that Assumption (2.8)) can
be verified while (2.10)) is not necessarily satisfied (see [2]).

2.3. First error estimates for the semigroup (e!4)io

For all # € [0,1], and all € € (0,1), we have the following estimates:

AP = A) Yo < m,vxe{wo}+sﬂ/2+5,(z.11)
APy < Coopr W0 (2.12)
1A 0~ A ez < w,VAe{w0}+sﬂ/g+5,<2.13>
I(~A) e 2y < Co W, vt > 0. (2.14)

Estimate (2.11]) is a consequence of ([2.1)) and of the interpolation inequality
stated in [16, (6.19) in Chapter 2, Theorem 6.10]. With [8, Chapter II-1,

(2.44)], estimate (2.12]) for § = 1 follows from (2.1). Estimate (2.12) for
0 < 6 < 1 is obtained by interpolation. Similarly, (2.13]) and (2.14]) follow

from ([2.2]).

Theorem 2.1. Let us assume that (2.1) to (2.4) are satisfied. For all 0 <
0 <1, and alle € (0,1), and t > 0, we have

wot

[P — e P gy < O (2.15)
Moreover, we have
HeA()P — 0P, 21 (zery) < Ce’llnegl,
and (2.16)

Heg(')P Op. I ze(cery) < Cap for all p € (1, 00).
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PROOF. Step 1. Let us first prove that, for all 6 € [0, 1], we have:

Chy
I e YA oo} + T

(2.17)
where I', 5 is the path, oriented from s0e~ 15 to ooeinH, defined by

AL — A)™LP — (A — A) 7P| ooy <

def

_ T+ ; ;T8
Lps = {re™ 2 hisp U{pe g cn s U{Te" > Jispy, p >0 (2.18)

For 6 = 0, (2.17)) follows from (2.1)) and ([2.2]).
To prove (2.17) for § = 1, we use the following resolvent identity (see

Section @:

(M —A)7'P.— (M- A)7'P =
(1= (A= X)M = AT PYATP = A7 P)(I = (A= X)(M — A:)7'P),

(2.19)
for A € {wo} +T'ps. From (2.1) and (2.2)), it follows that
_ _ CIA— A\
IO =20) (AT = A2) ™ Pell oy + I (A= Ao) AT— A) Py < M <c,

for all A € {wo} +I'ps. Thus, with (2.19)) and (2.4), we have:
(AT — A)_IP — (A - Ae)_IPEHE(H) <Cye’.

For 0 < 0 < 1, inequality (2.17)) follows by interpolation from the estimates
proved for § = 0 and for 8 = 1.
Step 2. Proof of (2.15)). With the Dunford integral formula, we have:

1
eMp—eflp = — / M((N— AP — (M — A) LR,
297 {wo}_;'_pp’é

Making the change of variable £ = t(A — wp), which maps {wo} + I, to
tI', 5, we obtain

/ (N — AP — (M — A)71P)dA
{WO}+Fp,6

- /tF ST (&)t +wo) — A)HP — ((f/t‘FwO)I—AE)’lPE)dTg,
: (2.20)



For ¢ > 0 the oriented path tI', s is the sum of the oriented path I', 5 and
another one denoted by C; , 5, which is a closed oriented path. Since C; 5 is
closed and does not enclose 0, we have

d
€ o
t

| et et = AP = (€t + w0l — AP

The path tI', s in (2.20)) can be replaced by I',, 5, and, with (2.17)), we obtain

& C wot ~s6
(& (& &
/ —dé| = o -
r,s €] t

C@ 889
HeAtP _ eAEtpsHE(H) < 5P wot

= 2mt?

Step 3. Proof of (2.16). To prove (2.16) for 1 < p < oo, it is sufficient to

write

e P — e™' Pl 1o o)

es 1 dt [e) 1/p
< c< / dt + e / L / e—p@o—wo)tdt) ,
0 gs 2 1

{ (% + | In(e)]), ifp=1,

<C
(e5/P 4 &%), if 1 <p< oo,

where we have used ([2.15) with § = 0 if ¢ € [0,¢°], and with 0 = 1 if
t e (ef,00). O

Remark 2.4. A brief check of the proof of Theorem [2.I] shows that in-

equality (2.17) is true for A € {wo} + (Sr/246 \ B,), where for n > 0,
B, = {\ € C | |A| < n}. More precisely, for n > 0, we have

C77 s6

1 -1
(M — A) 7' Pe — (M — A) 7P| oy < = w0

(2.21)

for all 0 < 6 <1 and A € {wo} + (Sx/245 \ By)-

Proposition 2.1. Let n > 0 and set B, ={\ € C| |\ <n}. Forall
A€ {wo} + (Szj24+5 \ By) we have

Gy v (2.22)

1 -1
AL = Ae)™ P = (M = A) 7l p_dyi—v),2) < X —wol



PROOF. Let us prove that, for 6 € [0,1] and A € {wo} + (Sz/246 \ By), we
have

C s0

JAL = A) ™ = (AT = A) ™ Pellcgmmans. ) < Y. (2.23)

|A — wol

From the second statement of Lemma [6.1] in Appendix [6] we have

(A — A)_l — (M - As)_IPE)P =
(I— (A=) (A — A5>—1Pg><fT;1P5 ~ A7)\ - A>—1<—fT>P.

From this identity and from ([2.1)), (2.2]) and ( . ) we deduce for 0=1.
The case # = 0 is a direct consequence of . ) and ([2.2) Thus 2.23)) follows

by interpolation.

If v =0, then is an immediate consequance of with 6 = 1.
If v > 0and r = s(1 — ), then we deduce from and from
assumption , both with § =1 — 7.

If v >0 and r < s(1 — ), then we deduce ) from with
9 = r/s and from the continuous embedding D(A'~ 7) [Z D(A)]T/s. This
last embedding is true since r/s < 1 —~, see [17, Theorem 1.15.2 (d) p.101,
Theorem 1.3.3 (a)&(e) and par. 1.18.10. Remark 3 (3) p. 143]. O

3. Approximation of the semigroup and of the resolvent set

Here we suppose that Z; and Zy are two closed subspaces of H, that
P :H — Zyand P, : H — Z5 are projection operators and that A; and As
are closed linear operators densely defined in Z; and Zs respectively.

The main goal of this section is to_prove Theorem [3.I} This theorem
will be used in the proof of Theorem @ i) with A; = A + B.F. — N
and Ay = A+ BF — )\I and in the proof of Theorem |4.1(ii) with Ay =
A+BF®© —XT and Ay = A.+ B.F.— I, where F € L(Z, U), F. e L(Z.,U)
and F) € £(Z,U) are feedback operators. To prove Theorem we have
to extend the notion of gap introduced in [I0] to the case where A; and Ay
are not defined in the same space. For that, we are going to define the gap
between the pairs (A1, P1) and (Ag, P»). We first set

5((A1’ P1)7 (A% PZ))
= sup inf {”2’1_22’H+HP2(A121+(I—P1)C)_A222HH}7

(21,0)€S(A1,P1) 22€D(A2)
(3.1)

10



where
S(A1, Pr) = {(21,¢) € D(A1) X H | [|z1]lz + [|Arz1 + (I = P1)¢llg = 1}
The gap between (A1, Py) and (Ag, Py) is defined by:

~

6((A1, P1), (Ag, P2)) = max{d((A1, 1), (Ag, I%2)),6((A2, P»), (A1, 1))}
(3.2)
Note that when Z; = Z = H and P, = P> = [ is the identity in H, such a
notion of gap coincides with that one in [10, Chap. IV par. 2.4, p.201]. The
arguments of the proof of Proposition below are largely borrowed from
[10].

Proposition 3.1. (i) If A; and A are both boundedly invertible then
O((A1, Pr), (A2, P2)) < AT Py — A5 P (. (33)

(ii) If Ao has a bounded inverse on Zs and if the following inequality holds:
~ 1
6((A1, 1), (Ag, P2)) < -
2(1+ 1A' Poll £(21,2,))

then Ay admits a bounded inverse on Z1. Moreover, the following inequality
holds:

, (3-4)

AT — A P, ~
L2 A < (A, Pr), (Ag, P2)). (3.5)
21+ [[Ay" Pl 2(m,2,))

(iii) Let us define

M(Py, Po) & max {|| Pyl c(1,20), | Poll o za) } - (3.6)
For all A € C, the following inequality holds:

3((A1 — AL Py), (Ao — M, P3)) < (1+ |ANM(P1, P,))?5((A1, P1), (Ao, P2)).
(3.7)

PROOF. (1) It suffices to prove (5((,&1, Pl), (AQ, PQ)) < ||A1_1P1—A2_1P2”£(H)
The inequality 6((As, P2), (A1, P1)) < AT P — A Pa| gy will next be
deduced by reversing the role of (A, P1) and (Ag, P»). Since A; and Ag are
both boundedly invertible then, with £ = Ajz; + (I — P1)¢ and & = Agzo
in , we deduce that

(A1, P1), (Ag, P»))
_ sup in {|A11P15—A21£2||H+ ||P25—52||H}-

€EH, €| u+]|AT Prg|p=1 $2€%2
(3.8)

11



For any given £ € H such that |||z + [[A{'Pié|lg = 1, we choose & =
Py¢ to first get ||AI1P1§ — A;1P2§|]H as an upper bound of the infimum
in . Next, from ||£]|lg < |€la + AT Piéllr = 1 we deduce that
IAT P& — A Pyl < ||AT PL— A3 Pal| 2y, and we conclude by taking
the supremum on ¢ € H such that ||&]|g + A Piéllg = 1.

(ii) We first prove that A; is one-to-one. Let us argue by contradiction. We
assume that there exists z; € D(A;) satisfying ||z1||g = 1 and A1z = 0.
Then (z1,0) € S(A1, P1) and, according to the definition of 6((A1, P1), (Ag, P,))
in (3.1)), we can choose 23 € D(Ag) such that

21 — 22llm + [|A222]lir < (2+ 2|A5" Pa| £ (ar.2,))

It follows that 1 = H21HH < ”21 — ZQHH + HA2_1P2H£(H,Z2)HAQZQHH < 1/2,
which gives a contradiction. Thus A; is one-to-one.

Let R(A1) be the range of A;. Since A; is one-to-one it admits an inverse
AT defined on R(A;).

Let us prove that AT is bounded on R(A;). Let & € R(A1) and set
r1 = ||&]lg + [[AT || m. There exists z; € D(A;) such that & = Ajz; and
moreover r; = ||z1]|g + ||A121]|z. For all zo € D(Ag), we set {&o = Agza, and

we have
H(All_A21P2)£l ‘A11&—A21§2 +‘A21 (52—P2£1>H
g 1 H (a1 H
_ 1€ _ 3
< (14145 Pall i z) (\ a8 _asie| +|lmé g
! H ! H
y4 z
= (14 185 Pall i ) (\ B ' Poty 2L — gz, ) |
1 H 1 H

By taking the infimum over zp € D(Az), and by observing that z; € D(A;)
A1,
1| H 1

satisfies "y 1, we obtain

AT = Ay P& |l
< (14 1A Pl oo, 22))0((Ar, Pr), (Az, P))(IAT €1l + (160l m)-

The above inequality, with

IAT Gl + &l < AT = A P&l + A7 P&l + [1€all
IAT! = AZ P&l + (1 + 1A Pell e zo) €l

VAN
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gives

AT — A P& |l
< L+ A5 Pall£(1,2,))0((A1, Pr), (Ao, P2))|[(AT = Ay Po)é ||
+ (L4 |A7 Pl £(r,2,)) 20 ((Ar, Pr), (A2, P))|€alla. - (3.9)

Estimates (3.9) and (3.4)) give
1A = A P&l < 200+ [|A3 Poll £(a1,2,) (A, Pr), (Ao, Po)) 6 |1,

for all & € R(A1). Thus A;! is bounded on R(A;).

Hence, if we prove that R(A;) is dense in Z; then will follow by
extending the above inequality by density to & € Z;.

Let us prove that R(A;) is dense in Z;. For that, we will use the following

bound implied by (3.4):
1
2(1+ A7 Pollocr, z2))

0((Ag, P2), (A1, P1)) <

From the above inequality we deduce that, for all (z2,() € D(Ag) x H such
that [[Agze + (I — Po)C||mr + [|22]|g = 1, there exists z; € D(A1) such that
we have

1
(1 + 1A Pall (o, z2))

[P1(A2ze + (I — P2)¢) — Azl < 5 (3.10)
Let & € Zy such that ||&1|g = 1, and set r1 = 1 + ||A§1P2£1||H. We have
1€ + 1A Pe& i = 1. With 25 = A;'Po& and ¢ = & in (B10) we
deduce )
‘ b_ Aiz|| < — :

1 g 200+ Ay Pollo(m,2,))

Hence, with m < (1 + ||A271P2H£(H’Z2)), we deduce

N

160 = r1Arz || <
This implies that dist(£1, R(A1)) < 1/2. Since this last inequality holds for

all £ in the unit sphere of Z;, from [10, Lemma 1.12, p. 131], we deduce
that R(A;) is dense in Z;.
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(iii) Let (21,¢) € D(A1)x H be such that ||(A1—=A)z1+(I—P1){||g+|z1l|m =
1, and set 1 = ||A1z1 + (I — P1)C||g + ||z1]| - For all zo € D(Ag), we have

|21 — 122l + |P2((Ar — A)2z1 + (I = P1)C) — (A2 — Al)riza|lm

< ( 2 +’P2(A1Zl+(I—P1)C)—A222 + |A| N >7“1
1 H | 1 H 1 H
21 21 ¢
< (APl zazo)) (|| — 22| +||[Pe(Ar—+ (T = P1)= | — Agzp 1.
& o T & o

By taking the infimum for zo € D(Ay), and by remarking that (%, %) obeys
12415 + [A12 + (I = P1) =l = 1, we obtain

in {||zlnz~2||H+uP2<<A1M)zﬁufa)ozl(Amnnzan}
22€D(A2)

< (L4 (M P2l 2,22))0 (A1, Pr), (Ag, Po))ry. (3.11)

Moreover, we have

r = |lzillg + [|Arz1 + (I — P)C|la
< lzalla +[[(Ar = Az + (I = Po)Clla + [AMllzallg < 1+ (AL

With 1 < || Pl z(#,2,) we deduce 1 < 1+ M| 2| £(#,2,), and (3.11)) yields
0((A1 = AL Pr), (A2 = AL P)) < (1 + (M| P2ll 2(21,2,) 0 (A1, Pr), (A2, Po)).

Finally, by reversing the role of (A, P1) and (Ag, P»), we also have
6((Ax — A, Po), (A1 — AL Py)) < (1 + [N[|Prl gm,20))?0((A2, Po), (A1, P1)),
and (3.7 is proved. OJ

Theorem 3.1. Let M (P, P») be defined in (3.6). If A1 and Ay both admit
a bounded inverse in Z1 and Zs respectively, if X € C belongs to the resolvent
set of Ag, and if

1
ATIP AP < ,
W P Poleen < SNy, PP+ 1 = AD Pl 7)
(3.12)

then Ay — A admits a bounded inverse in Z1, and
I = A1) Mgz < 1+20O - Ao) Pollezy. (313)

14



PRrROOF. By using (3.7)) and (3.3)), we first obtain
5((A1 — AL, P1), (Ag — AL Py)) < (14 [A[M(P1, P,))25((A1, P1), (Ag, P2))
< (14 [AM(Py, P2)? AT P — A Pol ooy,

Then, with (3.12)), it yields

R 1
6((A1 = AL, P1), (Ag — A, P»)) < '
(A 1), (A2 2)) 21+ [|(Az2 — AX) "' Pa| £ (#1.2,))

(3.14)

Which (by point (i) of Proposition [3.1) ensures that A; — AI admits a
bounded inverse on Z;. Finally, with (3.5)), in which A; and Ay are replaced
by A1 — AI and Ay — AI, we obtain

(A1 = AD) ™' = (Ae =AD" 'Poll iz =
< (A — M, Py), (Ag — M, P3)).
21+ [(hs A Pallpn gyt (AT AL, (A2 AL )

With (3.14), we deduce that
I(AL = AT = (A2 = M) T Pall gz, < (14 [[(A2 = AD) 7 Pall g(a1,2,)-

Thus (3.13)) follows from the triangle inequality. O

4. Approximation of feedback gains

Throughout this section, we assume that (Hp) to (Hy) are satisfied.

Definition 4.1.
1. A strongly continuous semigroup (etA)tZO on Z is said to be exponen-
tially stable if there exist o > 0 and C > 0 such that

e 22y < Ce™t, Wt >0,

2. A parameter dependent family (e'*<);>0, with € € (0,&¢), of strongly
continuous semigroups on Z., is said to be exponentially stable, uniformly

with respect to € € (0,¢¢), if there exist « > 0 and C' > 0 such that
le"|zz) < Ce'™, VE>0, Vee (0,¢).

Definition 4.2.
1. The pair (A, B) is said to be feedback stabilizable in Z if there exists
F e L(Z,U) such that (A+ BF,D(A+ BF)), with D(A+ BF) ={z € Z |
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(A+ BF)z € Z}, is the infinitesimal generator of an exponentially stable
strongly continuous semigroup on Z.

2. The parameter dependent pair (Ac, Be) is said to be feedback stabi-
lizable in Z., uniformly with respect to ¢ € (0,ep), if there is a bounded
family (F:)o<e<e, i L(Ze,U) such that (Ac + B:F.,D(A. + B-F.)), with
D(A.+B.F.) ={z € Z. | (A-+ B.F.)z € Z.}, is the infinitesimal generator
of an exponentially stable strongly continuous semigroup on Z., uniformly
ine € (0,e0).

Theorem 4.1.

(i) Let us assume that there exist F' € L(Z,U) and wp > 0 such that
A4wprpI+BF is the infinitesimal generator of an exponentially stable strongly
continuous semigroup on Z, and that (F:)o<ce<1 C L(Ze,U) is a family
satisfying

|FP— Felpz.0y <ole), Vee(0,1), (4.1)
where o is a continuous function from RY into RT such that o(0) = 0. We
set Ap 2 A+ BF and Ak, Y A, + B.F.. Let§ € (0,7/2) be the angle
introduced in assumption (Hy).

Then, for all § € (0,0), there exist 0 > 0 and ¢9 € (0,1) such that

{—wre}+ Sﬂ/ﬂg C p(Acr), with wp,e Y g — o(e"+o(e)), and

- C
1A = Ae ) 7 Hlez.) <

Y Wae - S
T A+ wre] trend+

Ve € (0,¢ep).
(4.2)

7r/2+§’

Moreover, we have

lede =tz < Ce ¥Pel Yt >0,Ve € (0,e0), (4.3)
r
HeAFtP _ GAE’FEtPEHE(H) < C e wret (ti/s + 0'(5)) ) (44)

Vt >0, Ve € (0,¢0).

In particular, (4.3) and (4.4) hold to be true for F. = FP, with o = 0.
(ii) Let us assume that (F:)o<e<1 s a family in L(Z:,U), satisfying

HFa Pa”[:(Z,U) S C, Ve € (071)7 (45)
and that (F©))gcoc1 is family in L£(Z,U) satisfying
|F.P. = FO|pz0) < 0e), Ve € (0,1), (4.6)

where o is a continuous function from RY into RT satisfying o(0) = 0.
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In addition, we assume that there exists wgp > 0 such that the family
((efAetwrl+BF)Y 0o _o1, of strongly continuous semigroups on Z., is
exponentially stable, uniformly in e € (0,1).

We set Ap) L A+ BF© and A. . = A, + B.F.. Let 6 € (0,7/2) be
the angle introduced in assumption (Hy).

Then, for all § € (0,0), there exist 0 > 0 and ¢9 € (0,1) such that

{—wre} +5, 5,5 C p(Ape), with wpe Lowp - ol + 0(€)), and

_ C
M = Ape) ez < Prwr] VA€ {-wre} +8, 5.5 Ve € (0, 20).
(4.7)
Moreover, we have
||eAF<5)tHc(z) < Ce wret Wt >0, Ve € (0,e0), (4.8)
leteret P — @ Py < Clemoret <ti/s + 0(€)> : (4.9)

Yt >0, Ve € (0, ).
In particular, (4.8]) and (4.9) hold to be true for F©) = F.P., with o = 0.

Remark 4.1. For simplicity, the assumptions of Theorem are stated for
e € (0,1). But it obviously remains valid if the assumptions are stated for
e € (0,&p), for some &y € (0,1). In the later case it suffices to set A. = Az,
B. = Bz, P. = P:,, F. = Fx, and F(®) = F(®) for ¢ € [§y,1).

Remark 4.2. In Theorem 4.1}(i), we state that if the pair (A, B) is feed-
back stabilizable, then there exists g € (0, 1) such that the family (A., B;)
is feedback stabilizable uniformly with respect to ¢ € (0,¢¢). From Theorem
(ii), we deduce that if the family (A, B:) is feedback stabilizable uni-
formly with respect to € € (0,¢eq), for some ¢ € (0,1), then the pair (A, B)
is feedback stabilizable. In other words, the feedback stabilizability of the
pair (A, B) is equivalent to the uniform feedback stabilizability of the family
(Ag, Be) for € € (0,e9), for some g € (0,1).

Before proving Theorem we need the following proposition.

Proposition 4.1. Assume that (H1) — (Hy4) are satisfied. Let n > 0 and
set B, = {A € C| |\ <n}. For all X\ € {wo} + (Sy /245 \ By), we have

(AT = A)7'B. = (M = A) 7 'Bllewm < Cype’. (4.10)
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PROOF. For all A € {wo — Ao} +Sz/245, we set

M(A\) =\ — A) "B, — (A — A)'B. (4.11)

_ (A — )—1—1)2;13 —(A()\I AL -1)AT'B

1B AT'B.+ AN — A)TAZIB. — AWM — A)T'AT'B
“1B— A-'B. +)\(/\I A)7'P(AZ'B. — A7'B)
FAM = A) PP — (M — AN A A B (4.12)

To prove ([4.10), we have to estimate M (X — Ag) = (Al — A:)~ 1B, — (M —
A)7LB. We estlrnateA 'B - A 'B. with (2.6). We estimate

(A= 20) (A= Xo)I — A.) "' P.(A7'B. — A7'B)
with , , and . We estimate
(A= 20) (A = A0)T = A) 7 P = (A = M) = A) 1) A'B
by using with # =1 — ~, and the fact that A'B e LU, H). O
We also need the following variant of the above proposition.

Proposition 4.2. Assume that (Hy) — (Hy) are satisfied. For all X\ €
Sy /245, we have

I — A)7'Be — (M = A) 7' Bl e m)

IN

Ce", (4.13)

ET

< CW. (4.14)

A

I(AL — A.)"2B. — (AT — A)2B| e

PROOF. Step 1. The estimate (4.13]) follows from (4.10) with n < (Ao —
wp) €os 0.

Step 2. Proof of. By differentiating with respect to A, we get
M'(\) = (M — A)"' =AM — A.)"?)P.(A-'B. — A™'B)
+ (M = A)7LP — (A - A)~ ))/T (4.15)
~ M = A) 2P — (AT = A)2)) A~
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Since we have

(M — A)72P. — (\[ — A)2P
= (M — A) PN = A)'P. — (M — A)'P)
+ (M= A)7'P.— (A= A" H(AT— AP,

with (2.22)), (2.1)), and (2.2)), we obtain

s6
-~ _ -~ _ &
|(A — A.) 2P, — (M — A) 2P||£(D((72)0),H) < C’W, forall 0 < 6 < 1.
(4.16)
From the definition of M()) it also follows that M’(\) = (A — A)~2B —
(M — A.)72B.. Thus we can estimate (\[ — A)™2B — (A — A.)"2B. by

using the expression of M’()) obtained in (4.15). R
From (22), we have (A —A:) ™' Pela) < 7 and [N —A) 7P| 2oy
< % Thus the first line in (4.15)) is estimated with (2.6]).

The second line in (4.15)), namely ((AI — AP — (A — A1) A1B,
was already estimated to prove (4.13)).

The last line in [@15), —A(M — A.) 2P — (Al — A)"2)) A" "7 A7 B,
is estimated by choosing § = r/s in . O

Let us notice that (2.5) and (2.11)), with the identity (A — A)"'B =

-~

(—A)Y(A— A)"Y(—=A)B, give

(AL = A) ' Bllrw,z) < VA € {wo} + Sr/24s, (4.17)

[A = wo[t=7

and that (2.12)), with "B = (—A)YeAt(—A)7 B, gives

wot

e
HeAtBHE((Lz) S CtT, Vvt > 0. (418)

4.1. Proof of Theorem [{.1}(i)

PRrROOF. Step 0. A perturbation argument ensures that Ag is the infinites-
imal generator of an analytic semigroup on Z (see, e.g., [15, page 151]).
Since A+wpl 4+ BF is the infinitesimal generator of an exponentially stable
semigroup, we can choose §r > 0 such that the following resolvent estimate
holds:

Cp

H(}\I — AF)71H£(Z) < m, for all A € {_WF} + Sﬂ'/2+6F' (419)
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Without loss of generality, in what follows, we can assume that dp = J,
where ¢ €]0,7/2[ is the angle appearing in (2.1)) and ([2.2).
Step 1. Let us prove that there exists Wy > —wp and gy € (0, 1) such that

C

M —A.p)t <~
1€ o) ez < Nt or]

, Ve {@0} + Sﬁ/g_ﬂg, Ve € (0,60).

(4.20)
For that, we set T.(\) = (M — A.)"'B.F.P. € L(H). Due to (4.1), (2.3),
(4.17) and (4.10]) with n < Ao — wo, we have

IT-M)l 2y < CINAT = Ao) "' Bell g,
< CET—F#, Ve € (0, 1), VA€ {)‘0}+S7r/2+5-

Let ¢o belong to (0,1). We choose ¢ € (0,1) and @y > max(—wp, Ag) such
that
| TeM)ll 2y <1 —co, VA€ {Go} + Sr/24s, Ve € (0,€0).

Therefore, for A € {Go} + Sy /245, I — T:()) is invertible in £(H) and obeys

(1= T-(AN) ey < (= 1T llen) ™ < e (4.21)
Moreover, we verify that

(I=T:(N) "M —A) "= (M — A, )Y, VYA€ {@0} +Spja4s. (4.22)

With (4.22) and (4.21)), we have

I = Ac ) Ml < 6o I = A Hlgzy, YA€ {@o} + Spjois

Hence, we obtain (4.20) from ([2.2)) and the fact that Mwrl s hounded in

[A—wo

the sector {&Wo} + Sr/a45-
Step 2. Let us now prove that

(M — Aep) ™' Pe — (M — AF)_IPHﬁ(H)

e’ o(e) -
<C , YA€ S, , Ve e (0,eq).
- <|)\—|—WF\17"/3+])\+wF!> (&0} + w245, Ve € (0. 20)
(4.23)

To prove ([4.23)), we set T'(\) = (M — A)"!BFP and, arguing as we did
to prove (4.21]), for ¢y € (0, 1), we can assume that &y is chosen so that
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1= TO) Mo < 5% YAE (G0} +Smpprse (420)
In the following we use the simplified notation T'= T'(\) and T, = T.(\)
and we consider A € {Wo}+S; /245 and ¢ € (0,¢0) so that (I -T) and (I -T)
are both boundedly invertible. We start by writing
(M — Ap)™tP — (M — AE,FS)*lP8
— (I —T)" Y\ — AP — (I —T.)" (A — A)"'P.
=T —-T)"Y (M —-A)P - (A - A)"'P.)
(I =T) P = (I =T) (M — A) PP,

(4.25)

Thus, by using the identity
(I - T)_l - (I - Te)_l = (I - T)_I(T - Tz—:)(I - Ts)_la

and (4.22), we obtain
(M — Ap)~'P — (M — Ac.p)" 1P,

= (I =T)"Y (M —A)"'P— (A — A.)"'P.) (4.26)
+(I —=T) YT —T.)(M — A )1 P..

From (4.24) and from for = r/s, we deduce that
(A = Ap)~'P — (X = Ac ) Pell o)

o (4.27)
. o —1
< (= T =T = Ae) Pl )
We have the identity

(T —To)(M — A ) P

=((M—-A)'B—~ (M- A) 'B)F. (M — A. ) P

+ M - A 'B(FP -~ F.)(\ — Ac ) ' P-.

With the uniform boundedness of F. (which follows from (4.1))), and with
(4.13), we obtain

”((/\I - A)_lB - ()‘I - As)_lBe)Fs(AI - Aa,Fa)_IPsHL(H)
S Ce|(M = Ac k) Pell ooy,
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because A € {Wo} + Sr/o45 C {Ao} + Srjaqs. With (4.17), and (4.1), we
obtain

I(AT = A)TIB(FP — Fo)(A = A p) ™ el o)

o(e) -1
< CWH()‘I - Aa,FE) PeHL(H)-

Thus, with (4.20) and the fact that 1/|A —wo| < C and 1/|A + wp| < C for
A € {@o} + Sy /244, we deduce

(T = To)M — Ac ) " Pellegy < O + oD — Aer) ™ Pl ooy

e’ o(e)
<C + .
- <\/\ w7 A+ wF|>
Tims, 4.23]) follows from (4.27) and the fact that G\%‘x" is bounded in
{W()} + Sﬂ/2+5'
Step 3. We fix N {@o} + Sz /245 From (4.23), we deduce that

I — Ac )" P. — (A — Ap) =" Pl| cary
- (4.28)

e’ 0’(6) _ r
S C <|X+wF|17T/S + |}\\+WF‘> - C’(8 +0'(8))

Due to (£.19) with A = u + A, we have
%
4 A +wp|

I(Ap—AT—pD) g2y < Vi € {—wr—A}+Sr /045 (4.29)

For 6 € (0,8) given fixed, we set

K={-wpr— A+ S /a5 \ {30 — A} + Sr/asss

and
Cc = sup (2(1+ |ulllPllq 2)* (1 +wr + X + Cr) ).
pneK

We choose R B
0> CCg/cos(9), (4.30)

where C is introduced in (4.28)), and we set
Wre =wr — 0 (" +0o(e))

and

K. ={-wp: — A} + S5 \ {80 — A} + Spy24se
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Since Wy > —wp then, by choosing ¢y smaller if necessary, we can assume
that
—wp < —wpe <@y forall € € (0,e9),
so that K. is not empty. For all 4 € K., we have
IAT = Acp) ™ P = (M = Ap) "' Pl < C (€7 + 0(e))
0 cos(d) (¢" + o (e))
<
Ck
_ dist(Ke, —wp — /)\\) < lwr + X+ |
- Ck - Ck
wr + A+ 4l
- 20+ [l Pll e, 2)* (1w 4+ wr + Al + Cr)
1

2 _Cr _
201+ Il Pl z)? (1+ =)

1
< = .
201+ |plllPllecr,z)* (X + (1w + M = Ap) = Pllz(m,2))

According to Theorem [3.1], with (Ag, Py) = (Ap—AI, P), (A1, P1) = (A p —
A, P.) and A = p, we have

IN

I(uI+XT = Ac ) Mgz < 1+20(u+ A= Ap) " Pllgs,z),  for all p € K.
Thus, if we set A = pu + X, with (4.29) we have
IO = A ) Moz < 14 21O = Ap) 7 Pllogrzy <1+ o

< SUPrex Mwp[+C ol
= M wrl = [Awr]?

(4.31)

for all A € {3} + K. = ({-wre} + S, 5,5\ {0} + Se/246)-
By combining (4.20) and (4.31]), we obtain

(AL — AE,FE)_IHﬁ(ZE) < A towr] VA € {-wpe} + Sﬂ—/2+6~7 Ve € (0,€0).
(4.32)

We notice that a rough majorization leads to

A twrel _ A twr| | ol +0(e) _ dist(f%,—wF—X) e

At wr] T A+ wpl A+wp| T cos(O)A+wp| ~  cos()’
(4.33)
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for all A € {—wp.}+ Sﬂ/2+g. Finally, (4.2) follows from (4.33)) and (4.32).
Step 4. Let us notice that (4.3)) is an immediate consequence of (4.2)).

Step 5. Let us prove (4.4). First, the following resolvent identity can be
proved as in the Appendix,

(M — Acp )" P. — (A — Ap)~'P
- (1 S (A= N — AF)—IP) X ((AF ~“X)7'P — (Aep — XI)—lpa)
x (I S A= N — A&FE)—lPE).

(4.34)

Hence, with (4.34)), (4.28), (4.19) and (4.32]) we deduce

I = Aep) " P — (M — Ap) " Pl oy

e” o(e)
<C , VAe{—wp,. I' =, Vee(0,¢g),
- <|)\+wF‘1—r/s + ’)‘+WF|> { WF, }+ 0,0 € ( EO)

(4.35)
where I‘p5~ is defined in ([2.18]).
Finally, from (4.35)) with (4.33]) we deduce
H()‘I - Aa,FE)_lpe - ()\I - AF)_1P”£(H)
e’ o(e)
<C , Yae{- I' -, Vee(0,eq),
B <’/\+WF,8‘1_T/S * \)\+WF,5|> ety 5 Ve € (020)
(4.36)

and (4.4) can be deduced by arguing as in the proof of Theorem [2.1} [J
4.2. Proof of Theorem m(u)

Proor. We set A. r. & A. + B.F.. First, we would like to prove that
A¢ F. is the infinitesimal generator of an analytic semigroup on Z.. Here, we
cannot use a perturbation argument as in Step 0 of the proof of Theorem [4.1

(i). Indeed, it is used in [I5, page 152] that B*(—A)~ belongs to £(Z',U).
Here, we know that B?(—A.)™ belongs to £(Z.,U). Thus, as in Step 0 of
the proof of Theorem [4.1}(i), we can prove that, for all ¢ € (0,1), A. g is

the infinitesimal generator of an analytic semigroup on Z., and that
C

I = A k) Mz < T wrl’ VA € {—wr} + Sy/246., Ve € (0,1),

for some 0. € (0,7/2). But the family (B:(—A\a)_ﬂ’)se(m) is not uniformly
bounded in £(Z.,U), and therefore we cannot prove that inf.¢ g 1) de > 0.
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We proceed differently. As in Step 1 of the proof of Theorem [4.1}(i), we
can show that, there exist g9 € (0,1) and &g > max(—wp,wp), such that

) C ~
I = Aer) ez < g YA€ (@0} +8xp245, Ve € (0.20).
(4.37)

Thus, for all € € (0,e0), A . is the infinitesimal generator of an analytic
semigroup on Z..
Since, we have

et Aer=twrD) 0y < Cet, Ve €(0,1),
for some o > 0, we deduce that
p(Acp) C{A € C|ReA > —wp —a/2}, Ve e (0,1),
and
A=A r) Mlezy) <C VAE{A€C|ReA > —wp—a/2}, Ve e (0,1).
Therefore, combining and the above estimate in
{A e CIReX > —wp — a/2}\ ({@o} + Sr/j246)

we deduce there exists § € (0,7/2) such that we have

AT = Acp) ez , VAe{-wr}+S Ve € (0, e0).

(4.38)

Thus, we can rewrite the proof of Theorem (i) in which we re-

place F. by F©) F by F., and by reversing the role of (4, B, P, F) and
(AE7BE7P87F€)' |:|

< -
— |A+WF| /248’

4.8. Properties of the open-loop system
Let K € L(L*(U),L?*(H)) and K. € L(L*(U), L>(H)) be defined by

t t

K(u)(t) = / A Bu(rydr,  Ko(u)(t) = / A0 B (r)dr. (4.39)
0 0

We recall that L?(U) and L?(H) stand for L?(0,00;U) and L?(0,00; H)

respectively (see Section . The fact that K belongs to £(L?(U), L>(H))

follows from (4.18)). Next, the fact that K. belongs to L(L*(U), L*(H))

follows from Corollary [4.1] stated below.
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Proposition 4.3. The following estimate holds:

6re(.uot
€A B — e*'Be| cmy < C > ¥ee(0,1). (4.40)
PROOF. We have
1
eMB —ettB, = — eM (M — A)7'B. — (\[— A)7'B) d),

20T J{wo}4T, 5

where I',, 5 is defined by (2.18)). The estimate (4.40) follows from the above
identity and from (4.13]), by arguing as in the proof of Theorem ([

Corollary 4.1. Assume that (Hy) to (Hs) are satisfied. The operators K
and K., defined in (4.39)), satisfy the following estimate:

|(Ke — K)ull o) < C" e fulliny. Ve € (0.1/2),  (4.41)
for all p € [1,00].
ProoOF. With Young’s inequality, we have

1(Ke = K)oy < Clle B = €O Bel| 1 v,y Il o r)-

Let us recall that & = /(177 We estimate foga HegtB — egEtBE||L(U7H)dt by
using (4.18)) and (2.8)), with o = i:—% We estimate fgla e B—eA<! Be || £y dt
by using (4.40). We estimate [} ||e§tB — egEtBEHL(U’H)dt by using

e B — ' B, || ;. m) < Ce"e™, Wt > 1.
The proof is complete. [

Below, in Corollary we improve the estimate proved in Corollary 4.1]in
the case when p € (1,00). For that we need the following theorem.

Theorem 4.2 ([9, Thm. 6.1.6, p.135]). Let X andY be two Hilbert spaces.
Let M € CHR\{0}; L(X,Y)) satisfy

IM@Elleceyy + IENM (E)llexy) < Cm, VEER™
Then, for all p €]1, 0], the operator Ta, defined by

~

(T f) (1) = / FEME)F(E)dE Vf € LP(R; X),

R

where f is the Fourier transform of f, belongs to L(LP(R; X), LP(R;Y)) and
satisfies | Tamf e riy) < CpCrmllfll Lo ®:x)-
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Corollary 4.2. For all p € (1,00), the following estimate holds:
1(Ke = K)ull oy < Ce™||ull o), Ve € (0,1). (4.42)

PRrROOF. For u € LP(H), we have (K. — K)u = Tyu, where u is extended
by zero to R™, M(&) = M(«€), and M is defined in (4.11). Thus, (4.42) is
a direct consequence of (4.13)), (4.14)) and of Theorem O

We end this section by stating estimates helpul in the proof of conver-
gence rates for Riccati-based feedback laws (see Section [5.6]).

Corollary 4.3. Let us recall that € = "/~ We have the following esti-
mates over the intervals (0,) and (2,00):

wot

le* Bo cv.2.) < cs"et () (4.43)
and ot
0

HeAEtBEHMUzs) < C’%, Vt € (g,00). (4.44)

PROOF. Step 1. From (|4.40) and (4.18]), it follows that

At ewot ew()t
le*** Bell e,z < O™ +C =, ¥E>0. (4.45)
For 0 < t < &, we have t'™7 < ¢" and
At reth ewot rewot B
€ —_ —_ ) ) *
”6 B HL(U,ZE) <Ce : +C P <Ce n VtE(O 5)

Step 2. For t > g, we have tf—; < 1. Thus, with (4.45)), we have

wot

€ _
||eAEtB8”L(U7Z5) <C o Vit € (E, OO) (4.46)

This completes the proof. [J

5. Approximate Riccati feedback law

We assume that the triplets (A, B, P) and (A., B, P:) satisfy the as-
sumptions (Hp) to (Hs), and that

The pair (A, B) is stabilizable in Z. (5.1)
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Let C belong to L(H,Y'), where Y is a Hilbert space. We denote by C|z the
restriction of C to Z and by C|z. the restriction of C to Z..
We assume that

The pair (A,C|z) is detectable in Z. (5.2)

In this section, we are going to construct a feedback law F € L(Z,U),
determined via a Riccati equation associated to the triplet (A, B,C|z), sta-
bilizing the pair (A, B) in Z, and a feedback law F. € £(Z.,U), determined
via a Riccati equation associated to the triplet (Ac, B, C|z. ), stabilizing the
pair (Ag, B:) in Z.. We want to show that, in that case, the pair (F, F;)
satisfies the condition (4.1]). Thus the results of Theorem [4.1}(i) may apply.

5.1. Feedback stabilization of the pair (A, B)

Let us set

defl o° 2 1 o 2
I(zu) = 5 ; IC=)lly dt + 5 ; lu(®)|ly dt,

and consider the evolution equation

2= Az + Bu, 2(0)= Pz € Z, (5.3)
where zg € H. Let us consider the optimal control problem
(P) inf{Z(z,u) | (z,u) € L*(Z) x L*(U) obeys (5.3)}.

Since (A, B) is stabilizable in Z, and the pair (A,C|z) is detectable in Z,
problem (P) admits a unique solution and the optimal pair (Z,u) satisfies
the feedback relation

u(t) = —B*TIz(t) for all t >0, (5.4)
where Il € £(Z,Z') is the unique solution to the algebraic Riccati equation

Mel(z,7), M=1*>0, BTeL(ZU), 55)
IIA + ATl — IBB*IL + (C|)*C|z = 0, '

where (C|z)* is the adjoint of C|z € L(Z,Y). Let us notice that since Z’ is
identified with P*H (see Section and Y’ is identified with Y then we
have (C|z)* = P*C € L(Y,Z') and

(Clz)"Clz = P*C*C|y. (5.6)
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def

Moreover, the semigroup generated by A = A — BB*II is analytic and
exponentially stable on Z (see [15, Chap. 2, Theorem 2.2.2]), and we have:

(etAmtenl)y o is exponentially stable on Z, (5.7)

for some wp > 0.
The optimal state is defined by 2(t) = e Pzy. It is also well-known
that the optimal pair (Z, %) obeys
PN 1
I(z,u) = §(HP20,PZQ)H, (5.8)

and that II satisfies the following integral identity
m— / AT(Cly) Cly + 20T e AT dr
0

_ / AT PH(CHC 4 2)11) eA17dr,  (5.9)
0

where A & Ay — Aol (see e.g. [I5, Theorem 2.2.1]). Note that the above
second equality is justified by (5.6]).

Proposition 5.1. We have
K |(crc + 2A0P*HP)e2H<'>PzO} (t) = B*IIeAn' P2y, Vt>0,  (5.10)
and all zy € H, where K is defined in (4.39) and

(K*2) (1) = B* / A= pr (1) dr.
t

In addition, the optimal trajectory Z of Problem (P) satisfies
[(T + KKH(C*C + 2201T)) e 2 03] (1) = et P2, (5.11)

Proor. With , we can write
BlleAntpyy = B* /0 T AT PR 4 22T Pgdr,
= B /t T A pr ((C*C + 2XID)e ™ P2y dr,
= K [(C*C + 2)\01'[)62“(')on] (), Vt>0.
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Thus, (5.10) is proved.
To prove (5.11)), we notice that

e_AOtE(t) = egHthoze(‘Z_BB*H)tho,
. t .
= eAtho—/ eA(t_T)B(B*HeAHTon)dT,
0
— Atpy, — [/C(B*Hef‘n(')on)} (), Vt>o0.

Next, we substitute B*TleAnt Pz, by K* [(C*C + 2)\0H)egn(')on} (), and
we use the equality egHtho = e M0tZ(t), in the above identity. O

5.2. Detectability of the pair (A:,Clz.)

For gg € (0,1) let us recall that, by definition, the family (4., C|z. )o<e<e,
is detectable in Z., uniformly with respect to ¢ € (0,gp), if and only if
(A%, (Cl2.) )o<e<ey = (AL, PXC*)o<c<e, is stabilizable in Z!, uniformly with
respect to € € (0,¢p).

In the following lemma we deduce from that (Ae,C|z.)o<e<s, 1S
detectable in Z., uniformly with respect to ¢ € (0, &), for some gy € (0, 1).

Lemma 5.1. There ezists g € (0,1) such that the family of pairs of opera-
tors
(Ae,Clz. )o<e<e, is detectable in Z, uniformly with respect to € € (0,£¢).

PROOF. According to the pair (A,C|z) is detectable in Z which is
equivalent to the fact that (A*,(C|z)*) = (4%, P*C*) is stabilizable in Z'.
Thus, there exists K* € L£(Z',Y) such that the semigroup generated by
A* + P*C*K* is exponentially stable on Z’. Let P be the adjoint of P. €
L(H). We can easily check that PX is a projector in H onto Z. (see Section
. We are going to use Theorem [4.1+(i) in which we replace A, A, P, P,
U, B, B., F, and F. by A*, A*, P*, P*, Y, P*C*, P*C*, K*, and K*P*,
respectively. In that case, it is clear that (H;) is satisfied. Assumption (H3)
and (Hjs) are satisfied with v =73 = 0. Assumption (Hs3) and Assumption
(Hy), with r = s and = 0, are satisfied because we have

|A~P* = AP gy = |P*AP* = PXAZPX | oy
— |(PA"'P = P.AZ'P) ey = |(A7'P = AVP)¥ oy < Ce®.

Thus, according to Theorem [4.1}(i), there exists €9 € (0,1) such that the
semigroup generated by A% 4+ PXC*K*P* is analytic and exponentially sta-
ble on Z!, uniformly in € € (0,ep). Thus, since (A% + PXC*K*P*)* = A, +
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P.KC|z. we deduce that the semigroup generated by A. + P.KC|z. is ana-
lytic and exponentially stable, uniformly in e € (0,ep). Then (A, C|z.)o<e<eg
is detectable in Z., uniformly in ¢ € (0,&p). O

Lemma 5.2. Let g be the parameter introduced in Lemmal5.1. There exists
K € L(H,Z) such that Acx = A. + P.KC|y. generates an analytic and
exponentially stable semigroup on Z., uniformly in € € (0,eq).

Moreover, the linear operator K¢ i defined by

t
Ko () (t) = / Ak =) By (rVdr, (5.12)
0

is bounded from L*(U) into L*(H), uniformly in € € (0,¢p).

PRrROOF. The existence of K € L(H, Z) satisfying the first part of the Lemma
has been proved at the end of the proof of Lemma [5.1] It implies that there
exist wg > 0 and dx > 0 such that

1AL = Ac k) Hlg(ze) < , forall A€ {—wr} + Sros-

\/\—i—wK\

In particular, the above inequality is satisfied for all A € S;/515,. Hence,
since for all A € S; /945, we have [A|/|A + wk| < C, we deduce that

AN = Az i) Mgz S O, for all A € Sy ais- (5.13)

Thus, from (5.13) with (A\] —A. ) ' Ac xk = —T+ AN — A; k)~ we deduce
that

I — Ac k) " Ac ik lloz) < O, for all A € Sy a5 - (5.14)
Let po > Ao large enough so that
(ol — Ae) "' P.KCll (7 < 1/2. (5.15)
Then I — (gl — A.)"'P.KC is boundedly invertible in H and
(nol — Ac i)' Be = (I — (ol — Ae) "' P-KC) ™ (ol — Ac) ™' Be.
The above equality with and yields

l(0T = Acie) "Bl 2y < 2ll(uol = A) ' Bellpwzy < €. (5.16)
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Hence, from (5.16) with (5.13) and (5.14)) we deduce that for all A € Sy /545,

(M = Ae.) ' Bell w2,
<M = Ac )™M ol — Ac i)l 2z (o] — Ac ) ' Bell g,z < C

and

(A= Ae k) Bellcw,zy) < A=A k) Ml (2ol M= A k) Bell 2, 2.
C
< —.
Al

Finally, the conclusion follows from Theorem Indeed with the notation
there we have K xu = Tapu, where u is extended by zero to R™, and
M(E) = (1€ — Acic) Bz and M/(€) = 116 — Ao i) 2B

O

5.3. Feedback stabilization of the pair (Ac, Be)

Let us consider the following evolution equation in Z.:
2L = Acze + Beu,  2:(0) = Pezg € Ze. (5.17)
And let us consider the optimal control problem

(P:) inf{Z (2, u) | (ze,u) € L*(Z.) x L*(U) obeys (5.17)}.

Here, we propose to determine an approximation of the feedback control law
—B*1I introduced in by looking for the solution to the optimal control
problem (P;).

Since (A, B) is stabilizable, from Theorem 4.1}(i) with o = 0, it follows
that we can choose gg € (0, 1) so that the family (A, B:)o<e<s, is stabilizable
uniformly with respect to € € (0,e9). More precisely, for all € € (0,¢p), the
following functions

5. A BABTIP)O P o and G, & —(B*IIP)Z. (5.18)
satisfy
2L = Az + Boie, 2:(0) = Pezo € Ze, (5.19)
and there exists ¢ > 0 such that, for 0 < € < ¢y, we have
IZ()llz. < Cem*™<||zo|m, (5.20)

e*(.dnygt

12(#) —ze()lln < C

< O ll=olla (5.21)



where wry ¢ Lef wi — 0"

This means that (z;, @) is an admissible pair for the approximate prob-
lem (P:). Thus (P:) admits a unique solution, and the optimal pair (Z., U.)
satisfies the feedback relation

Ue(t) = —B{Il.z:(t), forallt >0, (5.22)
where Il. € L(Z., Z!) is the unique solution to the algebraic Riccati equation

I.€L(Z.,7), O.=1>0, BI.eL(Z,U),

(5.23)
M. A: + A:HE - HEBEB:HE + (C’Zs)*C|Zs =0.

def

Moreover, the semigroup generated by A. . = A. — B.B!1l, is analytic and
exponentially stable on Z., and the associated cost functional is defined by

SN 1
Is(zg,us) = §(H€P6207PEZO)H- (524)
The Riccati operator 11, satisfies the integral relation

L — / AT ((Cl.)*Cla + 2NoTLL )T dr
0

= / LT PH(CHC + 22 lL ) eAemTdr,  (5.25)
0

" def ~ .
where A, 1. = Acm. — Aol. Moreover, Z. satisfies:

(I + KoK2(C*C + 2X0T1L)) (e 03,) = eA0) Pz, (5.26)

where K. € L(L?(U), L?>(H)) is defined in (4.39) and K} € L(L*(H), L*(U))
is defined by

(K22) (t) = B? / AL pro () dr.
t
Proposition 5.2. We have

sup HeAE’HE(')PEHL(HLQ(H)) < 400. (5.27)
0<e<eo

PRrROOF. The optimality of (z.,u.) and (5.24]) give

(Hspaz(L P€ZO)H < 21(557 ﬁa)
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From (5.20]), the definition of w. in (5.18]), and the definition of wry . intro-
duced after (5.21)), it follows that

(o P.z0, Pezo) g < 2Z(Z2, te) < Cl20|%. (5.28)

Since PIII.P. is self-adjoint, by taking the supremum over
{z € H | ||20||lz = 1}, we obtain:

sup ||P:HEPE||L(H) < +00. (529)
0<e<eop

Let K € L(Y, Z) be given in Lemma such that A, x < A.+ P.KC|.
generates an analytic and exponentially stable semigroup, uniformly in € €
(0,e0). From A, 1. = A. k — P-KC|z. — B.B}1I. we deduce

t t
eAE’HEtPgZ() _ GAE’KtPaZO_/ eAEvK(tT)PgKC/Z\g(T)dT—/ eAE»K(th)BEiL\g(T)dT
0 0

Hence, with the uniform exponential stability of (e4=5?);>g, the uniform
boundedness of P.KC € L(H) and of K. ¢ € L(L*(U),L?*(H)) (defined by
(5.12)) we deduce

le=1= 0 Pozg|[2, ) < Cll20l3 + Z(3:, ).

Finally, from (5.24]) and (5.28)) we obtain
et O Pz gy < Clzolll
U

5.4. Uniform stability of the family of approximate semigroups

Throughout this section &g is the parameter introduced in Sections [5.2] and
B3l
The goal of this section is to prove the uniform exponential stability of
the semigroup (e4=1t);~o. This result is established in Theorem It is
based on the generalization of Datko’s theorem in the case of a parameter
dependent semigroup [I8], which, in addition to , requires a bound of
the form
sup [le?e et Pe| oy < Ce™, Wt >0, (5.30)
0<e<eo

for some a > 0.
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Lemma 5.3. If the parameter 7 introduced in (2.8)) obeys ¥ € (0,1), and if
p € [1,00], the operator K. defined in (4.39) satisfies

el zzr(vy,Lacary) < Cpg, Ve € (0,€0), (5.31)
where p < q < ﬁ if p E]l,%[, where % <g<ooifp= %, and
where p < q < 00 if p €]z, 00).

1—=°
If v =5 =0, then holds for all q € [p, 0] and all p € [1,00].

PROOF. Let us first assume that v € (0,1). Due to Assumption (Hs) and
Corollary we have

e~ ()\0 —wo)t

14 ’
—(Ag—wo)t —()xo—wo)t
e <C e

HeA\EtBEHE(U,ZE) < C Hfo<t< ET/(li’Y) =

e Be|l prz.) < C ife <

o~

_ <1,
o 2 =

2! Bel| pv.z.) < Ce~ Pt if 1 < ¢,

Thus, we have

| (Bl < C / ke(t— Dllu(r)vdr, Vie (0,00),  (532)

with
e~ ()\0 —wo)t

ke(t) = — 7 Xy (t) + e~ Romwolt X(1,00) (1)

where X[g 1) is the characteristic function of [0, 1], and X(1,00) 18 the charac-
teristic function of (1,00). To prove it is sufficient to apply Young’s
inequality to ([b.32]).

The case where v =7 = 0 is easy and left to the reader. [

Theorem 5.1. For alle € (0,¢¢), the operator [+ K K:(C*C+2 g P11 F:)
is an automorphism in L?(H), and, for all p € [2,00], (I + K K:(C*C +
2P P.)) ™1 is bounded in L(L*(H) N LP(H), LP(H)), uniformly in ¢ €
(0,€0)-

PRrOOF. We notice that KX and (C*C +2Ag P11 P:) are both nonnegative
and self-adjoint operators in L?(H). Thus, from [I5, Lemma 2A.1], it follows
that I + K. (C*C 42X\ PYTI.P.) is an isomorphism of L?(H) and that

(I + KK (CHC 4 200 PX T Pe)) "l 222
<1+ K 22y I(CFC + 200 PX U P ) || 1)
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Hence, with and , the theorem is proved for p = 2.

If p> 2, let us set Tz = KKL(C*C + 2X\g P11 P;) for readability conve-
nience. For all (z,y) € H x H such that = + T.x = y, an easy recurrence
argument gives

n—1
r=(D)"TI+T) y+ > ()T Wy, vne N (5.33)
k=0

Let p € [2,00] be given fixed. Due to Lemma there exists ng € N such

that 72" € L(L?(H), LP(H)), with operator norm uniform in e. We have
proved that (I + 7z)~! belongs to £L(L?(H)), with operator norm uniform

in €. Due to Lemma 7no) belongs to L(LP(H)) and 7P belongs to
L(LP(H)), for all k =1,...n9 — 1, with operator norm uniform in €. Thus,

the identity (5.33) with n = ng gives |[z|[ro(my) < Cllyllz2m) + 1Yl e n))-
The proof of the theorem is complete. []

Remark 5.1. Proceeding as in the proof of Theorem we can show,
as in the above proof, that the operator I + KK*(C*C + 2A\gP*IIP) is an
automorphism in L?(H).

Theorem 5.2. There exist wi; > 0 and C > 0 such that

sup HeA€v“EtH£(ZE) < Ce~vit, vt >0, (5.34)
0<e<eg

Moreover, the following uniform bound holds:

sup [ AL z(z.) < +oo, VO € [0,1]. (5.35)

0<e<eo

Proor. With ([5.26]), Theorem|5.1{for p = oo, and the bound ||eg€tPszo||H <
Ce=Po=wolt|| 2|5 give

e 02, || Lo () < C(led=V) Pezg|| oo (2.) + led=0) Pezoll22.) < C’IV?OHH’)
5.36

for all ¢ € (0,e0). Thus, we obtain (5.30) for a = Ag. Due to the gener-
alization of Datko’s theorem stated in [I§], (5.34)) follows from ([5.27]) and

(5-30).
Finally, (5.25)) gives

(—A%IL. = /0 (=A%) A2t P*(C7C + 22 PFIL P2 )e e .,

Then, (5:35) follows from (Z3), (5:34), [14) and (G-29). O
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Lemma 5.4. We have

sup || BIILe||guy < +o0. (5.37)
0<e<eg

ProoOF. We have

o0 N —~
BTl = / B e UPH(CHC + 20 P TIL P, )e e metdt.
0

With , , , and , we have

With , , and , we have

The proof of (5.37) is complete. O
Finally, by setting

7L M-BBILR) Py and 0% —(BIILP.)Z, (5.38)

e A i = dt
/ B:eAEtP:(C*C + 2>\0P:H5P5)6A5’H5tdtH <C / ﬁ < 0.
0 0

oo ~ - (3] e(wof)\ofwﬁ)t
/ B:eAEtP;(C*C + 2>\OP;<H€PE)6AE,HEtdtH = C/ ti’)’dt < oQ.
€ €

we have

¥ = A7+ Bu, 2(0)=Pzxe Z (5.39)

From Theorem [4.1}(ii) with o = 0 (see Remark [4.1]), it follows that g9 > 0
can be chosen such that, for all € € (0,g¢), we have

IZ0lz < Cet i/ ||z||m, Vi€ (0,00), (5.40)
o e(—wii/2)t
[0 = 20)n < C Il Vee(O,).  (541)

5.5. Rate of convergence of the solutions to Riccati equations
Throughout this section gg is the parameter introduced at the end of

Section 5.4

Theorem 5.3. Let II be the solution of (5.5) and Iz be the solution of
(15.23)).
If 0 < r < s, where r and s are the rates of convergence appearing in

(2.4) and (2.6), then we have
[ PHILP — P;HEPsHﬁ(H) < Ce", Ve e (0,g). (5.42)
If r = s, we have

|P*TIP — PXTI.P.|| () < Ce® | In(e)], Ve € (0, 2). (5.43)
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PROOF. Step 1. First, for zg € H, (5.8) and (5.24]) give

1Z(2,3) — T(3., @.)|.

1 *
5y((P*HP — PXTI.P:)z, ZO)H\ —

Thus, the optimality of (z,u) and that of (z;,u.) give Z(z,u) < Z(z,u) and

Z(Ze, te) < Z(Ze,ue) (see the definitions given in (5.18]), (5.38))). Therefore
we have

I(2,0) — T (3, ) < I(2,0) — T (3, G) < Z(Z,0) — T-(%., Gc).

We deduce that |Z(Z,u) — Z. (2, u:)| < |Z(Z,0) — Zo(Ze, ue)| + |Z(Z,0) —
Z.(2,u:)|. As a consequence, we have:

%|((PHP—P€*HEPE)Z()7ZO)H| (5 44)
<2z u) = Ze(ze, u)| + |2 (2, ue) — Z(Z, u)| < (a) + (D),

(@) = (1213 — 1CZ gy | + [ICZ: N2y — €212y

(b) = HWH%Q(U) - H@a”%qm‘ + ‘”aaH%Q(U) - HaH%Q(U)“

Y

Step 2. We now assume that 0 < r/s < 1. With the identity ||Cz||2 —
ICyll3 = (Cx —Cy,Cac)Y + (Cy,Cx —Cy)Y, and with Holder’s inequality, for
p € (1,s/r), we get:

(@ < CUE= Zlwim (181, g+ 15l o

+ 117 — 2l zogan (HEEHLP%(H) + ”?”L%m)) |

From the exponential stability of 2z, z;, z., and z (see ((5.40), (5.34), (5.20]),
and (5.7)), it follows that HZHLP%(H) + HZSHL%(H and HZ&”L%(H) +
||2HL 1 a1 are bounded, uniformly in . Thus, 1) and (5.41) give
(a) < Ce".

Moreover, (5.37)) allows to bound (b) analogously.

From (5.44)), it follows that

|((P*IIP — P11, P:)z, ZO)H| < Ce'.

Since PXII.P. — P*IIP is self-adjoint, we obtain (5.42]).
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Step 3. We now assume that r = s. We proceed as in Step 2 with p = 1.
We already know that

121 Lo (1) + 1Zell Lo (1) + [Zell oo (1) + 12| oo 21y < C

The estimates of Z — Z. and z. — 2z in L'(H) can be obtained as we did to
prove ([2.16]), by using (5.21]) and ([5.41)) over the time interval (&, 00), and by
using the bounds in L*°(H) of Z, Z., Z, and z over the time interval (0, ¢).
g

5.6. Rate of convergence of the feedback gains
Throughout this section gg is the parameter introduced at the end of

Section [5.41

Proposition 5.3. Let (z,u) be the solution of (P) and (zz,u:) be the solu-
tion of (Ps). For all € € (0,¢9), we have

le™OZ = Z) | posrary < C€” Nlzollr, i 7 <5,

and (5.45)

le0E ~ 2l < C [ el [zo]l, i r=s.

PROOF. Step 1. Let us recall that AH = AH — Xod, AE 0. S A, — Mo,
and let us set

T() & KK*(C*C + 20 P*IIP)(-)] € L(L2(H))

and

To(-) = KKE(CFC + 200 P P.) ()] € L(L*(H)).

From Theorem and Remark we know that both I +7 and I + 7;
are automorphisms in L?(H). Starting from (5.11)) and (5.26)), we make the
following calculations

eAOPp — AV p. = (I +T)"1(eAOP) — (I + T2) YAV P.)
=((I+T) =T+ T) (A0 >+<I+T>f1< A0p — A0 PR
= (I + )T =TI +T)H("OP) + <I+T> AP — A0,
= (I +T) T = TI(EMOP) + (I 4+ T) (AP - A0OP).
Thus, by writing
() - T()
= (Ke = K)K*((C*C + 210 P*IIP)(-)) + Ko (K — K*)((C*C + 200 P*IIP)(-))
+2)\OIC€IC;((P6*HEP€ - P*HP)())7
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with K*[(C*C + 2\ P*IIP)eAn() P] = B*T1eAn() P, we obtain

AOP — An-O P, — (T4 T)7 ((a) + (b) + (¢) + (), (5.46)
where
(a) = (K- — K)(B*I1eAn0) p),
(b) = K. (KE = K7)(C*C + 22X P TIP) (e 1O P),
(c) = 2A0/c IC*(P*H P. — P*IIP) (A0 p),
(d) = _AOp.,

Step 2. We first assume that r/s € (0,1). In that case, follows from
with ([4.42)), (5.31)), (5.42), and with 1 < p = s/r. In that
case, follows from with (4.42)), (5.31)), (5.42)), and with
1<p=s/r.

Step 3. Now, we assume that » = s. In that case, follows from
with (4.41)), (5.31)), (5.43), and forp=1.0

Proposition 5.4. Let II be the solution of (5.5)) and I1. be the solution of

. We have
|B*IP — BIU-P:| o0y < Ce"|Ineg|, for all € € (0,ep). (5.47)
PrOOF. We have
B*IIPzy — BI1. P.z
= [(K* — KX)((C*C + 2Xo P*IIP)e~1)2)] (0)
+2Xo [KZ (P*IIP — PYTI.P.)e 0 0Z)] (0)

+ [KE ((C*C + 20 PYIL P.) (e 0z — e~ 0)Z,))] (0).
(5.48)
Step 1. From (4.41)), it follows that

1" = K2l c(zos (i), oo (vy) < Ce"[In el
Thus, with , we have
|[(K* = K£)((C*C + 20 P*TIP)e20Z)] (0)]|,,
< NI = K2l ooy ey 1(€7€C + 200 PFTIP)e 02
< Ce"|n el |20l m-
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Step 2. With (| . -, and ( - or - ) if » = s5), we have
1220 [KZ (P*ILP — PXTLP:)Z)] (0)]],
< ClIKE | 2o (my oo @) 1 PP — P2 Pe| ooy 21| poo
< Ce"[In gl |20/ 1
Step 3. From the definition of K7, it follows that
(K2 ((C*C + 200 PY L P.) (e~ 002 — e=200)Z,))] (0)

= / BreA2TPF(CC + 200 PAIL P ) (e (D E(r) — e D2 (1))dr
0

g € 1 00
:/ +/ +/ +/ ., with g =¢"/077),
0 g Jg 1

We are going to use (Hs). If we choose a = 1_% > 1, where 7 € [,1) is the
exponent appearing in (2.8)), it follows that

/EQ
0

e 1 B N R
gc/ Zdr x (108 gany + e O% o))

< &0 ||z0]| &,

S C&?T ”ZOHH

‘B:eg;TP:(C*C + 2>\OP:HEPE)(€*)\O(T)’Z\(T) _ e*)\O(T)Ea(T))HU dT

For the second term, with (4.43]), we have

/E
ga

°1
<cer / e 2y — e 25| ar
ga T

AT (CC + 20 PIILP) (e 03 (r) — e 5 (r)|| dr

H
< O |Inellle ™ OZ() — e OZ ()| oo )

< Ce"|ln €lllzolm-
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For the third term, with (4.44) and (5.45)), we obtain

FeATPH(CC + 200 PP (e 03 (r) — e OE(r)|| dr

<C / 11He—W)z(T)—e—M(T)zg(T)H dr
z 77

- { (o) e VZ() = ez Ol gy i =s(1 1),

le™°OZ() — e OZ ()| osriary if r <s(1—7),
e”[In(e)lllzoll = if r = s(1—~) and v =0,

<C < " lnE@)||zo0lla if r=s(1—+)and~ >0,
e" || zoll if r <s(1—7).

The fourth term can be estimated with (5.45) and Holder’s inequality as
follows

/ HB;efT?P: (C*C + 22 P ILP.) (e MM 5(7) — e*M(T)za(T))HU dr
1

< [ et
1

<C He*AO(-)g_ 67,\0(.)25‘

e ME(r) — e 0z(r)| a7

Ls/7(H)
<c e ||zol| 1 %fs<r
e" | In(e)|||lzollm if s =r.

The proof is complete. [

5.7. Final results and final remarks

We can summarize the results of Section [5.6]in the following theorem.

Theorem 5.4. We assume that the pair (A, B) is feedback stabilizable, and
that the pair (A,C) satisfies the condition (5.2).

Let 11 be the solution of and Il. be the solution of .

There exist o > 0 and gy € (0,1) such that

le(Aem BB iy < CelmemtestineDt,

(Ac=B.B:IL)p _ J(A-BB*I)i p < Ce(_w“ﬂer“na‘)t "I
e . —e ey < C———r7——¢"|Ine],

foralle € (0,e0) and allt > 0. (In the above estimates, wry is the exponential

decay introduced in (5.7))).
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PROOF. Since (5.47)) is satisfied, we choose F, = —BZ1Il. P., and the theorem
is a direct consequence of Theorem [4.1}(i) (see Remark with o(e) =
Ce"|lne|. O

Let us end this section by comparing our method of proof to establish
the results of that section with similar ones proved in the case of conforming
approximations.

Remark 5.2. The main difference between [15], Section 4.5] and our results
in the present section is in the estimate of ||Z(t) — 2z(t)||z, where Z(t) =
e A+BK) Py is the solution of the initial closed-loop system, and Z.(t) =
el(As+BK) p 0 is the solution of the approximate closed-loop system.

In [I5, Section 4.5], the proof of the estimate of ||2(¢) — 2-(¢)| & is based
on the estimate [15, (4.5.1.20), Page 474], and on the estimate of its right
hand side, [|(Aof — A — BK)"'P — (Aof — Ac — B.K.) "' P.|| ¢y (with our
notation), which is, according to [15, Page 475], estimated with [I5], (4.5.1.6),
Page 472]. With our notation [15, (4.5.1.6), Page 472] corresponds to an
estimate of |[(A\gI —A—BK) ™' P — (Ao — A. — B.KP) ' P.|| (7). Actually,
using the triangle inequality

H()\()I —A-— BK)_IP — ()\()I — A — B&‘K&‘)_IPSHE(H)
< (Al =A—BK)™'P— (Al — Ac = B.KP) ™' P.|| ¢ (m)
+[|(Mol — Ac = BeKP) ™' P — (Aol — Ac — B-K.) ' P comy,

an estimate of ||(A\ol — Ac — B:KP)™ 1P — (Ao — Ac — BEKE)*lPeﬂﬁ(H),
uniform in e, would be needed. But this estimate is not given in [I5, Section
4.5]. This is why this point in the proof of [15, Section 4.5] is not clear for
us. In our proof, we first establish convergence rates for the feedback laws
in Proposition The convergence rate for ||Z(t) — zz(t)||z is obtained in
Theorem as a consequence of Proposition and of Theorem In
[15 Section 4.5], the convergence rate of feedback laws is obtained by using
the convergence rate for ||Z(t) — zz(t)|| . Since the estimate of ||(Agl — Ac —
B.KP)"'P— (Al —A.—B.K.) ' P.|| o) is not proved in [I5, Section 4.5],
we think that some arguments are missing there.

6. Appendix A

The goal of this section is to prove the resolvent identity stated in the
following lemma.
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Lemma 6.1. For all A € {wo} + Sy/245 and Ao > wo, we have

(M — A" P — (M — A)~

=(I-(\- )\0)0\1 — A~ P)(A*P — AZIP) (I = (A= Xo)(M — Ao)~

and

((AI - A)_l - (/\I - Aa)_IPE)P

= (I = (A= M)\ = A)TIP)(AZLP. — A71P) (= A)(AT — A)~P.

PROOF. We have
—A=A)A[—A)LP=T—P— AN — A}
and
— (A= XA —A) 1P =T1—P.— A(A\ — A.)~!

Next, we write

LP),

A=(1-P- A0 41 P) (AP A7) (1- P (M - 47!

= (I1=P) (AP AZ'P) (I - P. = A\ - A)7' P

AN - AP (Xflp - /T;lpg) (I P AN — A P€>

—(I-P)A-'P. (I — P — A (M — A) PE)
(M — AP (P — Epfljpg) (I - P.)
+(AL = )7 P (P = APAZ'P.) A.(M ~ A)T' P,
=(I-P)(M—-A)'P.
—~ N -A)tPI-P)
+(\T = A7 P (P— APAZ'P.) A(M - A) 7' P.
= (I = P)(\[ = A) ' P. = (M = A)~ P(I Fe)
+(M - A E(M At
—(A\ — A)"TAP(A — A)~t
We have
AN —-A) " Po= P+ (A= X)(A— A) !
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and R
(M —A)'AP = —P 4+ (A = Xo)(A\ — A)"'P.

Thus, we finally obtain
A=(I—-P)YM—-A)'P.-MN-A)'P(I-PF)
A=A P (=P.+ (A= 2)(M - A)" ' P)
+(P—A=X)MN —A)7'P)(\[ - A) P
=(I-P)M—-A)'P.—(M-A)"'P(I-PF)
~(M —A)'PP.+ (M —A) PP (A= X)(M - A) " P)
+PN — A) PP — (A= M) (M — A)TLPNT — AL P,
=([I-P)M—-A)'P.—(M-A)'P(I-P)
~(M = A PP+ P\ — A) " P
=(M—-A) P -(M-A)P

The proof of the first identity is complete.
By reversing the role of A and A, we also obtain

(M — AP — (M — AP,
= (I — (A= X)A — A) 'R (AT P — A71P) (I — (A — Xo) (M — A)~L P) .

The second equality is a direct consequence of the above equality. [
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