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Cedex, 31062, France

Abstract

We consider parabolic controlled systems represented by a pair (A,B), where
(A,D(A)) is the infinitesimal generator of an analytic semigroup on a Hilbert
space Z and B is an unbounded control operator from a control space U
into Z. We consider approximate controlled systems (Aε, Bε), for ε > 0,
where (Aε,D(Aε)) is the infinitesimal generator of an analytic semigroup
on a Hilbert space Zε and Bε is an unbounded control operator from the
control space U into Zε. Since Zε is not included in Z, we are in the
case of nonconforming approximations. We assume that both Z and Zε are
Hilbert subspaces of another Hilbert spaceH, and that there exist projectors
P ∈ L(H) and Pε ∈ L(H) such that Z = PH and Zε = PεH, and for which
(A,B, P ) and (Aε, Bε, Pε) satisfy suitable approximation assumptions.

When the pair (A,B) is exponentially feedback stabilizable in Z, we
first prove that the pair (Aε, Bε) is exponentially feedback stabilizable in
Zε, uniformly with respect to ε ∈ (0, ε0), for some ε0 > 0. We next prove
that Riccati-based feedback laws stabilizing (A,B) in Z can be approxi-
mated by feedback laws stabilizing (Aε, Bε) in Zε. This type of results has
been established in the eighties and the nineties in the case of conforming ap-
proximation, that is when Zε ⊂ Z. To the best of our knowledge nothing is
known in the case of nonconforming approximations. We also extend, to the
case of nonconforming approximations, convergence rates obtained in the
case of conforming approximations. Nonconforming approximations play a
central role in fluid mechanics. In [2], we have shown that the results proved
in the present paper apply to the Oseen system (the Navier-Stokes equations
linearized around a steady state) and its semidiscrete approximation by a
Finite Element Method.
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1. Introduction

In this paper, we consider a controlled system, in a Hilbert space Z, of
the form

z′ = Az +Bu in (0,∞), z(0) = z0 ∈ Z. (1.1)

In this setting, (A,D(A)) is the infinitesimal generator of an analytic semi-
group (etA)t≥0 on Z, the control operator B is a bounded operator from a
Hilbert space U into (D(A∗))′, where (A∗,D(A∗)) is the adjoint of (A,D(A)).

We are going to consider nonconforming approximations of system (1.1),
in a Hilbert space Zε, of the form

z′ε = Aεzε +Bεu in (0,∞), zε(0) = zε,0 ∈ Zε, (1.2)

where (Aε,D(Aε)) is the infinitesimal generator of an analytic semigroup
(etAε)t≥0 on Zε, the control operator Bε is a bounded operator from U into
(D(A∗

ε))
′, where (A∗

ε,D(A∗
ε)) is the adjoint of (Aε,D(Aε)).

We speak of nonconforming approximation because Zε ̸⊂ Z, but Z and
Zε are both Hilbert subspaces of a larger Hilbert space H.

The main results of the paper are the following:
- In Theorem 4.1(i), we prove that if the pair (A,B) is feedback stabi-

lizable in Z, then the pair (Aε, Bε) is feedback stabilizable in Zε, uniformly
with respect to ε ∈ (0, ε0), for ε0 > 0 small enough.

- In Theorem 4.1(ii), we prove that if there exists a family of feedback
operators Fε ∈ L(Zε, U) for all ε ∈ (0, ε0), for some ε0 > 0, stabilizing
the pair (Aε, Bε) in Zε, uniformly with respect to ε ∈ (0, ε0), then FεPε ∈
L(Z,U) also stabilizes the pair (A,B) in Z.

- In Section 5, we study feedback operators defined in the LQR theory
by the pair (A,B) and an output operator C ∈ L(H,Y ), where Y is another
Hilbert space. We assume that the pair (A,B) is stabilizable and the pair
(A, C|Z) is detectable in Z. We denote by Π ∈ L(Z,Z ′) the solution to
the algebraic Riccati equation associated with the triplet (A,B, C|Z), and
by Πε ∈ L(Zε, Z

′
ε) the solution to the algebraic Riccati equation associated

with the triplet (Aε, Bε, C|Zε). In Proposition 5.4, we establish a convergence
rate for ∥B∗ΠP − B∗

εΠεPε∥L(H,U). Thus the assumptions of Theorem 4.1
are satisfied by the feedback laws F = −B∗ΠP and Fε = −B∗

εΠεPε, and
the main result of Section 5 are collected in Theorem 5.4.
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We would like to emphasize that many applications, for which assump-
tions (H1) − (H5) stated in Section 2 are satisfied, fit with the abstract
framework introduced here. In [2] (see also [4, 5]), we apply the results
of Section 5 to the numerical approximation by a finite element method of
feedback laws stabilizing the Oseen system in a bounded polyhedral domain
of R3 (or a bounded polygonal domain of R2).

- The results of Section 5 can also be applied in the case where Zε is
of infinite dimension. It is for example the case when the incompressibility
condition in the Oseen system is approximated by the pseudo-compressibility
method. For application of the results of Section 5 to that case, we refer
to [1]. Let us notice that in [3], using results proved here in Section 3, we
determine feedback laws for both the initial and the approximate system by
using reduced order models based on spectral projections. We still obtain
convergence rate for feedback laws in that case too.

As far as we know, the main results of the present paper – Theorems
4.1 and 5.4 – are the first ones of this type in the case of nonconforming
approximations. But they can also be applied to the case of conforming
approximations, that is when Z = H, P = I, and Zε ⊂ Z. Theorem 4.1
is new in the case of nonconforming approximations, and its proof relies
on new tools introduced here for nonconforming approximations. We think
that Theorem 5.4 is new, even in the case of conforming approximations,
because both our assumptions and our method of proof are different from
the existing results in the literature.

Let us make some comparisons with the existing literature. For bounded
control operators and conforming approximations some results similar to
those of Theorem 5.4 are established in [7, 11]. For unbounded control
operators and conforming approximations the main contributions are due
to Lasiecka and Triggiani in a series of papers [13, 14, 12] and in the book
[15]. See also [6]. In Theorem 4.1, we have collected results which can
be found in a weaker form in the case of conforming approximations in
[15, Section 4.4.1], see also [14, Theorem 4.2] and [12, Theorem 2.3] (only
convergence results are given in these references and not convergence rates.
It is why these results are weaker than those stated in Theorem 4.1). Here,
in order to extend the results stated in [15, Section 4.4.1], we have first to
extend the notion of gap from an operator to another one, see [10, Chap. IV,
par. 2.4, p.201], when these approximations are not defined in a subspace
of Z (contrarily to the case of conforming approximations). This is done
in Section 3. We also need a new resolvent identity adapted to the case
of nonconforming approximations, which is stated and proved in Section 6.
But, results similar to those stated in (4.4) and (4.9) are neither given nor
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used in [12] or in [15]. The reason is that our method for proving Theorem
5.4 and that used in [14] or in [15] are different. This is what we explain at
the end of Section 5.7. As explained in Remark 5.2, at the end of Section
5.7 we think that some estimates are missing in [14] or in [15, Section 4.5].

Let us finally compare the assumptions used in [15, Section 4.5] and those
we state in Section 2. The assumptions concerning the convergence rates
stated in (2.4) and (2.6) are, for nonconforming approximations, similar
to those in [15, (4.1.2.4), (4.1.2.8)] for conforming approximations. Let us
however notice that our choice (εs and εr in place of εs and εs(1−γ)) allows us
to treat more general examples. The uniform bound stated in [15, (4.1.1.4)]
is similar to (2.5). The uniform bound (2.3) is not needed in [15] because the
analogue of our projector Pε is an orthogonal projector (denoted by Πh in
[15]). The main difference in the assumptions is in the uniform bound stated
in (2.8). The corresponding assumptions in [15] are stated in [15, (4.1.2.6),
(4.1.2.9)]. First notice that [15, (4.1.2.6)] is an inverse inequality which can
be satisfied only for finite dimensional approximations, while our assumption
(2.8) can be used both for finite and infinite dimensional approximations.
Moreover our method allows us to consider cases for which P and Pε are not
orthogonal projectors. It is for example the case when we define reduced
order models based on spectral projections, see e.g. [3].

2. Assumptions and preliminary results

2.1. Notation

The inner product and the norm in H (resp. U) will be denoted by
(·, ·)H and ∥ · ∥H (resp. (·, ·)U and ∥ · ∥U ) respectively. In Section 5, we will
introduce another Hilbert space Y whose inner product and norm will be
denoted by (·, ·)Y and ∥ · ∥Y respectively.

The Hilbert spaces Z and Zε, which are continuously embedded in H,
are equipped with the norm in H. Since P ∈ L(H) is a projector in H onto
Z, if we set Zo = (I − P )H, P is obviously the projector onto Z parallel
to Zo. We have H = Z ⊕ Zo. In what follows, we identify H with its dual
H ′, U with U ′, and Y with Y ′. Since H and H ′ are identified, if P is not
an orthogonal projector in H, we cannot identify Z with Z ′, but the duality
product ⟨·, ·⟩Z,Z′ is nothing but the inner product (·, ·)H .

We need to introduce P ∗ ∈ L(H), the adjoint of P ∈ L(H). We have
H = P ∗H⊕(I−P ∗)H. If P is not an orthogonal projector, we have P ̸= P ∗

and Z ̸= P ∗H. We can easily check that P ∗H can be identified with Z ′, and
(I−P ∗)H can be identified with Z ′

o. With such identifications H = Z ′⊕Z ′
o,

and P ∗ is the projector in H onto Z ′ parallel to Z ′
o.
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Similarly, we set Zo,ε = (I−Pε)H. We introduce P ∗
ε ∈ L(H), the adjoint

of Pε ∈ L(H). We will identify P ∗
εH with Z ′

ε, and (I −P ∗
ε )H with Z ′

o,ε. We
can identify Z ′

ε with Zε, and Z ′
o,ε with Zo,ε, only if Pε is an orthogonal

projector in H.
To shorten the notation, for 1 ≤ p ≤ ∞ and any Hilbert space X, the

space Lp(0,∞;X) will be denoted by Lp(X):

Lp(X)
def
= Lp(0,∞;X).

Throughout what follows, C denotes a generic constant which may vary
from one line to another one, but is independent of the parameter ε and
of λ ∈ C. Sometimes, we emphasize the dependence of a constant on some
other parameters θ, ℓ, or K, by writing Cθ, Cℓ or CK .

2.2. Assumptions

(H1) There exists (ω0, δ) ∈ R× (0, π/2) such that:

{ω0}+ Sπ/2+δ ⊂ ρ(A),

∥(λI −A)−1∥L(Z) ≤
C

|λ− ω0|
, for all λ ∈ {ω0}+ Sπ/2+δ,

(2.1)

and

{ω0}+ Sπ/2+δ ⊂ ρ(Aε), ∀ε ∈ (0, 1),

∥(λI −Aε)
−1∥L(Zε) ≤

C

|λ− ω0|
, ∀ε ∈ (0, 1), ∀λ ∈ {ω0}+ Sπ/2+δ,

(2.2)

where, for δ ∈ (0, π/2), the subset Sπ/2+δ ⊂ C denotes the sector {λ ∈ C |
|arg(λ)| < π/2 + δ}, and ρ(A) and ρ(Aε) are the resolvent sets of A and Aε

respectively.

In what follows, (A∗,D(A∗)), the adjoint of (A,D(A)), is an unbounded
operator in Z ′, and (A∗

ε,D(A∗
ε)), the adjoint of (Aε,D(Aε)), is an unbounded

operator in Z ′
ε. We set

Â
def
= A− λ0I and Âε

def
= Aε − λ0I, with λ0 > ω0.

We recall that P ∈ L(H) is a projector from H onto Z, and that Pε ∈
L(H) is a projector from H onto Zε.

(H2) The family of projectors Pε ∈ L(H) satisfies the uniform bound

sup
ε∈(0,1)

∥Pε∥L(H) < +∞, (2.3)
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and the pair (Â, Âε) satisfies the following approximation assumption

∥Â−1P − Â−1
ε Pε∥L(H) ≤ Cεs, ∀ε ∈ (0, 1), with s > 0. (2.4)

(H3) The control operator B belongs to L(U, (D(A∗))′), and it satisfies

(−Â)−γB ∈ L(U,Z) for some γ ∈ [0, 1). (2.5)

(H4) For all ε ∈ (0, 1), Bε belongs to L(U, (D(A∗
ε))

′). The pair (B,Bε)
satisfies the following approximation assumption

∥Â−1B − Â−1
ε Bε∥L(U,H) ≤ Cεr for all ε ∈ (0, 1), with 0 < r ≤ s(1− γ).

(2.6)
In addition, when γ > 0 and r = s(1− γ), we assume that

[Z,D(A)]θ = D(Âθ), ∀θ ∈ (0, 1), (2.7)

where [·, ·]θ stands for the complex interpolation.

Remark 2.1. Assumption (2.7) is equivalent to the local boundedness of
imaginary powers of Â (see [17, Theorem 1.15.3, p.103]). It is needed in
the proof of Proposition 2.1. Proposition 2.1 is used to prove Proposition
4.1 and Proposition 4.2. Assumption (2.7) is satisfied in usual cases, for
instance when Â is maximal accretive (see [8, Proposition 6.1, p171]). Let
us notice that this type of condition is needed in [15, Chap 4] even if this
assumption is not explicitely stated there. For instance, it is required to
derive [15, (4.3.3) and (4.3.6)].

(H5) The family of operators (Bε)ε∈(0,1) satisfies (−Âε)
−γBε ∈ L(U,Zε), for

all ε ∈ (0, 1), and the uniform bound

∥etAεBε∥L(U,Zε) ≤ C
eω0t

tγ
, ∀t ∈ (0, ε) = (0, εr/(1−γ)), ∀ε ∈ (0, 1), (2.8)

for some γ ∈ [γ, 1).

Remark 2.2. When γ = 0, the operator B belongs to L(U,Z). And if in
(2.8), γ is also equal to zero, this means that Bε ∈ L(U,Zε), and that

∥Bε∥L(U,Zε) ≤ C, ∀ε ∈ (0, 1).

But (2.8) allows us to consider sequences of operators (Bε)ε∈(0,1) which are
not necessarily bounded, even if B ∈ L(U,Z).
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Remark 2.3. From (H3) and (H4), it follows that

sup
ε∈(0,1)

∥(−Âε)
−1Bε∥L(U,Zε) < +∞. (2.9)

We can also notice that if

sup
ε∈(0,1)

∥(−Âε)
−γBε∥L(U,Zε) < +∞, (2.10)

is satisfied, then Assumption (2.8) is verified as a consequence of (2.14)
below. However, we will see in some applications that Assumption (2.8) can
be verified while (2.10) is not necessarily satisfied (see [2]).

2.3. First error estimates for the semigroup (etA)t>0

For all θ ∈ [0, 1], and all ε ∈ (0, 1), we have the following estimates:

∥(−Â)θ(λI −A)−1∥L(Z) ≤ Cθ

|λ− ω0|1−θ
, ∀λ ∈ {ω0}+ Sπ/2+δ, (2.11)

∥(−Â)θeAt∥L(Z) ≤ Cθ
eω0t

tθ
, ∀t > 0, (2.12)

∥(−Âε)
θ(λI −Aε)

−1∥L(Zε) ≤ Cθ

|λ− ω0|1−θ
, ∀λ ∈ {ω0}+ Sπ/2+δ, (2.13)

∥(−Âε)
θeAεt∥L(Zε) ≤ Cθ

eω0t

tθ
, ∀t > 0. (2.14)

Estimate (2.11) is a consequence of (2.1) and of the interpolation inequality
stated in [16, (6.19) in Chapter 2, Theorem 6.10]. With [8, Chapter II-1,
(2.44)], estimate (2.12) for θ = 1 follows from (2.1). Estimate (2.12) for
0 < θ < 1 is obtained by interpolation. Similarly, (2.13) and (2.14) follow
from (2.2).

Theorem 2.1. Let us assume that (2.1) to (2.4) are satisfied. For all 0 ≤
θ ≤ 1, and all ε ∈ (0, 1), and t > 0, we have

∥eAtP − eAεtPε∥L(H) ≤ C
eω0t

tθ
εsθ. (2.15)

Moreover, we have

∥eÂ(·)P − eÂε(·)Pε∥L1(L(H)) ≤ Cεs| ln ε|,
and

∥eÂ(·)P − eÂε(·)Pε∥Lp(L(H)) ≤ Cε
s
p , for all p ∈ (1,∞).

(2.16)
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Proof. Step 1. Let us first prove that, for all θ ∈ [0, 1], we have:

∥(λI −A)−1P − (λI −Aε)
−1Pε∥L(H) ≤

Cθ,ρ

|λ− ω0|1−θ
εsθ, ∀λ ∈ {ω0}+ Γρ,δ,

(2.17)

where Γρ,δ is the path, oriented from ∞e−iπ+δ
2 to ∞ei

π+δ
2 , defined by

Γρ,δ
def
= {re−iπ+δ

2 }r>ρ ∪ {ρeiα}|α|≤π
2
+ δ

2
∪ {rei

π+δ
2 }r>ρ, ρ > 0. (2.18)

For θ = 0, (2.17) follows from (2.1) and (2.2).
To prove (2.17) for θ = 1, we use the following resolvent identity (see

Section 6):

(λI −Aε)
−1Pε − (λI −A)−1P =

(I − (λ− λ0)(λI −A)−1P )(Â−1P − Â−1
ε Pε)(I − (λ− λ0)(λI −Aε)

−1Pε),

(2.19)

for λ ∈ {ω0}+ Γρ,δ. From (2.1) and (2.2), it follows that

∥(λ−λ0)(λI−Aε)
−1Pε∥L(H)+∥(λ−λ0)(λI−A)−1P∥L(H) ≤

C|λ− λ0|
|λ− ω0|

≤ Cρ,

for all λ ∈ {ω0}+ Γρ,δ. Thus, with (2.19) and (2.4), we have:

∥(λI −A)−1P − (λI −Aε)
−1Pε∥L(H) ≤ Cρ ε

s.

For 0 < θ < 1, inequality (2.17) follows by interpolation from the estimates
proved for θ = 0 and for θ = 1.

Step 2. Proof of (2.15). With the Dunford integral formula, we have:

eAtP − eAεtPε =
1

2iπ

∫
{ω0}+Γρ,δ

eλt((λI −A)−1P − (λI −Aε)
−1Pε)dλ.

Making the change of variable ξ = t(λ − ω0), which maps {ω0} + Γρ,δ to
tΓρ,δ, we obtain∫

{ω0}+Γρ,δ

eλt((λI −A)−1P − (λI −Aε)
−1Pε)dλ

=

∫
tΓρ,δ

eξ+tω0(((ξ/t+ ω0)I −A)−1P − ((ξ/t+ ω0)I −Aε)
−1Pε)

dξ

t
.

(2.20)
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For t > 0 the oriented path tΓρ,δ is the sum of the oriented path Γρ,δ and
another one denoted by Ct,ρ,δ, which is a closed oriented path. Since Ct,ρ,δ is
closed and does not enclose 0, we have∫

Ct,ρ,δ
eξ+tω0(((ξ/t+ ω0)I −A)−1P − ((ξ/t+ ω0)I −Aε)

−1Pε)
dξ

t
= 0.

The path tΓρ,δ in (2.20) can be replaced by Γρ,δ, and, with (2.17), we obtain

∥eAtP − eAεtPε∥L(H) ≤
Cθ,ρε

sθ

2πtθ
eω0t

∣∣∣∣∣
∫
Γρ,δ

eξ

|ξ|1−θ
dξ

∣∣∣∣∣ ≤ Ceω0tεsθ

tθ
.

Step 3. Proof of (2.16). To prove (2.16) for 1 ≤ p < ∞, it is sufficient to
write

∥eÂtP − eÂεtPε∥Lp(L(H))

≤ C

(∫ εs

0
dt + εsp

∫ 1

εs

dt

tp
+ εsp

∫ ∞

1
e−p(λ0−ω0)tdt

)1/p

,

≤ C

{
(εs + εs| ln(ε)|), if p = 1,

(εs/p + εs), if 1 < p < ∞,

where we have used (2.15) with θ = 0 if t ∈ [0, εs], and with θ = 1 if
t ∈ (εs,∞). □

Remark 2.4. A brief check of the proof of Theorem 2.1 shows that in-
equality (2.17) is true for λ ∈ {ω0} + (Sπ/2+δ \ B̄η), where for η > 0,
B̄η = {λ ∈ C | |λ| ≤ η}. More precisely, for η > 0, we have

∥(λI −Aε)
−1Pε − (λI −A)−1P∥L(H) ≤

Cη

|λ− ω0|1−θ
εsθ, (2.21)

for all 0 ≤ θ ≤ 1 and λ ∈ {ω0}+ (Sπ/2+δ \ B̄η).

Proposition 2.1. Let η > 0 and set B̄η = {λ ∈ C | |λ| ≤ η}. For all
λ ∈ {ω0}+ (Sπ/2+δ \ B̄η) we have

∥(λI −Aε)
−1Pε − (λI −A)−1∥L(D((−Â)1−γ),Z)

≤ Cη

|λ− ω0|
εr. (2.22)
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Proof. Let us prove that, for θ ∈ [0, 1] and λ ∈ {ω0} + (Sπ/2+δ \ B̄η), we
have

∥(λI −A)−1 − (λI −Aε)
−1Pε∥L([Z,D(A)]θ,Z) ≤

C

|λ− ω0|
εsθ. (2.23)

From the second statement of Lemma 6.1 in Appendix 6, we have

((λI −A)−1 − (λI −Aε)
−1Pε)P =

(I − (λ− λ0)(λI −Aε)
−1Pε)(Â

−1
ε Pε − Â−1P )(λI −A)−1(−Â)P.

From this identity and from (2.1), (2.2) and (2.4) we deduce (2.23) for θ = 1.
The case θ = 0 is a direct consequence of (2.1) and (2.2). Thus, (2.23) follows
by interpolation.

If γ = 0, then (2.22) is an immediate consequance of (2.23) with θ = 1.
If γ > 0 and r = s(1 − γ), then we deduce (2.22) from (2.23) and from
assumption (2.7), both with θ = 1− γ.

If γ > 0 and r < s(1 − γ), then we deduce (2.22) from (2.23) with
θ = r/s and from the continuous embedding D(Â1−γ) ↪→ [Z,D(A)]r/s. This
last embedding is true since r/s < 1− γ, see [17, Theorem 1.15.2 (d) p.101,
Theorem 1.3.3 (a)&(e) and par. 1.18.10. Remark 3 (3) p. 143]. □

3. Approximation of the semigroup and of the resolvent set

Here we suppose that Z1 and Z2 are two closed subspaces of H, that
P1 : H → Z1 and P2 : H → Z2 are projection operators and that A1 and A2

are closed linear operators densely defined in Z1 and Z2 respectively.
The main goal of this section is to prove Theorem 3.1. This theorem

will be used in the proof of Theorem 4.1−(i) with A1 = Aε + BεFε − λ̂I
and A2 = A + BF − λ̂I, and in the proof of Theorem 4.1−(ii) with A1 =
A+BF (ε)− λ̂I and A2 = Aε+BεFε− λ̂I, where F ∈ L(Z,U), Fε ∈ L(Zε, U)
and F (ε) ∈ L(Z,U) are feedback operators. To prove Theorem 3.1, we have
to extend the notion of gap introduced in [10] to the case where A1 and A2

are not defined in the same space. For that, we are going to define the gap
between the pairs (A1, P1) and (A2, P2). We first set

δ((A1, P1), (A2, P2))

= sup
(z1,ζ)∈S(A1,P1)

inf
z2∈D(A2)

{
∥z1− z2∥H + ∥P2(A1z1+(I−P1)ζ)−A2z2∥H

}
,

(3.1)
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where

S(A1, P1) = {(z1, ζ) ∈ D(A1)×H | ∥z1∥H + ∥A1z1 + (I − P1)ζ∥H = 1}.

The gap between (A1, P1) and (A2, P2) is defined by:

δ̂((A1, P1), (A2, P2)) = max{δ((A1, P1), (A2, P2)), δ((A2, P2), (A1, P1))}.
(3.2)

Note that when Z1 = Z2 = H and P1 = P2 = I is the identity in H, such a
notion of gap coincides with that one in [10, Chap. IV par. 2.4, p.201]. The
arguments of the proof of Proposition 3.1 below are largely borrowed from
[10].

Proposition 3.1. (i) If A1 and A2 are both boundedly invertible then

δ̂((A1, P1), (A2, P2)) ≤ ∥A−1
1 P1 − A−1

2 P2∥L(H). (3.3)

(ii) If A2 has a bounded inverse on Z2 and if the following inequality holds:

δ̂((A1, P1), (A2, P2)) <
1

2(1 + ∥A−1
2 P2∥L(H,Z2))

, (3.4)

then A1 admits a bounded inverse on Z1. Moreover, the following inequality
holds:

∥A−1
1 − A−1

2 P2∥L(Z1)

2(1 + ∥A−1
2 P2∥L(H,Z2))

2
≤ δ̂((A1, P1), (A2, P2)). (3.5)

(iii) Let us define

M(P1, P2)
def
= max

{
∥P1∥L(H,Z1), ∥P2∥L(H,Z2)

}
. (3.6)

For all λ ∈ C, the following inequality holds:

δ̂((A1 − λI, P1), (A2 − λI, P2)) ≤ (1 + |λ|M(P1, P2))
2δ̂((A1, P1), (A2, P2)).

(3.7)

Proof. (i) It suffices to prove δ((A1, P1), (A2, P2)) ≤ ∥A−1
1 P1−A−1

2 P2∥L(H).

The inequality δ((A2, P2), (A1, P1)) ≤ ∥A−1
1 P1 − A−1

2 P2∥L(H) will next be
deduced by reversing the role of (A1, P1) and (A2, P2). Since A1 and A2 are
both boundedly invertible then, with ξ = A1z1 + (I − P1)ζ and ξ2 = A2z2
in (3.1), we deduce that

δ((A1, P1), (A2, P2))

= sup
ξ∈H, ∥ξ∥H+∥A−1

1 P1ξ∥H=1

inf
ξ2∈Z2

{
∥A−1

1 P1ξ − A−1
2 ξ2∥H + ∥P2ξ − ξ2∥H

}
.

(3.8)
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For any given ξ ∈ H such that ∥ξ∥H + ∥A−1
1 P1ξ∥H = 1, we choose ξ2 =

P2ξ to first get ∥A−1
1 P1ξ − A−1

2 P2ξ∥H as an upper bound of the infimum
in (3.8). Next, from ∥ξ∥H ≤ ∥ξ∥H + ∥A−1

1 P1ξ∥H = 1 we deduce that
∥A−1

1 P1ξ −A−1
2 P2ξ∥H ≤ ∥A−1

1 P1 −A−1
2 P2∥L(H), and we conclude by taking

the supremum on ξ ∈ H such that ∥ξ∥H + ∥A−1
1 P1ξ∥H = 1.

(ii) We first prove that A1 is one-to-one. Let us argue by contradiction. We
assume that there exists z1 ∈ D(A1) satisfying ∥z1∥H = 1 and A1z1 = 0.
Then (z1, 0) ∈ S(A1, P1) and, according to the definition of δ((A1, P1), (A2, P2))
in (3.1), we can choose z2 ∈ D(A2) such that

∥z1 − z2∥H + ∥A2z2∥H < (2 + 2∥A−1
2 P2∥L(H,Z2))

−1.

It follows that 1 = ∥z1∥H ≤ ∥z1 − z2∥H + ∥A−1
2 P2∥L(H,Z2)∥A2z2∥H < 1/2,

which gives a contradiction. Thus A1 is one-to-one.
Let R(A1) be the range of A1. Since A1 is one-to-one it admits an inverse

A−1
1 defined on R(A1).
Let us prove that A−1

1 is bounded on R(A1). Let ξ1 ∈ R(A1) and set
r1 = ∥ξ1∥H + ∥A−1

1 ξ1∥H . There exists z1 ∈ D(A1) such that ξ1 = A1z1 and
moreover r1 = ∥z1∥H + ∥A1z1∥H . For all z2 ∈ D(A2), we set ξ2 = A2z2, and
we have∥∥∥∥(A−1

1 − A−1
2 P2)

ξ1
r1

∥∥∥∥
H

≤
∥∥∥∥A−1

1

ξ1
r1

− A−1
2 ξ2

∥∥∥∥
H

+

∥∥∥∥A−1
2

(
ξ2 − P2

ξ1
r1

)∥∥∥∥
H

≤ (1 + ∥A−1
2 P2∥L(H,Z2))

(∥∥∥∥A−1
1

ξ1
r1

− A−1
2 ξ2

∥∥∥∥
H

+

∥∥∥∥P2
ξ1
r1

− ξ2

∥∥∥∥
H

)
= (1 + ∥A−1

2 P2∥L(H,Z2))

(∥∥∥∥z1r1 − z2

∥∥∥∥
H

+

∥∥∥∥P2A1
z1
r1

− A2z2

∥∥∥∥
H

)
.

By taking the infimum over z2 ∈ D(A2), and by observing that z1 ∈ D(A1)

satisfies
∥∥∥ z1
r1

∥∥∥
H
+
∥∥∥A1

z1
r1

∥∥∥
H

= 1, we obtain

∥(A−1
1 − A−1

2 P2)ξ1∥H
≤ (1 + ∥A−1

2 P2∥L(H,Z2))δ((A1, P1), (A2, P2))(∥A−1
1 ξ1∥H + ∥ξ1∥H).

The above inequality, with

∥A−1
1 ξ1∥H + ∥ξ1∥H ≤ ∥(A−1

1 − A−1
2 P2)ξ1∥H + ∥A−1

2 P2ξ1∥H + ∥ξ1∥H
≤ ∥(A−1

1 − A−1
2 P2)ξ1∥H + (1 + ∥A−1

2 P2∥L(H,Z2))∥ξ1∥H ,
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gives

∥(A−1
1 − A−1

2 P2)ξ1∥H
≤ (1 + ∥A−1

2 P2∥L(H,Z2))δ((A1, P1), (A2, P2))∥(A−1
1 − A−1

2 P2)ξ1∥H
+ (1 + ∥A−1

2 P2∥L(H,Z2))
2δ((A1, P1), (A2, P2))∥ξ1∥H . (3.9)

Estimates (3.9) and (3.4) give

∥(A−1
1 − A−1

2 P2)ξ1∥H ≤ 2(1 + ∥A−1
2 P2∥L(H,Z2))

2δ((A1, P1), (A2, P2))∥ξ1∥H ,

for all ξ1 ∈ R(A1). Thus A−1
1 is bounded on R(A1).

Hence, if we prove that R(A1) is dense in Z1 then (3.5) will follow by
extending the above inequality by density to ξ1 ∈ Z1.

Let us prove thatR(A1) is dense in Z1. For that, we will use the following
bound implied by (3.4):

δ((A2, P2), (A1, P1)) ≤
1

2(1 + ∥A−1
2 P2∥L(H,Z2))

.

From the above inequality we deduce that, for all (z2, ζ) ∈ D(A2)×H such
that ∥A2z2 + (I − P2)ζ∥H + ∥z2∥H = 1, there exists z1 ∈ D(A1) such that
we have

∥P1(A2z2 + (I − P2)ζ)− A1z1∥H ≤ 1

2(1 + ∥A−1
2 P2∥L(H,Z2))

. (3.10)

Let ξ1 ∈ Z1 such that ∥ξ1∥H = 1, and set r1 = 1 + ∥A−1
2 P2ξ1∥H . We have

∥ ξ1
r1
∥H + ∥A−1

2 P2
ξ1
r1
∥H = 1. With z2 = A−1

2 P2
ξ1
r1

and ζ = ξ1
r1

in (3.10) we
deduce ∥∥∥∥ξ1r1 − A1z1

∥∥∥∥
H

≤ 1

2(1 + ∥A−1
2 P2∥L(H,Z2))

.

Hence, with r1 ≤ (1 + ∥A−1
2 P2∥L(H,Z2)), we deduce

∥ξ1 − r1A1z1∥H ≤ 1

2
.

This implies that dist(ξ1,R(A1)) ≤ 1/2. Since this last inequality holds for
all ξ1 in the unit sphere of Z1, from [10, Lemma 1.12, p. 131], we deduce
that R(A1) is dense in Z1.
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(iii) Let (z1, ζ) ∈ D(A1)×H be such that ∥(A1−λI)z1+(I−P1)ζ∥H+∥z1∥H =
1, and set r1 = ∥A1z1 + (I − P1)ζ∥H + ∥z1∥H . For all z2 ∈ D(A2), we have

∥z1 − r1z2∥H + ∥P2((A1 − λI)z1 + (I − P1)ζ)− (A2 − λI)r1z2∥H

≤
(∥∥∥∥z1r1 − z2

∥∥∥∥
H

+

∥∥∥∥P2(A1
z1
r1

+ (I − P1)
ζ

r1
)− A2z2

∥∥∥∥
H

+ |λ|
∥∥∥∥P2

z1
r1

− z2

∥∥∥∥
H

)
r1

≤ (1+|λ|∥P2∥L(H,Z2))

(∥∥∥∥z1r1 − z2

∥∥∥∥
H

+

∥∥∥∥P2

(
A1

z1
r1

+ (I − P1)
ζ

r1

)
− A2z2

∥∥∥∥
H

)
r1.

By taking the infimum for z2 ∈ D(A2), and by remarking that ( z1r1 ,
ζ
r1
) obeys

∥ z1
r1
∥H + ∥A1

z1
r1

+ (I − P1)
ζ
r1
∥H = 1, we obtain

inf
z2∈D(A2)

{
∥z1−r1z2∥H+∥P2((A1−λI)z1+(I−P1)ζ)z1−(A1−λI)r1z2∥H

}
≤ (1 + |λ|∥P2∥L(H,Z2))δ((A1, P1), (A2, P2))r1. (3.11)

Moreover, we have

r1 = ∥z1∥H + ∥A1z1 + (I − P1)ζ∥H
≤ ∥z1∥H + ∥(A1 − λI)z1 + (I − P1)ζ∥H + |λ|∥z1∥H ≤ 1 + |λ|.

With 1 ≤ ∥P2∥L(H,Z2) we deduce r1 ≤ 1 + |λ|∥P2∥L(H,Z2), and (3.11) yields

δ((A1 − λI, P1), (A2 − λI, P2)) ≤ (1 + |λ|∥P2∥L(H,Z2))
2δ((A1, P1), (A2, P2)).

Finally, by reversing the role of (A1, P1) and (A2, P2), we also have
δ((A2 − λI, P2), (A1 − λI, P1)) ≤ (1 + |λ|∥P1∥L(H,Z1))

2δ((A2, P2), (A1, P1)),
and (3.7) is proved. □

Theorem 3.1. Let M(P1, P2) be defined in (3.6). If A1 and A2 both admit
a bounded inverse in Z1 and Z2 respectively, if λ ∈ C belongs to the resolvent
set of A2, and if

∥A−1
1 P1−A−1

2 P2∥L(H) <
1

2(1 + |λ|M(P1, P2))2(1 + ∥(A2 − λI)−1P2∥L(H,Z2))
,

(3.12)
then A1 − λI admits a bounded inverse in Z1, and

∥(λI − A1)
−1∥L(Z1) ≤ 1 + 2∥(λI − A2)

−1P2∥L(H,Z2). (3.13)
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Proof. By using (3.7) and (3.3), we first obtain

δ̂((A1 − λI, P1), (A2 − λI, P2)) ≤ (1 + |λ|M(P1, P2))
2δ̂((A1, P1), (A2, P2))

≤ (1 + |λ|M(P1, P2))
2∥A−1

1 P1 − A−1
2 P2∥L(H).

Then, with (3.12), it yields

δ̂((A1 − λI, P1), (A2 − λI, P2)) ≤
1

2(1 + ∥(A2 − λI)−1P2∥L(H,Z2))
. (3.14)

Which (by point (ii) of Proposition 3.1) ensures that A1 − λI admits a
bounded inverse on Z1. Finally, with (3.5), in which A1 and A2 are replaced
by A1 − λI and A2 − λI, we obtain

∥(A1 − λI)−1 − (A2 − λI)−1P2∥L(Z1)

2(1 + ∥(A2 − λI)−1P2∥L(H,Z2))
2

≤ δ̂((A1 − λI, P1), (A2 − λI, P2)).

With (3.14), we deduce that

∥(A1 − λI)−1 − (A2 − λI)−1P2∥L(Z1) ≤ (1 + ∥(A2 − λI)−1P2∥L(H,Z2)).

Thus (3.13) follows from the triangle inequality. □

4. Approximation of feedback gains

Throughout this section, we assume that (H1) to (H4) are satisfied.

Definition 4.1.
1. A strongly continuous semigroup (etA)t≥0 on Z is said to be exponen-

tially stable if there exist α > 0 and C > 0 such that

∥etA∥L(Z) ≤ C e−tα, ∀t ≥ 0.

2. A parameter dependent family (etAε)t≥0, with ε ∈ (0, ε0), of strongly
continuous semigroups on Zε, is said to be exponentially stable, uniformly
with respect to ε ∈ (0, ε0), if there exist α > 0 and C > 0 such that

∥etAε∥L(Zε) ≤ C e−tα, ∀t ≥ 0, ∀ε ∈ (0, ε0).

Definition 4.2.
1. The pair (A,B) is said to be feedback stabilizable in Z if there exists

F ∈ L(Z,U) such that (A+BF,D(A+BF )), with D(A+BF ) = {z ∈ Z |
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(A + BF )z ∈ Z}, is the infinitesimal generator of an exponentially stable
strongly continuous semigroup on Z.

2. The parameter dependent pair (Aε, Bε) is said to be feedback stabi-
lizable in Zε, uniformly with respect to ε ∈ (0, ε0), if there is a bounded
family (Fε)0<ε<ε0 in L(Zε, U) such that (Aε + BεFε,D(Aε + BεFε)), with
D(Aε+BεFε) = {z ∈ Zε | (Aε+BεFε)z ∈ Zε}, is the infinitesimal generator
of an exponentially stable strongly continuous semigroup on Zε, uniformly
in ε ∈ (0, ε0).

Theorem 4.1.
(i) Let us assume that there exist F ∈ L(Z,U) and ωF > 0 such that

A+ωF I+BF is the infinitesimal generator of an exponentially stable strongly
continuous semigroup on Z, and that (Fε)0<ε<1 ⊂ L(Zε, U) is a family
satisfying

∥FP − Fε∥L(Zε,U) ≤ σ(ε), ∀ε ∈ (0, 1), (4.1)

where σ is a continuous function from R+ into R+ such that σ(0) = 0. We

set AF
def
= A + BF and Aε,Fε

def
= Aε + BεFε. Let δ ∈ (0, π/2) be the angle

introduced in assumption (H1).
Then, for all δ̃ ∈ (0, δ), there exist ϱ > 0 and ε0 ∈ (0, 1) such that

{−ωF,ε}+ S
π/2+δ̃

⊂ ρ(Aε,Fε), with ωF,ε
def
= ωF − ϱ(εr + σ(ε)), and

∥(λI −Aε,Fε)
−1∥L(Zε) ≤

C

|λ+ ωF,ε|
, ∀λ ∈ {−ωF,ε}+S

π/2+δ̃
, ∀ε ∈ (0, ε0).

(4.2)
Moreover, we have

∥eAε,Fε t∥L(Zε) ≤ Ce−ωF,εt, ∀t ≥ 0, ∀ε ∈ (0, ε0), (4.3)

∥eAF tP − eAε,Fε tPε∥L(H) ≤ C e−ωF,εt

(
εr

tr/s
+ σ(ε)

)
, (4.4)

∀t ≥ 0, ∀ε ∈ (0, ε0).

In particular, (4.3) and (4.4) hold to be true for Fε = FP , with σ ≡ 0.
(ii) Let us assume that (Fε)0<ε<1 is a family in L(Zε, U), satisfying

∥Fε Pε∥L(Z,U) ≤ C, ∀ε ∈ (0, 1), (4.5)

and that (F (ε))0<ε<1 is family in L(Z,U) satisfying

∥FεPε − F (ε)∥L(Z,U) ≤ σ(ε), ∀ε ∈ (0, 1), (4.6)

where σ is a continuous function from R+ into R+ satisfying σ(0) = 0.
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In addition, we assume that there exists ωF > 0 such that the family
((et(Aε+ωF I+BεFε))t≥0)0<ε<1, of strongly continuous semigroups on Zε, is
exponentially stable, uniformly in ε ∈ (0, 1).

We set AF (ε)
def
= A + BF (ε) and Aε,Fε

def
= Aε + BεFε. Let δ ∈ (0, π/2) be

the angle introduced in assumption (H1).
Then, for all δ̃ ∈ (0, δ), there exist ϱ > 0 and ε0 ∈ (0, 1) such that

{−ωF,ε}+ S
π/2+δ̃

⊂ ρ(AF (ε)), with ωF,ε
def
= ωF − ϱ(εr + σ(ε)), and

∥(λI −AF (ε))−1∥L(Z) ≤
C

|λ+ ωF,ε|
, ∀λ ∈ {−ωF,ε}+ S

π/2+δ̃
, ∀ε ∈ (0, ε0).

(4.7)
Moreover, we have

∥eAF (ε) t∥L(Z) ≤ Ce−ωF,εt, ∀t ≥ 0, ∀ε ∈ (0, ε0), (4.8)

∥eAε,Fε tP − eAF (ε) tPε∥L(H) ≤ C e−ωF,εt

(
εr

tr/s
+ σ(ε)

)
, (4.9)

∀t ≥ 0, ∀ε ∈ (0, ε0).

In particular, (4.8) and (4.9) hold to be true for F (ε) = FεPε, with σ ≡ 0.

Remark 4.1. For simplicity, the assumptions of Theorem 4.1 are stated for
ε ∈ (0, 1). But it obviously remains valid if the assumptions are stated for
ε ∈ (0, ε̃0), for some ε̃0 ∈ (0, 1). In the later case it suffices to set Aε = Aε̃0 ,
Bε = Bε̃0 , Pε = Pε̃0 , Fε = Fε̃0 and F (ε) = F (ε̃0) for ε ∈ [ε̃0, 1).

Remark 4.2. In Theorem 4.1-(i), we state that if the pair (A,B) is feed-
back stabilizable, then there exists ε0 ∈ (0, 1) such that the family (Aε, Bε)
is feedback stabilizable uniformly with respect to ε ∈ (0, ε0). From Theorem
4.1-(ii), we deduce that if the family (Aε, Bε) is feedback stabilizable uni-
formly with respect to ε ∈ (0, ε0), for some ε0 ∈ (0, 1), then the pair (A,B)
is feedback stabilizable. In other words, the feedback stabilizability of the
pair (A,B) is equivalent to the uniform feedback stabilizability of the family
(Aε, Bε) for ε ∈ (0, ε0), for some ε0 ∈ (0, 1).

Before proving Theorem 4.1, we need the following proposition.

Proposition 4.1. Assume that (H1) − (H4) are satisfied. Let η > 0 and
set B̄η = {λ ∈ C | |λ| ≤ η}. For all λ ∈ {ω0}+ (Sπ/2+δ \ B̄η), we have

∥(λI −Aε)
−1Bε − (λI −A)−1B∥L(U,H) ≤ Cη ε

r . (4.10)
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Proof. For all λ ∈ {ω0 − λ0}+ Sπ/2+δ, we set

M(λ) = (λI − Âε)
−1Bε − (λI − Â)−1B. (4.11)

We have

M(λ) = (λI − Âε)
−1ÂεÂ

−1
ε Bε − (λI − Â)−1ÂÂ−1B

= (λ(λI − Âε)
−1 − I)Â−1

ε Bε − (λ(λI − Â)−1 − I))Â−1B

= Â−1B − Â−1
ε Bε + λ(λI − Âε)

−1Â−1
ε Bε − λ(λI − Â)−1Â−1B

= Â−1B − Â−1
ε Bε + λ(λI − Âε)

−1Pε(Â
−1
ε Bε − Â−1B)

+λ((λI − Âε)
−1Pε − (λI − Â)−1))Â−1+γÂ−γB. (4.12)

To prove (4.10), we have to estimate M(λ − λ0) = (λI − Aε)
−1Bε − (λI −

A)−1B. We estimate Â−1B − Â−1
ε Bε with (2.6). We estimate

(λ− λ0)((λ− λ0)I − Âε)
−1Pε(Â

−1
ε Bε − Â−1B)

with (2.2), (2.3), and (2.6). We estimate

(λ− λ0)(((λ− λ0)I − Âε)
−1Pε − ((λ− λ0)I − Â)−1))Â−1B

by using (2.22) with θ = 1− γ, and the fact that Â−γB ∈ L(U,H). □

We also need the following variant of the above proposition.

Proposition 4.2. Assume that (H1) − (H4) are satisfied. For all λ ∈
Sπ/2+δ, we have

∥(λI − Âε)
−1Bε − (λI − Â)−1B∥L(U,H) ≤ Cεr, (4.13)

∥(λI − Âε)
−2Bε − (λI − Â)−2B∥L(U,H) ≤ C

εr

|λ|
. (4.14)

Proof. Step 1. The estimate (4.13) follows from (4.10) with η < (λ0 −
ω0) cos δ.

Step 2. Proof of 4.14. By differentiating (4.12) with respect to λ, we get

M ′(λ) = ((λI − Âε)
−1 − λ(λI − Âε)

−2)Pε(Â
−1
ε Bε − Â−1B)

+ ((λI − Âε)
−1Pε − (λI − Â)−1))Â−1B

− λ((λI − Âε)
−2Pε − (λI − Â)−2))Â−1B.

(4.15)
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Since we have

(λI − Âε)
−2Pε − (λI − Â)−2P

= (λI − Âε)
−1Pε((λI − Âε)

−1Pε − (λI − Â)−1P )

+ ((λI − Âε)
−1Pε − (λI − Â)−1)(λI − Â)−1P,

with (2.22), (2.1), and (2.2), we obtain

∥(λI − Âε)
−2Pε − (λI − Â)−2P∥L(D((−Â)θ),H)

≤ C
εsθ

|λ|2
, for all 0 ≤ θ ≤ 1.

(4.16)

From the definition of M(λ) it also follows that M ′(λ) = (λI − Â)−2B −
(λI − Âε)

−2Bε. Thus we can estimate (λI − Â)−2B − (λI − Âε)
−2Bε by

using the expression of M ′(λ) obtained in (4.15).
From (2.2), we have ∥(λI−Âε)

−1Pε∥L(H) ≤ C
|λ| and ∥λ(λI−Âε)

−2Pε∥L(H)

≤ C
|λ| . Thus the first line in (4.15) is estimated with (2.6).

The second line in (4.15), namely ((λI − Âε)
−1Pε − (λI − Â)−1))Â−1B,

was already estimated to prove (4.13).
The last line in (4.15), −λ((λI − Âε)

−2Pε − (λI − Â)−2))Â−1+γÂ−γB,
is estimated by choosing θ = r/s in (4.16). □

Let us notice that (2.5) and (2.11), with the identity (λI − A)−1B =
(−Â)γ(λ−A)−1(−Â)−γB, give

∥(λI −A)−1B∥L(U,Z) ≤
C

|λ− ω0|1−γ
, ∀λ ∈ {ω0}+ Sπ/2+δ, (4.17)

and that (2.12), with eAtB = (−Â)γeAt(−Â)−γB, gives

∥eAtB∥L(U,Z) ≤ C
eω0t

tγ
, ∀t > 0. (4.18)

4.1. Proof of Theorem 4.1-(i)

Proof. Step 0. A perturbation argument ensures that AF is the infinites-
imal generator of an analytic semigroup on Z (see, e.g., [15, page 151]).
Since A+ωF I+BF is the infinitesimal generator of an exponentially stable
semigroup, we can choose δF > 0 such that the following resolvent estimate
holds:

∥(λI −AF )
−1∥L(Z) ≤

CF

|λ+ ωF |
, for all λ ∈ {−ωF }+ Sπ/2+δF . (4.19)
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Without loss of generality, in what follows, we can assume that δF = δ,
where δ ∈]0, π/2[ is the angle appearing in (2.1) and (2.2).

Step 1. Let us prove that there exists ω̂0 > −ωF and ε0 ∈ (0, 1) such that

∥(λI −Aε,Fε)
−1∥L(Zε) ≤

C

|λ+ ωF |
, ∀λ ∈ {ω̂0}+ Sπ/2+δ, ∀ε ∈ (0, ε0).

(4.20)
For that, we set Tε(λ) = (λI − Aε)

−1BεFεPε ∈ L(H). Due to (4.1), (2.3),
(4.17) and (4.10) with η < λ0 − ω0, we have

∥Tε(λ)∥L(H) ≤ C∥(λI −Aε)
−1Bε∥L(U,H)

≤ Cεr + C
|λ−ω0|1−γ , ∀ε ∈ (0, 1), ∀λ ∈ {λ0}+ Sπ/2+δ.

Let c0 belong to (0, 1). We choose ε0 ∈ (0, 1) and ω̂0 > max(−ωF , λ0) such
that

∥Tε(λ)∥L(H) ≤ 1− c0, ∀λ ∈ {ω̂0}+ Sπ/2+δ, ∀ε ∈ (0, ε0).

Therefore, for λ ∈ {ω̂0}+ Sπ/2+δ, I − Tε(λ) is invertible in L(H) and obeys

∥(I − Tε(λ))
−1∥L(H) ≤ (1− ∥Tε(λ)∥L(H))

−1 ≤ c−1
0 . (4.21)

Moreover, we verify that

(I − Tε(λ))
−1(λI −Aε)

−1 = (λI −Aε,Fε)
−1, ∀λ ∈ {ω̂0}+ Sπ/2+δ. (4.22)

With (4.22) and (4.21), we have

∥(λI −Aε,Fε)
−1∥L(Zε) ≤ c−1

0 ∥(λI −Aε)
−1∥L(Zε), ∀λ ∈ {ω̂0}+ Sπ/2+δ.

Hence, we obtain (4.20) from (2.2) and the fact that |λ+ωF |
|λ−ω0| is bounded in

the sector {ω̂0}+ Sπ/2+δ.

Step 2. Let us now prove that

∥(λI −Aε,Fε)
−1Pε − (λI −AF )

−1P∥L(H)

≤ C

(
εr

|λ+ ωF |1−r/s
+

σ(ε)

|λ+ ωF |

)
, ∀λ ∈ {ω̂0}+ Sπ/2+δ, ∀ε ∈ (0, ε0).

(4.23)

To prove (4.23), we set T (λ) = (λI −A)−1BFP and, arguing as we did
to prove (4.21), for c0 ∈ (0, 1), we can assume that ω̂0 is chosen so that
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∥(I − T (λ))−1∥L(H) ≤ c−1
0 , ∀λ ∈ {ω̂0}+ Sπ/2+δ. (4.24)

In the following we use the simplified notation T = T (λ) and Tε = Tε(λ)
and we consider λ ∈ {ω̂0}+Sπ/2+δ and ε ∈ (0, ε0) so that (I−T ) and (I−Tε)
are both boundedly invertible. We start by writing

(λI −AF )
−1P − (λI −Aε,Fε)

−1Pε

= (I − T )−1(λI −A)−1P − (I − Tε)
−1(λI −Aε)

−1Pε

= (I − T )−1((λI −A)−1P − (λI −Aε)
−1Pε)

+((I − T )−1 − (I − Tε)
−1)(λI −Aε)

−1Pε.

(4.25)

Thus, by using the identity

(I − T )−1 − (I − Tε)
−1 = (I − T )−1(T − Tε)(I − Tε)

−1,

and (4.22), we obtain

(λI −AF )
−1P − (λI −Aε,Fε)

−1Pε

= (I − T )−1((λI −A)−1P − (λI −Aε)
−1Pε)

+(I − T )−1(T − Tε)(λI −Aε,Fε)
−1Pε.

(4.26)

From (4.24) and from (2.21) for θ = r/s, we deduce that

∥(λI −AF )
−1P − (λI −Aε,Fε)

−1Pε∥L(H)

≤ C

(
εr

|λ− ω0|1−r/s
+ ∥(T − Tε)(λI −Aε,Fε)

−1Pε∥L(H)

)
.

(4.27)

We have the identity

(T − Tε)(λI −Aε,Fε)
−1Pε

= ((λI −A)−1B − (λI −Aε)
−1Bε)Fε(λI −Aε,Fε)

−1Pε

+ (λI −A)−1B(FP − Fε)(λI −Aε,Fε)
−1Pε.

With the uniform boundedness of Fε (which follows from (4.1)), and with
(4.13), we obtain

∥((λI −A)−1B − (λI −Aε)
−1Bε)Fε(λI −Aε,Fε)

−1Pε∥L(H)

≤ C εr∥(λI −Aε,Fε)
−1Pε∥L(H),
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because λ ∈ {ω̂0} + Sπ/2+δ ⊂ {λ0} + Sπ/2+δ. With (4.17), and (4.1), we
obtain

∥(λI −A)−1B(FP − Fε)(λI −Aε,Fε)
−1Pε∥L(H)

≤ C
σ(ε)

|λ− ω0|1−γ
∥(λI −Aε,Fε)

−1Pε∥L(H).

Thus, with (4.20) and the fact that 1/|λ− ω0| ≤ C and 1/|λ+ ωF | ≤ C for
λ ∈ {ω̂0}+ Sπ/2+δ, we deduce

∥(T − Tε)(λI −Aε,Fε)
−1Pε∥L(H) ≤ C(εr + σ(ε))∥(λI −Aε,Fε)

−1Pε∥L(H)

≤ C

(
εr

|λ+ ωF |1−r/s
+

σ(ε)

|λ+ ωF |

)
.

Thus, (4.23) follows from (4.27) and the fact that |λ+ωF |
|λ−ω0| is bounded in

{ω̂0}+ Sπ/2+δ.

Step 3. We fix λ̂ ∈ {ω̂0}+ Sπ/2+δ. From (4.23), we deduce that

∥(λ̂I −Aε,Fε)
−1Pε − (λ̂I −AF )

−1P∥L(H)

≤ C
(

εr

|λ̂+ωF |1−r/s
+ σ(ε)

|λ̂+ωF |

)
= Ĉ (εr + σ(ε)).

(4.28)

Due to (4.19) with λ = µ+ λ̂, we have

∥(AF−λ̂I−µI)−1∥L(Z) ≤
CF

|µ+ λ̂+ ωF |
, ∀µ ∈ {−ωF−λ̂}+Sπ/2+δ. (4.29)

For δ̃ ∈ (0, δ) given fixed, we set

K = {−ωF − λ̂}+ S
π/2+δ̃

\ {ω̂0 − λ̂}+ Sπ/2+δ,

and

CK = sup
µ∈K

(
2(1 + |µ|∥P∥L(H,Z))

2(|µ+ ωF + λ̂|+ CF )
)
.

We choose
ϱ > Ĉ CK/ cos(δ̃), (4.30)

where Ĉ is introduced in (4.28), and we set

ωF,ε = ωF − ϱ (εr + σ(ε))

and

Kε = {−ωF,ε − λ̂}+ S
π/2+δ̃

\ {ω̂0 − λ̂}+ Sπ/2+δ.
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Since ω̂0 > −ωF then, by choosing ε0 smaller if necessary, we can assume
that

−ωF < −ωF,ε < ω̂0 for all ε ∈ (0, ε0),

so that Kε is not empty. For all µ ∈ Kε, we have

∥(λ̂I −Aε,Fε)
−1Pε − (λ̂I −AF )

−1P∥L(H) ≤ Ĉ (εr + σ(ε))

<
ϱ cos(δ̃) (εr + σ(ε))

CK

=
dist(Kε,−ωF − λ̂)

CK
≤ |ωF + λ̂+ µ|

CK

≤ |ωF + λ̂+ µ|
2(1 + |µ|∥P∥L(H,Z))2(|µ+ ωF + λ̂|+ CF )

≤ 1

2(1 + |µ|∥P∥L(H,Z))2
(
1 + CF

|µ+ωF+λ̂|

)
≤ 1

2(1 + |µ|∥P∥L(H,Z))2(1 + ∥(µ+ λ̂I −AF )−1P∥L(H,Z))
.

According to Theorem 3.1, with (A2, P2) = (AF−λ̂I, P ), (A1, P1) = (Aε,Fε−
λ̂I, Pε) and λ = µ, we have

∥(µI+λ̂I−Aε,Fε)
−1∥L(Zε) ≤ 1+2∥(µ+λ̂−AF )

−1P∥L(H,Z), for all µ ∈ Kε.

Thus, if we set λ = µ+ λ̂, with (4.29) we have

∥(λI −Aε,Fε)
−1∥L(Zε) ≤ 1 + 2∥(λI −AF )

−1P∥L(H,Z) ≤ 1 + C
|λ+ωF |

≤ supλ∈K |λ+ωF |+C
|λ+ωF | ≤ C

|λ+ωF | ,

(4.31)

for all λ ∈ {λ̂}+Kε =
(
{−ωF,ε}+ S

π/2+δ̃
\ {ω̂0}+ Sπ/2+δ

)
.

By combining (4.20) and (4.31), we obtain

∥(λI −Aε,Fε)
−1∥L(Zε) ≤

C

|λ+ ωF |
, ∀λ ∈ {−ωF,ε}+ S

π/2+δ̃
, ∀ε ∈ (0, ε0).

(4.32)
We notice that a rough majorization leads to

|λ+ ωF,ε|
|λ+ ωF |

≤ |λ+ ωF |
|λ+ ωF |

+
ϱ(εr + σ(ε))

|λ+ ωF |
≤ 1+

dist(Kε,−ωF − λ̂)

cos(δ̃)|λ+ ωF |
≤ 1+

1

cos(δ̃)
,

(4.33)
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for all λ ∈ {−ωF,ε}+ S
π/2+δ̃

. Finally, (4.2) follows from (4.33) and (4.32).

Step 4. Let us notice that (4.3) is an immediate consequence of (4.2).

Step 5. Let us prove (4.4). First, the following resolvent identity can be
proved as in the Appendix,

(λI −Aε,Fε)
−1Pε − (λI −AF )

−1P

=
(
I − (λ− λ̂)(λI −AF )

−1P
)
×
(
(AF − λ̂I)−1P − (Aε,Fε − λ̂I)−1Pε

)
×
(
I − (λ− λ̂)(λI −Aε,Fε)

−1Pε

)
.

(4.34)
Hence, with (4.34), (4.28), (4.19) and (4.32) we deduce

∥(λI −Aε,Fε)
−1Pε − (λI −AF )

−1P∥L(H)

≤ C

(
εr

|λ+ ωF |1−r/s
+

σ(ε)

|λ+ ωF |

)
, ∀λ ∈ {−ωF,ε}+ Γ

ρ,δ̃
, ∀ε ∈ (0, ε0),

(4.35)

where Γ
ρ,δ̃

is defined in (2.18).

Finally, from (4.35) with (4.33) we deduce

∥(λI −Aε,Fε)
−1Pε − (λI −AF )

−1P∥L(H)

≤ C

(
εr

|λ+ ωF,ε|1−r/s
+

σ(ε)

|λ+ ωF,ε|

)
, ∀λ ∈ {−ωF,ε}+Γ

ρ,δ̃
, ∀ε ∈ (0, ε0),

(4.36)

and (4.4) can be deduced by arguing as in the proof of Theorem 2.1. □

4.2. Proof of Theorem 4.1-(ii)

Proof. We set Aε,Fε

def
= Aε + BεFε. First, we would like to prove that

Aε,Fε is the infinitesimal generator of an analytic semigroup on Zε. Here, we
cannot use a perturbation argument as in Step 0 of the proof of Theorem 4.1-
(i). Indeed, it is used in [15, page 152] that B∗(−Â)−γ belongs to L(Z ′, U).
Here, we know that B∗

ε (−Âε)
−γ belongs to L(Z ′

ε, U). Thus, as in Step 0 of
the proof of Theorem 4.1-(i), we can prove that, for all ε ∈ (0, 1), Aε,Fε is
the infinitesimal generator of an analytic semigroup on Zε, and that

∥(λI −Aε,Fε)
−1∥L(Zε) ≤

C

|λ+ ωF |
, ∀λ ∈ {−ωF }+ Sπ/2+δε , ∀ε ∈ (0, 1),

for some δε ∈ (0, π/2). But the family (B∗
ε (−Âε)

−γ)ε∈(0,1) is not uniformly
bounded in L(Z ′

ε, U), and therefore we cannot prove that infε∈(0,1) δε > 0.
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We proceed differently. As in Step 1 of the proof of Theorem 4.1-(i), we
can show that, there exist ε0 ∈ (0, 1) and ω̂0 > max(−ωF , ω0), such that

∥(λI −Aε,Fε)
−1∥L(Zε) ≤

C

|λ+ ωF |
, ∀λ ∈ {ω̂0}+ Sπ/2+δ, ∀ε ∈ (0, ε0).

(4.37)
Thus, for all ε ∈ (0, ε0), Aε,Fε is the infinitesimal generator of an analytic
semigroup on Zε.

Since, we have

∥et(Aε,Fε+ωF I)∥L(Zε) ≤ C e−tα, ∀ε ∈ (0, 1),

for some α > 0, we deduce that

ρ(Aε,Fε) ⊂ {λ ∈ C | Reλ > −ωF − α/2 }, ∀ε ∈ (0, 1),

and

∥(λI−Aε,Fε)
−1∥L(Zε) ≤ C, ∀λ ∈ {λ ∈ C | Reλ > −ωF−α/2 }, ∀ε ∈ (0, 1).

Therefore, combining (4.37) and the above estimate in

{λ ∈ C | Reλ > −ωF − α/2 }\
(
{ω̂0}+ Sπ/2+δ

)
we deduce there exists δ̃ ∈ (0, π/2) such that we have

∥(λI −Aε,Fε)
−1∥L(Zε) ≤

C

|λ+ ωF |
, ∀λ ∈ {−ωF }+ S

π/2+δ̃
, ∀ε ∈ (0, ε0).

(4.38)
Thus, we can rewrite the proof of Theorem 4.1-(i) in which we re-

place Fε by F (ε), F by Fε, and by reversing the role of (A,B, P, F ) and
(Aε, Bε, Pε, Fε). □

4.3. Properties of the open-loop system

Let K ∈ L(L2(U), L2(H)) and Kε ∈ L(L2(U), L2(H)) be defined by

K(u)(t) =

∫ t

0
eÂ(t−τ)Bu(τ)dτ , Kε(u)(t) =

∫ t

0
eÂε(t−τ)Bεu(τ)dτ . (4.39)

We recall that L2(U) and L2(H) stand for L2(0,∞;U) and L2(0,∞;H)
respectively (see Section 2.1). The fact that K belongs to L(L2(U), L2(H))
follows from (4.18). Next, the fact that Kε belongs to L(L2(U), L2(H))
follows from Corollary 4.1 stated below.
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Proposition 4.3. The following estimate holds:

∥eAtB − eAεtBε∥L(U,H) ≤ C
εreω0t

t
, ∀ε ∈ (0, 1). (4.40)

Proof. We have

eAtB − eAεtBε =
1

2iπ

∫
{ω0}+Γρ,δ

eλt
(
(λI −Aε)

−1Bε − (λI −A)−1B
)
dλ,

where Γρ,δ is defined by (2.18). The estimate (4.40) follows from the above
identity and from (4.13), by arguing as in the proof of Theorem 2.1. □

Corollary 4.1. Assume that (H1) to (H5) are satisfied. The operators K
and Kε, defined in (4.39), satisfy the following estimate:

∥(Kε −K)u∥Lp(H) ≤ Cεr | ln ε| ∥u∥Lp(U), ∀ε ∈ (0, 1/2), (4.41)

for all p ∈ [1,∞].

Proof. With Young’s inequality, we have

∥(Kε −K)u∥Lp(H) ≤ C∥eÂ(·)B − eÂε(·)Bε∥L1(L(U,H)))∥u∥Lp(U).

Let us recall that ε = εr/(1−γ). We estimate
∫ εα

0 ∥eÂtB−eÂεtBε∥L(U,H)dt by

using (4.18) and (2.8), with α = 1−γ
1−γ . We estimate

∫ 1
εα ∥eÂtB−eÂεtBε∥L(U,H)dt

by using (4.40). We estimate
∫∞
1 ∥eÂtB − eÂεtBε∥L(U,H)dt by using

∥eAtB − eAεtBε∥L(U,H) ≤ Cεreω0t, ∀t ≥ 1.

The proof is complete. □

Below, in Corollary 4.2, we improve the estimate proved in Corollary 4.1 in
the case when p ∈ (1,∞). For that we need the following theorem.

Theorem 4.2 ([9, Thm. 6.1.6, p.135]). Let X and Y be two Hilbert spaces.
Let M ∈ C1(R\{0};L(X,Y )) satisfy

∥M(ξ)∥L(X,Y ) + |ξ|∥M′(ξ)∥L(X,Y ) ≤ CM, ∀ξ ∈ R∗.

Then, for all p ∈]1,∞[, the operator TM defined by

(TMf)(t) =

∫
R
eitξM(ξ)f̂(ξ)dξ ∀f ∈ Lp(R;X),

where f̂ is the Fourier transform of f , belongs to L(Lp(R;X), Lp(R;Y )) and
satisfies ∥TMf∥Lp(R;Y ) ≤ CpCM∥f∥Lp(R;X).
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Corollary 4.2. For all p ∈ (1,∞), the following estimate holds:

∥(Kε −K)u∥Lp(H) ≤ Cεr∥u∥Lp(U), ∀ε ∈ (0, 1). (4.42)

Proof. For u ∈ Lp(H), we have (Kε − K)u = TMu, where u is extended
by zero to R−, M(ξ) = M(ıξ), and M is defined in (4.11). Thus, (4.42) is
a direct consequence of (4.13), (4.14) and of Theorem 4.2. □

We end this section by stating estimates helpul in the proof of conver-
gence rates for Riccati-based feedback laws (see Section 5.6).

Corollary 4.3. Let us recall that ε = εr/(1−γ). We have the following esti-
mates over the intervals (0, ε) and (ε,∞):

∥eAεtBε∥L(U,Zε) ≤ C εr
eω0t

t
, ∀t ∈ (0, ε), (4.43)

and

∥eAεtBε∥L(U,Zε) ≤ C
eω0t

tγ
, ∀t ∈ (ε,∞). (4.44)

Proof. Step 1. From (4.40) and (4.18), it follows that

∥eAεtBε∥L(U,Zε) ≤ C εr
eω0t

t
+ C

eω0t

tγ
, ∀t > 0. (4.45)

For 0 < t < ε, we have t1−γ < εr and

∥eAεtBε∥L(U,Zε) ≤ C εr
eω0t

t
+ C

eω0t

tγ
≤ C εr

eω0t

t
, ∀t ∈ (0, ε).

Step 2. For t > ε, we have εr

t1−γ < 1. Thus, with (4.45), we have

∥eAεtBε∥L(U,Zε) ≤ C
eω0t

tγ
, ∀t ∈ (ε,∞). (4.46)

This completes the proof. □

5. Approximate Riccati feedback law

We assume that the triplets (A,B, P ) and (Aε, Bε, Pε) satisfy the as-
sumptions (H1) to (H5), and that

The pair (A,B) is stabilizable in Z. (5.1)
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Let C belong to L(H,Y ), where Y is a Hilbert space. We denote by C|Z the
restriction of C to Z and by C|Zε the restriction of C to Zε.

We assume that

The pair (A, C|Z) is detectable in Z. (5.2)

In this section, we are going to construct a feedback law F ∈ L(Z,U),
determined via a Riccati equation associated to the triplet (A,B, C|Z), sta-
bilizing the pair (A,B) in Z, and a feedback law Fε ∈ L(Zε, U), determined
via a Riccati equation associated to the triplet (Aε, Bε, C|Zε), stabilizing the
pair (Aε, Bε) in Zε. We want to show that, in that case, the pair (F, Fε)
satisfies the condition (4.1). Thus the results of Theorem 4.1-(i) may apply.

5.1. Feedback stabilization of the pair (A,B)

Let us set

I(z, u) def
=

1

2

∫ ∞

0
∥Cz(t)∥2Y dt+

1

2

∫ ∞

0
∥u(t)∥2U dt,

and consider the evolution equation

z′ = Az +Bu, z(0) = Pz0 ∈ Z, (5.3)

where z0 ∈ H. Let us consider the optimal control problem

(P) inf{I(z, u) | (z, u) ∈ L2(Z)× L2(U) obeys (5.3)}.

Since (A,B) is stabilizable in Z, and the pair (A, C|Z) is detectable in Z,
problem (P) admits a unique solution and the optimal pair (ẑ, û) satisfies
the feedback relation

û(t) = −B∗Πẑ(t) for all t > 0, (5.4)

where Π ∈ L(Z,Z ′) is the unique solution to the algebraic Riccati equation

Π ∈ L(Z,Z ′), Π = Π∗ ≥ 0, B∗Π ∈ L(Z,U),

ΠA+A∗Π−ΠBB∗Π+ (C|Z)∗C|Z = 0,
(5.5)

where (C|Z)∗ is the adjoint of C|Z ∈ L(Z, Y ). Let us notice that since Z ′ is
identified with P ∗H (see Section 2.1) and Y ′ is identified with Y then we
have (C|Z)∗ = P ∗C ∈ L(Y, Z ′) and

(C|Z)∗C|Z = P ∗C∗C|Z . (5.6)
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Moreover, the semigroup generated by AΠ
def
= A−BB∗Π is analytic and

exponentially stable on Z (see [15, Chap. 2, Theorem 2.2.2]), and we have:

(et(AΠ+ωΠI))t≥0 is exponentially stable on Z, (5.7)

for some ωΠ > 0.
The optimal state is defined by ẑ(t) = eAΠtPz0. It is also well-known

that the optimal pair (ẑ, û) obeys

I(ẑ, û) = 1

2
(ΠPz0, P z0)H , (5.8)

and that Π satisfies the following integral identity

Π =

∫ ∞

0
eÂ

∗τ ((C|Z)∗C|Z + 2λ0Π)e
ÂΠτdτ

=

∫ ∞

0
eÂ

∗τP ∗(C∗C + 2λ0Π) e
ÂΠτdτ, (5.9)

where ÂΠ
def
= AΠ − λ0I (see e.g. [15, Theorem 2.2.1]). Note that the above

second equality is justified by (5.6).

Proposition 5.1. We have

K∗
[
(C∗C + 2λ0P

∗ΠP )eÂΠ(·)Pz0

]
(t) = B∗ΠeÂΠtPz0, ∀t ≥ 0, (5.10)

and all z0 ∈ H, where K is defined in (4.39) and

(K∗z) (t) = B∗
∫ ∞

t
eÂ

∗(τ−t)P ∗z(τ) dτ.

In addition, the optimal trajectory ẑ of Problem (P) satisfies[(
I +KK∗(C∗C + 2λ0Π)

)
e−λ0(·)ẑ

]
(t) = eÂtPz0. (5.11)

Proof. With (5.9), we can write

B∗ΠeÂΠtPz0 = B∗
∫ ∞

0
eÂ

∗τP ∗(C∗C + 2λ0Π)e
ÂΠ(τ+t)Pz0dτ,

= B∗
∫ ∞

t
eÂ

∗(τ−t)P ∗((C∗C + 2λ0Π)e
ÂΠτPz0

)
dτ,

= K∗
[
(C∗C + 2λ0Π)e

ÂΠ(·)Pz0

]
(t), ∀t ≥ 0.

29



Thus, (5.10) is proved.
To prove (5.11), we notice that

e−λ0tẑ(t) = eÂΠtPz0 = e(Â−BB∗Π)tPz0,

= eÂtPz0 −
∫ t

0
eÂ(t−τ)B

(
B∗ΠeÂΠτPz0

)
dτ,

= eÂtPz0 −
[
K
(
B∗ΠeÂΠ(·)Pz0

)]
(t), ∀t ≥ 0.

Next, we substitute B∗ΠeÂΠtPz0 by K∗
[
(C∗C + 2λ0Π)e

ÂΠ(·)Pz0

]
(t), and

we use the equality eÂΠtPz0 = e−λ0tẑ(t), in the above identity. □

5.2. Detectability of the pair (Aε, C|Zε)

For ε0 ∈ (0, 1) let us recall that, by definition, the family (Aε, C|Zε)0<ε<ε0

is detectable in Zε, uniformly with respect to ε ∈ (0, ε0), if and only if
(A∗

ε, (C|Zε)
∗)0<ε<ε0 = (A∗

ε, P
∗
ε C∗)0<ε<ε0 is stabilizable in Z ′

ε, uniformly with
respect to ε ∈ (0, ε0).

In the following lemma we deduce from (5.2) that (Aε, C|Zε)0<ε<ε0 is
detectable in Zε, uniformly with respect to ε ∈ (0, ε0), for some ε0 ∈ (0, 1).

Lemma 5.1. There exists ε0 ∈ (0, 1) such that the family of pairs of opera-
tors
(Aε, C|Zε)0<ε<ε0 is detectable in Zε, uniformly with respect to ε ∈ (0, ε0).

Proof. According to (5.2) the pair (A, C|Z) is detectable in Z which is
equivalent to the fact that (A∗, (C|Z)∗) = (A∗, P ∗C∗) is stabilizable in Z ′.
Thus, there exists K∗ ∈ L(Z ′, Y ) such that the semigroup generated by
A∗ + P ∗C∗K∗ is exponentially stable on Z ′. Let P ∗

ε be the adjoint of Pε ∈
L(H). We can easily check that P ∗

ε is a projector in H onto Z ′
ε (see Section

2.1). We are going to use Theorem 4.1-(i) in which we replace A, Aε, P , Pε,
U , B, Bε, F , and Fε by A∗, A∗

ε, P
∗, P ∗

ε , Y , P ∗C∗, P ∗
ε C∗, K∗, and K∗P ∗,

respectively. In that case, it is clear that (H1) is satisfied. Assumption (H3)
and (H5) are satisfied with γ = γ = 0. Assumption (H2) and Assumption
(H4), with r = s and γ = 0, are satisfied because we have

∥Â−∗P ∗ − Â−∗
ε P ∗

ε ∥L(H) = ∥P ∗Â−∗P ∗ − P ∗
ε Â

−∗
ε P ∗

ε ∥L(H)

= ∥(PÂ−1P − PεÂ
−1
ε Pε)

∗∥L(H) = ∥(Â−1P − Â−1
ε Pε)

∗∥L(H) ≤ Cεs.

Thus, according to Theorem 4.1-(i), there exists ε0 ∈ (0, 1) such that the
semigroup generated by A∗

ε + P ∗
ε C∗K∗P ∗ is analytic and exponentially sta-

ble on Z ′
ε, uniformly in ε ∈ (0, ε0). Thus, since (A∗

ε + P ∗
ε C∗K∗P ∗)∗ = Aε +
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PεKC|Zε we deduce that the semigroup generated by Aε + PεKC|Zε is ana-
lytic and exponentially stable, uniformly in ε ∈ (0, ε0). Then (Aε, C|Zε

)0<ε<ε0

is detectable in Zε, uniformly in ε ∈ (0, ε0). □

Lemma 5.2. Let ε0 be the parameter introduced in Lemma 5.1. There exists

K ∈ L(H,Z) such that Aε,K
def
= Aε + PεKC|Zε generates an analytic and

exponentially stable semigroup on Zε, uniformly in ε ∈ (0, ε0).
Moreover, the linear operator Kε,K defined by

Kε,K(u)(t) =

∫ t

0
eAε,K(t−τ)Bεu(τ)dτ , (5.12)

is bounded from L2(U) into L2(H), uniformly in ε ∈ (0, ε0).

Proof. The existence ofK ∈ L(H,Z) satisfying the first part of the Lemma
has been proved at the end of the proof of Lemma 5.1. It implies that there
exist ωK > 0 and δK > 0 such that

∥(λI −Aε,K)−1∥L(Zε) ≤
C

|λ+ ωK |
, for all λ ∈ {−ωK}+ Sπ/2+δK .

In particular, the above inequality is satisfied for all λ ∈ Sπ/2+δK . Hence,
since for all λ ∈ Sπ/2+δK we have |λ|/|λ+ ωK | ≤ C, we deduce that

|λ|∥(λI −Aε,K)−1∥L(Zε) ≤ C, for all λ ∈ Sπ/2+δK . (5.13)

Thus, from (5.13) with (λI−Aε,K)−1Aε,K = −I+λ(λI−Aε,K)−1 we deduce
that

∥(λI −Aε,K)−1Aε,K∥L(Zε) ≤ C, for all λ ∈ Sπ/2+δK . (5.14)

Let µ0 > λ0 large enough so that

∥(µ0I −Aε)
−1PεKC∥L(Zε) < 1/2. (5.15)

Then I − (µ0I −Aε)
−1PεKC is boundedly invertible in H and

(µ0I −Aε,K)−1Bε = (I − (µ0I −Aε)
−1PεKC)−1(µ0I −Aε)

−1Bε.

The above equality with (5.15) and (2.6) yields

∥(µ0I −Aε,K)−1Bε∥L(U,Zε) ≤ 2∥(µ0I −Aε)
−1Bε∥L(U,Zε) ≤ C. (5.16)

31



Hence, from (5.16) with (5.13) and (5.14) we deduce that for all λ ∈ Sπ/2+δK ,

∥(λI −Aε,K)−1Bε∥L(U,Zε)

≤ ∥(λI −Aε,K)−1(µ0I −Aε,K)∥L(Zε)∥(µ0I −Aε,K)−1Bε∥L(U,Zε) ≤ C

and

∥(λI−Aε,K)−2Bε∥L(U,Zε) ≤ ∥(λI−Aε,K)−1∥L(Zε)∥(λI−Aε,K)−1Bε∥L(U,Zε)

≤ C

|λ|
.

Finally, the conclusion follows from Theorem 4.2. Indeed with the notation
there we have Kε,Ku = TMu, where u is extended by zero to R−, and
M(ξ) = (ıξ −Aε,K)−1Bε and M′(ξ) = ı(ıξ −Aε,K)−2Bε.

□

5.3. Feedback stabilization of the pair (Aε, Bε)

Let us consider the following evolution equation in Zε:

z′ε = Aεzε +Bεu, zε(0) = Pεz0 ∈ Zε. (5.17)

And let us consider the optimal control problem

(Pε) inf{I(zε, u) | (zε, u) ∈ L2(Zε)× L2(U) obeys (5.17)}.

Here, we propose to determine an approximation of the feedback control law
−B∗Π introduced in (5.4) by looking for the solution to the optimal control
problem (Pε).

Since (A,B) is stabilizable, from Theorem 4.1-(i) with σ ≡ 0, it follows
that we can choose ε0 ∈ (0, 1) so that the family (Aε, Bε)0<ε<ε0 is stabilizable
uniformly with respect to ε ∈ (0, ε0). More precisely, for all ε ∈ (0, ε0), the
following functions

z̃ε
def
= e(Aε−Bε(B∗ΠP ))(·)Pεz0 and ũε

def
= −(B∗ΠP )z̃ε (5.18)

satisfy
z̃′ε = Aεz̃ε +Bεũε, z̃ε(0) = Pεz0 ∈ Zε, (5.19)

and there exists ϱ > 0 such that, for 0 < ε < ε0, we have

∥z̃ε(t)∥Zε ≤ Ce−ωΠ,εt∥z0∥H , (5.20)

∥ẑ(t)− z̃ε(t)∥H ≤ C
e−ωΠ,εt

tr/s
εr∥z0∥H , (5.21)

32



where ωΠ,ε
def
= ωΠ − ϱεr.

This means that (z̃ε, ũε) is an admissible pair for the approximate prob-
lem (Pε). Thus (Pε) admits a unique solution, and the optimal pair (ẑε, ûε)
satisfies the feedback relation

ûε(t) = −B∗
εΠεẑε(t), for all t > 0, (5.22)

where Πε ∈ L(Zε, Z
′
ε) is the unique solution to the algebraic Riccati equation

Πε ∈ L(Zε, Z
′
ε), Πε = Π∗

ε ≥ 0, B∗
εΠε ∈ L(Zε, U),

ΠεAε +A∗
εΠε −ΠεBεB

∗
εΠε + (C|Zε)

∗C|Zε = 0.
(5.23)

Moreover, the semigroup generated by Aε,Πε

def
= Aε−BεB

∗
εΠε is analytic and

exponentially stable on Zε, and the associated cost functional is defined by

Iε(ẑε, ûε) =
1

2
(ΠεPεz0, Pεz0)H . (5.24)

The Riccati operator Πε satisfies the integral relation

Πε =

∫ ∞

0
eÂ

∗
ετ ((C|Zε)

∗C|Zε + 2λ0Πε)e
Âε,Πετdτ

=

∫ ∞

0
eÂ

∗
ετP ∗

ε (C∗C + 2λ0Πε)e
Âε,Πετdτ, (5.25)

where Âε,Πε

def
= Aε,Πε − λ0I. Moreover, ẑε satisfies:(
I +KεK∗

ε(C∗C + 2λ0Πε)
)
(e−λ0(·)ẑε) = eÂε(·)Pεz0, (5.26)

where Kε ∈ L(L2(U), L2(H)) is defined in (4.39) and K∗
ε ∈ L(L2(H), L2(U))

is defined by

(K∗
εz) (t) = B∗

ε

∫ ∞

t
eÂ

∗
ε(τ−t)P ∗

ε z(τ) dτ.

Proposition 5.2. We have

sup
0<ε<ε0

∥eAε,Πε (·)Pε∥L(H,L2(H)) < +∞. (5.27)

Proof. The optimality of (ẑε, ûε) and (5.24) give

(ΠεPεz0, Pεz0)H ≤ 2I(z̃ε, ũε).
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From (5.20), the definition of ũε in (5.18), and the definition of ωΠ,ε intro-
duced after (5.21), it follows that

(ΠεPεz0, Pεz0)H ≤ 2I(z̃ε, ũε) ≤ C∥z0∥2H . (5.28)

Since P ∗
εΠεPε is self-adjoint, by taking the supremum over

{z ∈ H | ∥z0∥H = 1}, we obtain:

sup
0<ε<ε0

∥P ∗
εΠεPε∥L(H) < +∞. (5.29)

Let K ∈ L(Y,Z) be given in Lemma 5.2 such that Aε,K
def
= Aε+PεKC|Zε

generates an analytic and exponentially stable semigroup, uniformly in ε ∈
(0, ε0). From Aε,Πε = Aε,K − PεKC|Zε −BεB

∗
εΠε we deduce

eAε,Πε tPεz0 = eAε,KtPεz0−
∫ t

0
eAε,K(t−τ)PεKCẑε(τ)dτ−

∫ t

0
eAε,K(t−τ)Bεûε(τ)dτ

Hence, with the uniform exponential stability of (eAε,Kt)t≥0, the uniform
boundedness of PεKC ∈ L(H) and of Kε,K ∈ L(L2(U), L2(H)) (defined by
(5.12)) we deduce

∥eAε,Πε (·)Pεz0∥2L2(H) ≤ C(∥z0∥2H + I(ẑε, ûε)).

Finally, from (5.24) and (5.28) we obtain

∥eAε,Πε (·)Pεz0∥2L2(H) ≤ C∥z0∥2H

□

5.4. Uniform stability of the family of approximate semigroups

Throughout this section ε0 is the parameter introduced in Sections 5.2 and
5.3.

The goal of this section is to prove the uniform exponential stability of
the semigroup (eAε,Πε t)t>0. This result is established in Theorem 5.2. It is
based on the generalization of Datko’s theorem in the case of a parameter
dependent semigroup [18], which, in addition to (5.27), requires a bound of
the form

sup
0<ε<ε0

∥eAε,Πε tPε∥L(H) ≤ Ceat, ∀t ≥ 0, (5.30)

for some a > 0.
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Lemma 5.3. If the parameter γ introduced in (2.8) obeys γ ∈ (0, 1), and if
p ∈ [1,∞], the operator Kε defined in (4.39) satisfies

∥Kε∥L(Lp(U),Lq(H)) ≤ Cp,q, ∀ε ∈ (0, ε0), (5.31)

where p ≤ q < p
(1−(1−γ)p) if p ∈]1, 1

1−γ [, where
1

1−γ ≤ q < ∞ if p = 1
1−γ , and

where p ≤ q ≤ ∞ if p ∈] 1
1−γ ,∞].

If γ = γ = 0, then (5.31) holds for all q ∈ [p,∞] and all p ∈ [1,∞].

Proof. Let us first assume that γ ∈ (0, 1). Due to Assumption (H5) and
Corollary 4.3, we have

∥eÂεtBε∥L(U,Zε) ≤ C
e−(λ0−ω0)t

tγ
, if 0 < t < εr/(1−γ) = ε,

∥eÂεtBε∥L(U,Zε) ≤ C
e−(λ0−ω0)t

tγ
≤ C

e−(λ0−ω0)t

tγ
, if ε ≤ t ≤ 1,

∥eÂεtBε∥L(U,Zε) ≤ Ce−(λ0−ω0)t, if 1 ≤ t.

Thus, we have

∥(Kεu)(t)∥H ≤ C

∫ t

0
kε(t− τ)∥u(τ)∥U dτ, ∀t ∈ (0,∞), (5.32)

with

kε(t) =
e−(λ0−ω0)t

tγ
χ[0,1](t) + e−(λ0−ω0)t χ(1,∞)(t),

where χ[0,1] is the characteristic function of [0, 1], and χ(1,∞) is the charac-
teristic function of (1,∞). To prove (5.31) it is sufficient to apply Young’s
inequality to (5.32).

The case where γ = γ = 0 is easy and left to the reader. □

Theorem 5.1. For all ε ∈ (0, ε0), the operator I+KεK∗
ε(C∗C+2λ0P

∗
εΠεPε)

is an automorphism in L2(H), and, for all p ∈ [2,∞], (I + KεK∗
ε(C∗C +

2λ0P
∗
εΠεPε))

−1 is bounded in L(L2(H) ∩ Lp(H), Lp(H)), uniformly in ε ∈
(0, ε0).

Proof. We notice that KεK∗
ε and (C∗C+2λ0P

∗
εΠεPε) are both nonnegative

and self-adjoint operators in L2(H). Thus, from [15, Lemma 2A.1], it follows
that I +KεK∗

ε(C∗C + 2λ0P
∗
εΠεPε) is an isomorphism of L2(H) and that

∥(I +KεKε
∗(C∗C + 2λ0P

∗
εΠεPε))

−1∥L(L2(H))

≤ 1 + ∥KεK∗
ε∥L(L2(H))∥(C∗C + 2λ0P

∗
εΠεPε)∥L(H).
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Hence, with (5.31) and (5.29), the theorem is proved for p = 2.
If p > 2, let us set Tε = KεK∗

ε(C∗C + 2λ0P
∗
εΠεPε) for readability conve-

nience. For all (x, y) ∈ H × H such that x + Tεx = y, an easy recurrence
argument gives

x = (−1)nT (n)
ε (I + Tε)−1y +

n−1∑
k=0

(−1)kT (k)
ε y, ∀n ∈ N∗. (5.33)

Let p ∈ [2,∞] be given fixed. Due to Lemma 5.3, there exists n0 ∈ N such

that T (n0)
ε ∈ L(L2(H), Lp(H)), with operator norm uniform in ε. We have

proved that (I + Tε)−1 belongs to L(L2(H)), with operator norm uniform

in ε. Due to Lemma 5.3, T (n0)
ε belongs to L(Lp(H)) and T (k)

ε belongs to
L(Lp(H)), for all k = 1, . . . n0 − 1, with operator norm uniform in ε. Thus,
the identity (5.33) with n = n0 gives ∥x∥Lp(H) ≤ C(∥y∥L2(H) + ∥y∥Lp(H)).
The proof of the theorem is complete. □

Remark 5.1. Proceeding as in the proof of Theorem 5.1, we can show,
as in the above proof, that the operator I + KK∗(C∗C + 2λ0P

∗ΠP ) is an
automorphism in L2(H).

Theorem 5.2. There exist ω∗
Π > 0 and C > 0 such that

sup
0<ε<ε0

∥eAε,Πε t∥L(Zε) ≤ Ce−ω∗
Πt, ∀t ≥ 0. (5.34)

Moreover, the following uniform bound holds:

sup
0<ε<ε0

∥Â∗θ
ε Πε∥L(Zε) < +∞, ∀θ ∈ [0, 1[. (5.35)

Proof. With (5.26), Theorem 5.1 for p = ∞, and the bound ∥eÂεtPεz0∥H ≤
Ce−(λ0−ω0)t∥z0∥H give

∥e−λ0(·)ẑε∥L∞(Zε) ≤ C(∥eÂε(·)Pεz0∥L∞(Zε) + ∥eÂε(·)Pεz0∥L2(Zε)) ≤ C∥z0∥H ,
(5.36)

for all ε ∈ (0, ε0). Thus, we obtain (5.30) for a = λ0. Due to the gener-
alization of Datko’s theorem stated in [18], (5.34) follows from (5.27) and
(5.30).

Finally, (5.25) gives

(−Â∗
ε)

θΠε =

∫ ∞

0
(−Â∗

ε)
θeÂ

∗
εtP ∗

ε (C∗C + 2λ0P
∗
εΠεPε)e

Âε,Πε tdt.

Then, (5.35) follows from (2.3), (5.34), (2.14) and (5.29). □
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Lemma 5.4. We have

sup
0<ε<ε0

∥B∗
εΠε∥L(U) < +∞. (5.37)

Proof. We have

B∗
εΠε =

∫ ∞

0
B∗

εe
Â∗

εtP ∗
ε (C∗C + 2λ0P

∗
εΠεPε)e

Âε,Πε tdt.

With (2.3), (2.8), (5.29), and (5.34), we have∥∥∥∥∫ ε

0
B∗

εe
Â∗

εtP ∗
ε (C∗C + 2λ0P

∗
εΠεPε)e

Âε,Πε tdt

∥∥∥∥ ≤ C

∫ ε

0

dt

tγ
< ∞.

With (2.3), (5.29), (5.34) and (4.44), we have∥∥∥∥∫ ∞

ε
B∗

εe
Â∗

εtP ∗
ε (C∗C + 2λ0P

∗
εΠεPε)e

Âε,Πε tdt

∥∥∥∥ ≤ C

∫ ∞

ε

e(ω0−λ0−ω∗
Π)t

tγ
dt < ∞.

The proof of (5.37) is complete. □

Finally, by setting

z̃
def
= e(A−B(B∗

εΠεPε))(·)Pz0 and ũ
def
= −(B∗

εΠεPε)z̃, (5.38)

we have
z̃′ = Az̃ +Bũ, z̃(0) = Pz0 ∈ Z. (5.39)

From Theorem 4.1-(ii) with σ ≡ 0 (see Remark 4.1), it follows that ε0 > 0
can be chosen such that, for all ε ∈ (0, ε0), we have

∥z̃(t)∥Z ≤ Ce(−ω∗
Π/2)t∥z0∥H , ∀t ∈ (0,∞), (5.40)

∥ẑε(t)− z̃(t)∥H ≤ C
e(−ω∗

Π/2)t

tr/s
εr∥z0∥H , ∀t ∈ (0,∞). (5.41)

5.5. Rate of convergence of the solutions to Riccati equations

Throughout this section ε0 is the parameter introduced at the end of
Section 5.4.

Theorem 5.3. Let Π be the solution of (5.5) and Πε be the solution of
(5.23).

If 0 < r < s, where r and s are the rates of convergence appearing in
(2.4) and (2.6), then we have

∥P ∗ΠP − P ∗
εΠεPε∥L(H) ≤ Cεr, ∀ε ∈ (0, ε0). (5.42)

If r = s, we have

∥P ∗ΠP − P ∗
εΠεPε∥L(H) ≤ Cεs | ln(ε)|, ∀ε ∈ (0, ε0). (5.43)
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Proof. Step 1. First, for z0 ∈ H, (5.8) and (5.24) give

1

2
|
(
(P ∗ΠP − P ∗

εΠεPε)z0, z0
)
H
| = |I(ẑ, û)− Iε(ẑε, ûε)|.

Thus, the optimality of (ẑ, û) and that of (ẑε, ûε) give I(ẑ, û) ≤ I(z̃, ũ) and
I(ẑε, ûε) ≤ I(z̃ε, ũε) (see the definitions given in (5.18), (5.38)). Therefore
we have

I(ẑ, û)− Iε(z̃ε, ũε) ≤ I(ẑ, û)− Iε(ẑε, ûε) ≤ I(z̃, ũ)− Iε(ẑε, ûε).

We deduce that |I(ẑ, û) − Iε(ẑε, ûε)| ≤ |I(ẑ, û) − Iε(z̃ε, ũε)| + |I(z̃, ũ) −
Iε(ẑε, ûε)|. As a consequence, we have:

1
2 |
(
(PΠP − P ∗

εΠεPε)z0, z0
)
H
|

≤ |I(z̃, ũ)− Iε(ẑε, ûε)|+ |Iε(z̃ε, ũε)− I(ẑ, û)| ≤ (a) + (b),
(5.44)

where

(a) =
∣∣∥Cz̃∥2L2(Y ) − ∥Cẑε∥2L2(Y )

∣∣+ ∣∣∥Cz̃ε∥2L2(Y ) − ∥Cẑ∥2L2(Y )

∣∣,
(b) =

∣∣∥ũ∥2L2(U) − ∥ûε∥2L2(U)

∣∣+ ∣∣∥ũε∥2L2(U) − ∥û∥2L2(U)

∣∣.
Step 2. We now assume that 0 < r/s < 1. With the identity ∥Cx∥2Y −
∥Cy∥2Y =

(
Cx−Cy, Cx

)
Y
+
(
Cy, Cx−Cy

)
Y
, and with Hölder’s inequality, for

p ∈ (1, s/r), we get:

(a) ≤ C ∥z̃ − ẑε∥Lp(H)

(
∥z̃∥

L
p

p−1 (H)
+ ∥ẑε∥

L
p

p−1 (H)

)
+ ∥z̃ε − ẑ∥Lp(H)

(
∥z̃ε∥

L
p

p−1 (H)
+ ∥ẑ∥

L
p

p−1 (H)

)
.

From the exponential stability of z̃, ẑε, z̃ε, and ẑ (see (5.40), (5.34), (5.20),
and (5.7)), it follows that ∥z̃∥

L
p

p−1 (H)
+ ∥ẑε∥

L
p

p−1 (H)
and ∥z̃ε∥

L
p

p−1 (H)
+

∥ẑ∥
L

p
p−1 (H)

are bounded, uniformly in ε. Thus, (5.21) and (5.41) give

(a) ≤ Cεr.
Moreover, (5.37) allows to bound (b) analogously.
From (5.44), it follows that

|
(
(P ∗ΠP − P ∗

εΠεPε)z0, z0
)
H
| ≤ Cεr.

Since P ∗
εΠεPε − P ∗ΠP is self-adjoint, we obtain (5.42).
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Step 3. We now assume that r = s. We proceed as in Step 2 with p = 1.
We already know that

∥z̃∥L∞(H) + ∥ẑε∥L∞(H) + ∥z̃ε∥L∞(H) + ∥ẑ∥L∞(H) ≤ C.

The estimates of z̃ − ẑε and z̃ε − ẑ in L1(H) can be obtained as we did to
prove (2.16), by using (5.21) and (5.41) over the time interval (ε,∞), and by
using the bounds in L∞(H) of z̃, ẑε, z̃ε, and ẑ over the time interval (0, ε).
□

5.6. Rate of convergence of the feedback gains

Throughout this section ε0 is the parameter introduced at the end of
Section 5.4.

Proposition 5.3. Let (ẑ, û) be the solution of (P) and (ẑε, ûε) be the solu-
tion of (Pε). For all ε ∈ (0, ε0), we have

∥e−λ0(·)(ẑ − ẑε)∥Ls/r(H) ≤ Cεr ∥z0∥H , if r < s,

and

∥e−λ0(·)(ẑ − ẑε)∥L1(H) ≤ Cεr | ln ε| ∥z0∥H , if r = s.

(5.45)

Proof. Step 1. Let us recall that ÂΠ
def
= AΠ − λ0I, Âε,Πε

def
= Aε,Πε − λ0I,

and let us set

T (·) def
= KK∗[(C∗C + 2λ0P

∗ΠP )(·)] ∈ L(L2(H))
and

Tε(·)
def
= KεK∗

ε [(C∗C + 2λ0P
∗
εΠεPε)(·)] ∈ L(L2(H)).

From Theorem 5.1 and Remark 5.1, we know that both I + T and I + Tε
are automorphisms in L2(H). Starting from (5.11) and (5.26), we make the
following calculations

eÂΠ(·)P − eÂε,Πε (·)Pε = (I + T )−1(eÂ(·)P )− (I + Tε)−1(eÂε(·)Pε)

= ((I + T )−1 − (I + Tε)−1)(eÂ(·)P ) + (I + Tε)−1(eÂ(·)P − eÂε(·)Pε)

= (I + Tε)−1(Tε − T )(I + T )−1(eÂ(·)P ) + (I + Tε)−1(eÂ(·)P − eÂε(·)Pε)

= (I + Tε)−1(Tε − T )(eÂΠ(·)P ) + (I + Tε)−1(eÂ(·)P − eÂε(·)Pε).

Thus, by writing

Tε(·)− T (·)
= (Kε −K)K∗((C∗C + 2λ0P

∗ΠP )(·)) +Kε(K∗
ε −K∗)((C∗C + 2λ0P

∗ΠP )(·))
+2λ0KεK∗

ε((P
∗
εΠεPε − P ∗ΠP )(·)),
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with K∗[(C∗C + 2λ0P
∗ΠP )eÂΠ(·)P ] = B∗ΠeÂΠ(·)P , we obtain

eÂΠ(·)P − eÂε,Πε (·)Pε = (I + Tε)−1((a) + (b) + (c) + (d)), (5.46)

where

(a) = (Kε −K)(B∗ΠeÂΠ(·)P ),

(b) = Kε(K∗
ε −K∗)(C∗C + 2λ0P

∗ΠP )(eÂΠ(·)P ),

(c) = 2λ0KεK∗
ε(P

∗
εΠεPε − P ∗ΠP )(eÂΠ(·)P ),

(d) = eÂ(·)P − eÂε(·)Pε.

Step 2. We first assume that r/s ∈ (0, 1). In that case, (5.45) follows from
(5.46) with (4.42), (5.31), (5.42), and (2.16) with 1 < p = s/r. In that
case, (5.45) follows from (5.46) with (4.42), (5.31), (5.42), and (2.16) with
1 < p = s/r.

Step 3. Now, we assume that r = s. In that case, (5.45) follows from (5.46)
with (4.41), (5.31), (5.43), and (2.16) for p = 1. □

Proposition 5.4. Let Π be the solution of (5.5) and Πε be the solution of
(5.23). We have

∥B∗ΠP −B∗
εΠεPε∥L(H,U) ≤ Cεr| ln ε|, for all ε ∈ (0, ε0). (5.47)

Proof. We have

B∗ΠPz0 −B∗
εΠεPεz0

=
[
(K∗ −K∗

ε)((C∗C + 2λ0P
∗ΠP )e−λ0(·)ẑ)

]
(0)

+2λ0

[
K∗

ε

(
(P ∗ΠP − P ∗

εΠεPε)e
−λ0(·)ẑ

)]
(0)

+
[
K∗

ε

(
(C∗C + 2λ0P

∗
εΠεPε)(e

−λ0(·)ẑ − e−λ0(·)ẑε)
)]

(0).
(5.48)

Step 1. From (4.41), it follows that

∥K∗ −K∗
ε∥L(L∞(H),L∞(U)) ≤ C εr| ln ε|.

Thus, with (5.7), we have∥∥[(K∗ −K∗
ε)((C∗C + 2λ0P

∗ΠP )e−λ0(·)ẑ)
]
(0)

∥∥
U

≤ ∥K∗ −K∗
ε∥L(L∞(H),L∞(U))

∥∥(C∗C + 2λ0P
∗ΠP )e−λ0(·)ẑ

∥∥
L∞(H)

≤ C εr| ln ε| ∥z0∥H .
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Step 2. With (5.7), (5.31), and (5.42) (or (5.43) if r = s), we have

∥2λ0 [K∗
ε ((P

∗ΠP − P ∗
εΠεPε)ẑ)] (0)∥U

≤ C∥K∗
ε∥L(L∞(H),L∞(U))∥P ∗ΠP − P ∗

εΠεPε∥L(H) ∥ẑ∥L∞(H)

≤ C εr | ln ε| ∥z0∥H .

Step 3. From the definition of K∗
ε , it follows that[

K∗
ε

(
(C∗C + 2λ0P

∗
εΠεPε)(e

−λ0(·)ẑ − e−λ0(·)ẑε)
)]

(0)

=

∫ ∞

0
B∗

εe
Â∗

ετP ∗
ε (C∗C + 2λ0P

∗
εΠεPε)(e

−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ))dτ

=

∫ εα

0
+

∫ ε

εα
+

∫ 1

ε
+

∫ ∞

1
, with ε = εr/(1−γ).

We are going to use (H5). If we choose α = 1−γ
1−γ ≥ 1, where γ ∈ [γ, 1) is the

exponent appearing in (2.8), it follows that∫ εα

0

∥∥∥B∗
εe

Â∗
ετP ∗

ε (C∗C + 2λ0P
∗
εΠεPε)(e

−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ))
∥∥∥
U
dτ

≤ C

∫ εα

0

1

τγ
dτ ×

(
∥e−λ0(·)ẑ∥L∞(H) + ∥e−λ0(·)ẑε∥L∞(H)

)
≤ C εα(1−γ) ∥z0∥H ,

≤ C εr ∥z0∥H .

For the second term, with (4.43), we have∫ ε

εα

∥∥∥B∗
εe

Â∗
ετP ∗

ε (C∗C + 2λ0P
∗
εΠεPε)(e

−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ))
∥∥∥
U
dτ

≤ C εr
∫ ε

εα

1

τ

∥∥∥e−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ)
∥∥∥
H
dτ

≤ C εr | ln ε|∥e−λ0(·)ẑ(·)− e−λ0(·)ẑε(·)∥L∞(H)

≤ C εr | ln ε|∥z0∥H .
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For the third term, with (4.44) and (5.45), we obtain∫ 1

ε

∥∥∥B∗
εe

Â∗
ετP ∗

ε (C∗C + 2λ0P
∗
εΠεPε)(e

−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ))
∥∥∥
U
dτ

≤ C

∫ 1

ε

1

τγ

∥∥∥e−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ)
∥∥∥
H
dτ

≤ C

{
| ln(ε)|γ ∥e−λ0(·)ẑ(·)− e−λ0(·)ẑε(·)∥Ls/r(H) if r = s(1− γ),

∥e−λ0(·)ẑ(·)− e−λ0(·)ẑε(·)∥Ls/r(H) if r < s(1− γ),

≤ C


εr | ln(ε)|∥z0∥H if r = s(1− γ) and γ = 0,

εr | ln(ε)|γ∥z0∥H if r = s(1− γ) and γ > 0,

εr ∥z0∥H if r < s(1− γ).

The fourth term can be estimated with (5.45) and Hölder’s inequality as
follows∫ ∞

1

∥∥∥B∗
εe

Â∗
ετP ∗

ε (C∗C + 2λ0P
∗
εΠεPε)(e

−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ))
∥∥∥
U
dτ

≤
∫ ∞

1
Ce(ω0−λ0)τ

∥∥∥e−λ0(τ)ẑ(τ)− e−λ0(τ)ẑε(τ)
∥∥∥
H
dτ

≤ C
∥∥∥e−λ0(·)ẑ − e−λ0(·)ẑε

∥∥∥
Ls/r(H)

≤ C

{
εr ∥z0∥H if s < r

εr | ln(ε)|∥z0∥H if s = r.

The proof is complete. □

5.7. Final results and final remarks

We can summarize the results of Section 5.6 in the following theorem.

Theorem 5.4. We assume that the pair (A,B) is feedback stabilizable, and
that the pair (A, C) satisfies the condition (5.2).

Let Π be the solution of (5.5) and Πε be the solution of (5.23).
There exist ϱ > 0 and ε0 ∈ (0, 1) such that

∥e(Aε−BεB∗
εΠε)t∥L(Zε) ≤ Ce(−ωΠ+ϱεr| ln ε|)t,

∥e(Aε−BεB∗
εΠε)tPε − e(A−BB∗Π)tP∥L(H) ≤ C

e(−ωΠ+ϱεr| ln ε|)t

tr/s
εr| ln ε|,

for all ε ∈ (0, ε0) and all t > 0. (In the above estimates, ωΠ is the exponential
decay introduced in (5.7)).
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Proof. Since (5.47) is satisfied, we choose Fε = −B∗
εΠεPε, and the theorem

is a direct consequence of Theorem 4.1-(i) (see Remark 4.1) with σ(ε) =
C εr| ln ε|. □

Let us end this section by comparing our method of proof to establish
the results of that section with similar ones proved in the case of conforming
approximations.

Remark 5.2. The main difference between [15, Section 4.5] and our results
in the present section is in the estimate of ∥ẑ(t) − ẑε(t)∥H , where ẑ(t) =
et(A+BK)Pz0 is the solution of the initial closed-loop system, and ẑε(t) =
et(Aε+BεKε)Pεz0 is the solution of the approximate closed-loop system.

In [15, Section 4.5], the proof of the estimate of ∥ẑ(t)− ẑε(t)∥H is based
on the estimate [15, (4.5.1.20), Page 474], and on the estimate of its right
hand side, ∥(λ0I − A−BK)−1P − (λ0I − Aε −BεKε)

−1Pε∥L(H) (with our
notation), which is, according to [15, Page 475], estimated with [15, (4.5.1.6),
Page 472]. With our notation [15, (4.5.1.6), Page 472] corresponds to an
estimate of ∥(λ0I−A−BK)−1P − (λ0I−Aε−BεKP )−1Pε∥L(H). Actually,
using the triangle inequality

∥(λ0I −A−BK)−1P − (λ0I −Aε −BεKε)
−1Pε∥L(H)

≤ ∥(λ0I −A−BK)−1P − (λ0I −Aε −BεKP )−1Pε∥L(H)

+∥(λ0I −Aε −BεKP )−1P − (λ0I −Aε −BεKε)
−1Pε∥L(H),

an estimate of ∥(λ0I − Aε − BεKP )−1P − (λ0I − Aε − BεKε)
−1Pε∥L(H),

uniform in ε, would be needed. But this estimate is not given in [15, Section
4.5]. This is why this point in the proof of [15, Section 4.5] is not clear for
us. In our proof, we first establish convergence rates for the feedback laws
in Proposition 5.4. The convergence rate for ∥ẑ(t) − ẑε(t)∥H is obtained in
Theorem 5.4 as a consequence of Proposition 5.4 and of Theorem 4.1. In
[15, Section 4.5], the convergence rate of feedback laws is obtained by using
the convergence rate for ∥ẑ(t)− ẑε(t)∥H . Since the estimate of ∥(λ0I −Aε−
BεKP )−1P − (λ0I−Aε−BεKε)

−1Pε∥L(H) is not proved in [15, Section 4.5],
we think that some arguments are missing there.

6. Appendix A

The goal of this section is to prove the resolvent identity stated in the
following lemma.
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Lemma 6.1. For all λ ∈ {ω0}+ Sπ/2+δ and λ0 > ω0, we have

(λI −Aε)
−1Pε − (λI −A)−1P

= (I − (λ− λ0)(λI −A)−1P )(Â−1P − Â−1
ε Pε)

(
I − (λ− λ0)(λI −Aε)

−1 Pε

)
,

and

((λI −A)−1 − (λI −Aε)
−1Pε)P

= (I − (λ− λ0)(λI −Aε)
−1Pε)(Â

−1
ε Pε − Â−1P )(−Â)(λI −A)−1P.

Proof. We have

I − (λ− λ0)(λI −A)−1 P = I − P − Â(λI −A)−1 P

and

I − (λ− λ0)(λI −Aε)
−1 Pε = I − Pε − Âε(λI −Aε)

−1 Pε.

Next, we write

∆ =
(
I − P − Â(λI −A)−1 P

)(
Â−1P − Â−1

ε Pε

)(
I − Pε − Âε(λI −Aε)

−1 Pε

)
= (I − P )

(
Â−1P − Â−1

ε Pε

)(
I − Pε − Âε(λI −Aε)

−1 Pε

)
−Â(λI −A)−1 P

(
Â−1P − Â−1

ε Pε

)(
I − Pε − Âε(λI −Aε)

−1 Pε

)
= − (I − P ) Â−1

ε Pε

(
I − Pε − Âε(λI −Aε)

−1 Pε

)
−(λI −A)−1 P

(
P − ÂP Â−1

ε Pε

)
(I − Pε)

+(λI −A)−1 P
(
P − ÂP Â−1

ε Pε

)
Âε(λI −Aε)

−1 Pε

= (I − P ) (λI −Aε)
−1 Pε

−(λI −A)−1 P (I − Pε)

+(λI −A)−1 P
(
P − ÂP Â−1

ε Pε

)
Âε(λI −Aε)

−1 Pε

= (I − P ) (λI −Aε)
−1 Pε − (λI −A)−1 P (I − Pε)

+(λI −A)−1 PÂε(λI −Aε)
−1 Pε

−(λI −A)−1ÂP (λI −Aε)
−1 Pε

We have

Âε(λI −Aε)
−1 Pε = −Pε + (λ− λ0)(λI −Aε)

−1 Pε
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and
(λI −A)−1ÂP = −P + (λ− λ0)(λI −A)−1P.

Thus, we finally obtain

∆ = (I − P ) (λI −Aε)
−1 Pε − (λI −A)−1 P (I − Pε)

+(λI −A)−1 P
(
−Pε + (λ− λ0)(λI −Aε)

−1 Pε

)
+
(
P − (λ− λ0)(λI −A)−1P

)
(λI −Aε)

−1 Pε

= (I − P ) (λI −Aε)
−1 Pε − (λI −A)−1 P (I − Pε)

−(λI −A)−1 PPε + (λI −A)−1 P
(
(λ− λ0)(λI −Aε)

−1 Pε

)
+P (λI −Aε)

−1 Pε − (λ− λ0)(λI −A)−1P (λI −Aε)
−1 Pε

= (I − P ) (λI −Aε)
−1 Pε − (λI −A)−1 P (I − Pε)

−(λI −A)−1 PPε + P (λI −Aε)
−1 Pε

= (λI −Aε)
−1 Pε − (λI −A)−1 P.

The proof of the first identity is complete.
By reversing the role of A and Aε we also obtain

(λI −A)−1P − (λI −Aε)
−1Pε

= (I − (λ− λ0)(λI −Aε)
−1Pε)(Â

−1
ε Pε − Â−1P )

(
I − (λ− λ0)(λI −A)−1 P

)
.

The second equality is a direct consequence of the above equality. □
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