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This paper focuses on the correlation between the degra-
dation levels of the two components that form a system.
The degradation evolution of each component is modelled
using Wiener processes. Both components are dependent
and this dependence is described using the trivariate reduc-
tionmethod. To reduce the degradation and extend the sys-
tem lifetime, preventive maintenance actions are periodi-
cally performed. These preventivemaintenance actions are
imperfect and they are modelled by using an Arithmetic Re-
duction of Degradation of infinite order model with a deter-
mined maintenance efficiency parameter. The evolution of
the maintained system is analysed by assessing the expec-
tation and variance of both degradation processes at suc-
cessive maintenance times. The novelty of this work is the
analysis of the Pearson correlation coefficient between the
degradation levels of the two components. Different prop-
erties of the monotonicity of the Pearson correlation co-
efficient between the two degradation paths are obtained
by considering equal maintenance efficiency and equal gen-
eral time scales functions for the two Wiener degradation
processes associated to each degrading component.
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1 | INTRODUCTION

In recent years, research in system deterioration modelling based on stochastic processes has predominantly focused
on univariate processes. Gamma processes ([3], [21], [19], [6]), Wiener processes ([4], [26], [24]) or inverse Gaussian
processes ([15], [5], [7]) have been extensively used to model the deterioration in the univariate case. However, the
growing complexity of industrial systems, characterized by interrelated components, renders the exclusive reliance
on univariate processes unrealistic for modelling degradation. Consequently, there is a pressing need to employ more
sophisticated approaches incorporating dependencies.

Under the multi-components approach, an important aspect is how to describe the dependence between compo-
nents. In this sense, several models have been proposed in the literature to analyse dependent degradation processes.
According to [8] and [24], they can be divided into copula-based models, degradation rate interaction methods and
multivariate distribution models. Copulas have been widely employed in the recent literature since they provide a
flexible dependence structure that links the marginal distributions (see [22], [14] or [15], for citing a few). Degra-
dation rate interaction models (DRI) assume that the deterioration of one component can affect the state of other
components state [1], [16]. Multivariate distribution models extend from univariate models to multivariate versions
by using a joint probability distribution to model the dependence of the degradation paths. Under this multivariate
approach, a way tomodel the dependence between components is through the superposition of independent stochas-
tic processes [11]. For example, in a two-components system, the trivariate reduction method constructs bivariate
distributions by adding a common process (that captures the functional dependence between components) to two
different degradation processes that describe the intrinsic deterioration of each component. Usually, the stochastic
processes come from the same family of processes and with probability distributions closed under convolution. So,
the degradation of each component is modelled as the sum of two independent processes, where one represents the
common effect shared by the two components and the other represents the intrinsic degradation of the component.
If the three stochastic processes come from the same family with probability distributions closed under convolution,
the marginal processes of the bivariate joint process belong to the same family as well. The dependence between the
processes is given in the covariance matrix of the multivariate process.

Following this approach, univariate gamma processes have been used to construct multivariate gamma processes
by using the trivariate reduction method. For example, in [10], from three independent gamma processes and by
using the trivariate reduction method, two performance dependent indicators of the railway track degradation are
modelled. Later, Zhou et al. [29] used the trivariate reduction method to build the bivariate inverse Gaussian to
model the dependence in the growth of different defects in pressurized pipelines. In the case of Wiener process, Zhai
and Zhi-Yeng [25] used the trivariate reduction method to model the dependence between components by assuming
that the drift of the process is random. In [18], covariates are incorporated in the multivariate Wiener model. The
bivariate case is expanded in [20] to integrate the dependencies in the multivariateWiener case. Although the results
for the first hitting time of the bivariate process through boundaries are still scarce [17], there is an expression of the
first hitting time to reach a failure threshold considering a two-components series system whose lifetime is described
by a bivariate Wiener process built by using the trivariate reduction method and subject to repairs. This result is
developed in [2].

Other important aspect of the multi-component dependent system is how to measure the degree of dependence
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between components, and how this dependence measures evolves with time. A simple measure of this dependence
is the Pearson correlation coefficient between the degradation levels of the components. Although simple, its analysis
in the context of a multi-component system is useful for the following reasons:

• Components whose degradation processes show a stronger correlation are more likely to fail together. Hence a
failure in a component is an alarm signal to inspect the state of the other component.

• In an imperfect inspection context, a stronger correlation between the degradation process of the two compo-
nents would imply a smaller probability of a false negative [12]. Hence, the analysis of the correlation coefficient
would help to reduce the probability of an incorrect inspection.

• By using predictive maintenance, the correlation coefficient is used to detect anomalies in the data since this
coefficient changes abruptly when an anomaly appears [27].

For any bivariate Lévy process, the Pearson correlation coefficient is time-invariant. In [10], the Pearson correla-
tion coefficient of the bivariate gamma process built by using the trivariate reduction method is computed and, since
the bivariate gamma process is a Lévy process, it is time-invariant. However, for non stationary increments processes,
the correlation coefficient is not constant with respect to time. For example, in [24], the Pearson correlation coeffi-
cient is not time invariant. In [23], a bivariate Wiener process is built by using the trivariate reduction method and
incorporating random effects. The Pearson correlation coefficient is also computed and it is shown to increase with
time.

Usually, the expected degradation of degrading components increases with time. To mitigate the effect of the
deterioration, some maintenance actions are performed on the system. For example, in [4], preventive maintenance
actions and corrective maintenance actions are performed on a system whose lifetime is described by a bivariate
Wiener process. These preventive maintenance actions imply the replacement of the system by a new one (“as-good-
as-new” state) where the degradation levels and the age of each component are reset to zero. However, it is well
known that there are many cases in which a maintenance action is far from be perfect. In [28], imperfect maintenance
actions are performed to balance the degradation between components. Models based on the efficiency of preventive
and corrective actions were first described in the univariate case in [13] for degrading systems. They proposed the so-
called ARD (Arithmetic Reduction of Degradation)models to reduce the system degradation by an amount proportional
to the degradation state. This reduction could be proportional to the degradation state just before the maintenance
action (ARD of infinite order, denoted by ARD(∞)), or proportional to the degradation accumulated by the system from
the last maintenance action (ARD of order 1, or ARD(1)). Statistical inference study was carried out by [9] in a ARD(1)
univariate Wiener model under different observation schemes. In [2], a bivariate Wiener process was analyzed by
integrating imperfect maintenance actions modelled as an ARD(∞). Expanding the number of performance indicators
of the system, [18] applied an ARD(∞) to the multivariate Wiener process. However, these works do not focus on
the correlation between degradation levels under the imperfect maintenance strategy. In general, the literature on
imperfect maintenance models in multi-component degrading systems is scarce. Furthermore, to our knowledge,
there are not many works that study the evolution of the correlation between degradation levels. This paper seeks to
bridge the gap studying the correlation coefficient in a two component system subject to imperfect maintenance.

In this work, a bivariate Wiener degradation model built by using the trivariate reduction method is studied.
The system is subject to imperfect maintenance actions modelled as an ARD(∞) with a maintenance efficiency for
component i equal to ρi . The expectation and the variance of the degradation levels of the maintained components
are computed and their time evolution is studied. The Pearson correlation coefficient between the degradation levels
of the two components is computed and some properties of the monotonicity of this coefficient are obtained. This
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work is inspired by [2] by considering different general time scales functions and different maintenance efficiencies.
The main differences between [2] and this paper are the following:

1. This work deals with a system consisting of two heterogeneous components that exhibit different degradation
trends. The model discussed in this work considers the model in [2] as a special case. It allows us to assess how
the different degradation trends affect the Pearson correlation coefficient. We assume that the study covers a
period during which the components have not yet failed. Therefore, only the correlation of their degradation
levels is of interest and the system configuration (series or parallel) does not play any role.

2. This work also considers different maintenance efficiencies for the two components (in [2], the samemaintenance
efficiency is considered for the two components). It also allows us to compare how the maintenance efficiency
affects the evolution of the degradation of the two components and the correlation between the degradation
levels.

3. While [2] mainly focuses on the computation of the first hitting time to reach a predefined threshold, this paper
focuses on analysing the evolution of the Pearson correlation coefficient between the degradation levels of the
two components over time and the different monotonicity properties of this coefficient.

4. Another novelty in this paper is the analysis of the jumps in the deterioration due to the maintenance actions.
This analysis includes the study of the expected length of the jumps and how this expectation evolves with the
number of maintenance actions. The influence of the maintenance efficiency on the jumps is also studied.

The paper is structured as follows. In Section 2, the bivariate Wiener degradation process is presented and
the Pearson correlation coefficient between the two degradation paths of this bivariate process is computed. The
evolution of the degradation of the system subject tomaintenance actions and its theoretical development are studied
in Section 3. The correlation analysis is carried out in Section 4, considering equal maintenance efficiency (Section
4.1) and equal general time scales (Section 4.2). Finally, Section 5 concludes this work.

2 | BIVARIATE DEGRADATION MODELLING

The bivariate Wiener process considered in this paper can represent a system made up of two components which are
related by its correlation coefficient or, on the other hand, it can also represent two performance characteristics (PCs)
of a system, whose deterioration state is provided by two correlated processes.

In the following, we will use the framework of two degrading components. For i = 1, 2, let {Xi (t ), t ≥ 0} be
the deterioration process of component i . Starting from three independent univariate Wiener processes {Wi (t ), t ≥
0}, for i = 0, 1, 2, and following the trivariate reduction technique [11], the evolution of the degradation of both
components in absence of maintenance is modelled as:

Xi (t ) =Wi (t ) +W0 (t ), i = 1, 2.

Wi (t ) = µi Λi (t ) + σiBi (Λi (t ) ) W0 (t ) = σ0B0 (Λ0 (t ) ), t ≥ 0,

where B0, B1 and B2 denote independent standard Brownianmotions with µi > 0, σi > 0 for all i . Hence, the evolution
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of the deterioration of the two components is given by

X1 (t ) = µ1Λ1 (t ) + σ1B1 (Λ1 (t ) ) + σ0B0 (Λ0 (t ) ), (1)

X2 (t ) = µ2Λ2 (t ) + σ2B2 (Λ2 (t ) ) + σ0B0 (Λ0 (t ) ) . (2)

The parameter µi is known as drift parameter which indicates the degradation rate ofWi (t ) . The parameter σi denotes
the diffusion coefficient ofWi (t ) . Functions Λi (t ) > 0 for i = 1, 2 and Λ0 (t ) > 0, for t > 0, are called general time
scales representing the non-linearity of the degradation paths. These functions are assumed to be differentiable and
non-decreasing in t .

From (1) and (2), the degradation at time t of component i follows a normal distribution with expectation and
variance equal to

Å[Xi (t ) ] = µi Λi (t ), Var(Xi (t ) ) = σ2
0Λ0 (t ) + σ2

i Λi (t ), t ≥ 0.

Since Λi (t ) and Λ0 (t ) are increasing functions in t , the expectation and the variance of the degradation of component
i increase with time.

The common processσ0B0 ( ·) introduces dependence among the degradation processes. The covariance between
X1 (t ) and X2 (t ) is

Cov(X1 (t ),X2 (t ) ) = σ2
0Λ0 (t ),

since B0, B1 and B2 are independent Brownian processes. Consequently, at each given t , the Pearson correlation
coefficient between X1 (t ) and X2 (t ) is,

θ (t ) =
Cov(X1 (t ),X2 (t ) )√

Var(X1 (t ) )
√
Var(X2 (t ) )

=
σ2
0Λ0 (t )√

σ2
0Λ0 (t ) + σ2

1Λi (t )
√
σ2
0Λ0 (t ) + σ2

2Λi (t )

=
1√

1 + σ2
1 /σ

2
0h1 (t )

√
1 + σ2

2 /σ
2
0h2 (t )

, t ≥ 0, (3)

where hi (t ) = Λi (t )/Λ0 (t ) , for i = 1, 2, denotes the ratio of the two general time scales. Hence, if σ0 , 0, there
exists a correlation between the two degradation processes. Intuitively, since the process σ0B0 ( ·) applies to the two
components and σ0 > 0, the correlation betweenX1 (t ) andX2 (t ) is always positive. Different general time scales lead
to dynamic changes in the correlation: θ (t ) changes over time if Λi (t ) , Λ0 (t ) . Some results about the monotonicity
of the Pearson correlation function given by (3) are shown below:

• When both hi (t ) increase in t , θ (t ) decreases in t . This can be interpreted as follows: if hi (t ) increases, then
Λi (t ) is more dominant with respect to Λ0 (t ) over time. Hence, the Pearson correlation decreases.

• When σ2
0 increases, θ (t ) increases. This is evident since σ0 is related to the common part of the two degrading

components.
• When both σ2

i
for i = 1, 2 increase, θ (t ) decreases. This is clear since σi is related to the independent part of the

two degrading components.
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• If Λi (t ) = Λ0 (t ) , for i = 1, 2, the Pearson correlation coefficient is

θ (t ) =
σ2
0√

σ2
0 + σ2

1

√
σ2
0 + σ2

2

. (4)

This correlation coefficient is time invariant since hi (t ) = Λi (t )/Λ0 (t ) is equal to one. It cannot reach 1 unless
σ2
1 = σ2

2 = 0. When the common noise is dominant (σ2
0 >> σ2

i
) , the correlation between processes X1 (t ) and

X2 (t ) is stronger. When the common noise is negligible, the twoWiener processes evolve almost independently.

Example 1. Figure 1 shows a realization of X1 (t ) and X2 (t ) given by (1) and (2) with parameters µ1 = µ2 = 1, σ0 =

σ1 = σ2 = 2, and Λ1 (t ) = Λ2 (t ) = t 2.1 and Λ0 (t ) = t 1.1, for t ≥ 0. With these parameters, the Pearson correlation
coefficient θ (t ) is given by

θ (t ) = 1

1 + t
.

As h1 (t ) = h2 (t ) = t increases with respect to t , then the correlation between the processes decreases with time.
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F IGURE 1 Realization of processes X1 (t ) and X2 (t ) , and their corresponding Pearson correlation coefficient
θ (t ) in Example 1.

A preventive maintenance policy is imposed since the expectation of the degradation of the two components
increases over time. This policy is described below and its effects on the Pearson correlation coefficient are investi-
gated.

3 | EVOLUTION OF THE MAINTAINED SYSTEM

The system is preventively maintained under an imperfect maintenance strategy following the Arithmetic Reduction
of Degradation of order infinite, denoted by ARD(∞), proposed in [13] with periodic maintenance actions eachT time
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units. The effect of maintenance is to reduce the degradation level of a component in a quantity which is proportional
to its value. It is assumed that the time to perform the preventive maintenance action is negligible.

In this section, we focus on the modelling of the degradation evolution of the two maintained components and
on the properties of the jumps in the degradation of each component due to the maintainence actions

3.1 | Degradation of the maintained system

Let Y(t ) = (Y1 (t ),Y2 (t ) ) be the degradation levels of the two maintained components at time t where {Yi (t ), t ≥ 0}
is the process that describes the deterioration level of the maintained component i , for i = 1, 2. Since Xi (t ) has
independent increments, the piece-wise evolution of {Yi (t ), t ≥ 0} is as follows.

• Starting at time t , with 0 ≤ t < T , the deterioration level of component i is given by

Yi (t ) = Xi (t ), for i = 1, 2.

The first preventive maintenance action is performed at timeT . Just after the first maintenance, the degradation
of component i is reduced by 100ρi%, with i = 1, 2. Denoting by T + the instant of time just after this first
maintenance action

Yi (T + ) = (1 − ρi )Xi (T ), for i = 1, 2. (5)

• At time t , withT ≤ t < 2T , the evolution of the deterioration of the maintained components is given by

Yi (t ) =Yi (T + ) + Xi (t ) − Xi (T ) = Xi (t ) − ρiXi (T ) ;

henceYi (t ) is also a Wiener process with expectation

Å[Yi (t ) ] = µi Λi (T ) (1 − ρi ) + µi (Λi (t ) − Λi (T ) )

and variance

Var(Yi (t ) ) = σ2
0 (1 − ρi )2Λ0 (T ) + σ2

0 (Λ0 (t ) − Λ0 (T ) )

+ σ2
i (1 − ρi )2Λi (T ) + σ2

i (Λi (t ) − Λi (T ) ) .

Just before the second imperfectmaintenance action, at time 2T − , the deterioration of themaintained component
i is given by

Yi (2T − ) =Yi (T + ) + Xi (2T ) − Xi (T ) .

At time 2T , the second imperfect preventive maintenance is performed. It means that the overall degradation of
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component i is reduced by 100ρi%. Hence

Yi (2T + ) = (1 − ρi )Yi (2T − )

= (1 − ρi )2Xi (T ) + (1 − ρi ) (Xi (2T ) − Xi (T ) ) .

At time 2T +, the degradation of component i follows a normal distribution with parameters

Å[Yi (2T + ) ] = µi (1 − ρi )2Λi (T ) + µi (1 − ρi ) (Λi (2T ) − Λi (T ) )

and

Var(Yi (2T + ) ) = σ2
0

(
(1 − ρi )4Λ0 (T ) + (1 − ρi )2 (Λ0 (2T ) − Λ0 (T ) )

)
+ σ2

i

(
(1 − ρi )4Λi (T ) + (1 − ρi )2 (Λi (2T ) − Λi (T ) )

)
.

• In a general setting, for t fulfilling nT ≤ t < (n + 1)T , we get that

Yi (t ) = Yi (nT + ) + (Xi (t ) − Xi (nT ) ) (6)

=
n∑
j=1

(1 − ρi )n−j+1 (Xi (jT ) − Xi ( (j − 1)T ) ) + (Xi (t ) − Xi (nT ) ) .

The random variableYi (t ) follows a normal distribution with expectation

Å(Yi (t ) ) = µi

n∑
j=1

∆Λi (jT ) (1 − ρi )n−j+1 + µi (Λi (t ) − Λi (nT ) )

and variance

Var(Yi (t ) ) = σ2
0 g (t , ρi , ρi , Λ0 ) + σ2

i g (t , ρi , ρi , Λi ), (7)

where

∆Λi (jT ) = Λi (jT ) − Λi ( (j − 1)T ) (8)

denotes the increments of the function Λi ( ·) , and

g (t , ρ1, ρ2, Λi ) =
n∑
j=1

∆Λi (jT ) (1 − ρ1 )n−j+1 (1 − ρ2 )n−j+1 + Λi (t ) − Λi (nT ),

with nT ≤ t < (n + 1)T , where n = [t/T ] stands for the floor function of t/T .
• Similarly, after the n-th imperfect preventive maintenance action, the degradation of component i , given by (6),
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is distributed as a normal with expectation

Å[Yi (nT + ) ] = µi

n∑
j=1

∆Λi (jT ) (1 − ρi )n−j+1

and variance

Var(Yi (nT + ) ) = σ2
0 g (nT , ρi , ρi , Λ0 ) + σ2

i g (nT , ρi , ρi , Λi ) .

Example 2. Figure 2 shows realizations of Y1 (t ) and Y2 (t ) with the parameters presented in Example 1. Imperfect
preventive maintenance actions are performed each T = 3 time units with maintenance efficiency equals to ρ1 = 0.9

and ρ2 = 0.1 respectively. These values have been chosen such that the maintenance effect is nearly maximal for
component 1 and minimal for component 2.
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F IGURE 2 Realization of processesY1 (t ) andY2 (t ) , and their corresponding Pearson correlation coefficient in
Example 2.

Proposition 1 gives results about the monotonicity with respect to n for fixed T for the expectation and the
variance ofYi (nT + ) , with i = 1, 2. To prove this result, it is assumed that Λi (t ) and Λ0 (t ) have increasing increments.
The definition of a function with increasing increments is reviewed below.

Definition 1. A function Λ ( ·) has increasing increments if

Λ (t1 + s ) − Λ (t1 ) ≤ Λ (t2 + s ) − Λ (t2 ),

whenever s > 0 and t1 ≤ t2.

Remark 1. If Λ ( ·) is convex, then it has increasing increments. Commonly used forms for Λ (t ) include the power
law function Λ (t ) = αt β , with β ≥ 1, and the log-linear form Λ (t ) = exp(αt ) − 1 with α > 1. Both functions have
increasing increments.
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Proposition 1. For fixedT and Λi ( ·) having increasing increments, it holds that

Å[Yi (nT + ) ] ≤ Å[Yi ( (n + 1)T + ) ],

for n ≥ 1. If, furthermore, Λ0 ( ·) has increasing increments,

Var(Yi (nT + ) ) ≤ Var(Yi ( (n + 1)T + ) ) .

Proof. Evaluating the difference,

Å[Yi ( (n + 1)T + ) ] − Å[Yi ( (n )T + ) ] =
n∑
j=1

µi (1 − ρi )n−j+1 [∆Λi ( (j + 1)T ) − ∆Λi (jT ) ]

+ µi∆Λi (T ) (1 − ρi )n+1,

where ∆Λi ( ·) denotes the increments of Λi ( ·) given by (8). If Λi ( ·) has increasing increments, then

∆Λi ( (j + 1)T ) − ∆Λi (jT ) ≥ 0

and, in consequence,

Å[Yi ( (n + 1)T + ) ] ≥ Å[Yi ( (nT + ) ] .

In the case of the variances, we get that

Var(Yi ( (n + 1)T + ) ) − Var(Yi (nT + ) ) =

σ2
0
©­«∆Λ0 (T ) (1 − ρi )2(n+1) +

n∑
j=1

(∆Λ0 ( (j + 1)T ) − ∆Λ0 (jT ) ) (1 − ρi )2(n−j+1)
ª®¬

+σ2
i
©­«∆Λi (T ) (1 − ρi )2(n+1) +

n∑
j=1

(∆Λi ( (j + 1)T ) − ∆Λi (jT ) ) (1 − ρi )2(n−j+1)
ª®¬ ,

where ∆Λ0 ( ·) denotes the increments of Λ0 ( ·) given by (8). Therefore, if Λi ( ·) and Λ0 ( ·) have increasing increments,
then

Var(Yi ( (n + 1)T + ) ) ≥ Var(Yi (nT + ) )

and the result holds.

Proposition 1 means that if the general time scale functions Λi ( ·) and Λ0 ( ·) have increasing increments, in spite
of performing imperfect preventive maintenance actions eachT time units, the expectation and variance of processes
Y1 (t ) andY2 (t ) after a preventive maintenance action increase with respect to the expectation and the variance after
the previous maintenance action, whatever the value of ρi is, for i = 1, 2.

Example 3. Figure 3 shows the expected degradation of component i after the n-th imperfect preventivemaintenance
action with respect to n . The parameters used are µi = 1, ρi = 0.75 and Λi (t ) = t β , with β > 1. Since Λi (t ) is convex,
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it has increasing increments. Hence, the expected degradation just after the maintenance increases with the number
of maintenance actions performed on the system.

F IGURE 3 Expected degradation after the n-th imperfect maintenance action in Example 3.

Example 4. Figure 4 shows the variance of the degradation of component i after the n-th preventive maintenance
action. The following parameters µi = 1, ρi = 0.75, σ0 = σi = 2, Λi (t ) = t β and Λ0 (t ) = t 1.1 are used. Since Λi (t ) and
Λ0 (t ) are convex, they have increasing increments. Hence, the variance of the degradation level after the imperfect
preventive maintenance actions increases with the number of maintenance actions.

F IGURE 4 Variance after the n-th imperfect maintenance action in Example 4.

The aim of proposition 2 is to give a result analogous to proposition 1 when the degradation levels are compared
at time t (with nT < t < (n + 1)T ), instead of just after maintenance.

Proposition 2. For fixedT > 0, let t1, t2 and t1 < t2, where t1 and t2 fulfils

t1 − ⌊t1/T ⌋T ≤ t2 − ⌊t2/T ⌋T .
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If Λi ( ·) has increasing increments then

Å[Yi (t1 ) ] ≤ Å[Yi (t2 ) ] .

If, furthermore, Λ0 ( ·) has increasing increments then

Var(Yi (t1 ) ) ≤ Var(Yi (t2 ) ) .

Proof. If ⌊t1/T ⌋ = ⌊t2/T ⌋ = n , then

Å[Yi (t1 ) ] = µi

n∑
j=1

(1 − ρi )n−j+1∆Λi (jT ) + µi (Λi (t1 ) − Λi (nT ) )

Å[Yi (t2 ) ] = µi

n∑
j=1

(1 − ρi )n−j+1∆Λi (jT ) + µi (Λi (t2 ) − Λi (nT ) )

Var(Yi (t1 ) ) = σ2
0

n∑
j=1

∆Λ0 (jT ) (1 − ρi )2(n−j+1)

+ σ2
i

n∑
j=1

∆Λi (jT ) (1 − ρi )2(n−j+1)

+ σ2
0 (Λ0 (t1 ) − Λ0 (nT ) ) + σ2

i (Λi (t1 ) − Λi (nT ) ),

Var(Yi (t2 ) ) = σ2
0

n∑
j=1

∆Λ0 (jT ) (1 − ρi )2(n−j+1)

+ σ2
i

n∑
j=1

∆Λi (jT ) (1 − ρi )2(n−j+1)

+ σ2
0 (Λ0 (t2 ) − Λ0 (nT ) ) + σ2

i (Λi (t2 ) − Λi (nT ) ) .

By applying that Λi (t ) is increasing in t , then

Å[Yi (t1 ) ] ≤ Å[Yi (t2 ) ] .

By applying that Λi (t ) and Λ0 (t ) are increasing in t , then Var(Yi (t1 ) ) ≤ Var(Yi (t2 ) ) .

If ⌊t1/T ⌋ = n1 and ⌊t2/T ⌋ = n2, being n1 < n2, then

µi

n1∑
j=1

(1 − ρi )n1−j+1∆Λi (jT ) ≤ µi

n2∑
j=1

(1 − ρi )n2−j+1∆Λi (jT ) .

On the other hand,

Λi (t1 ) − Λi (n1T ) = Λi (t1 − n1T + n1T ) − Λi (n1T )
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and with the assumption of Λ ( ·) having increasing increments, that is,

Λi (t1 +T ) − Λi (t1 ) ≤ Λi (t2 +T ) − Λi (t2 ),

it is fulfilled that

Λi (t1 ) − Λi (n1T ) = Λi (t1 − n1T + n1T ) − Λi (n1T )

≤ Λi (t1 − n1T + n2T ) − Λi (n2T ) .

Since Λi ( ·) is increasing and t1 − n1T ≤ t2 − n2T , then

Λi (t1 − n1T + n2T ) − Λi (n2T ) ≤ Λi (t2 − n2T + n2T ) − Λi (n1T )

and the result holds.
The reasoning for the monotonicity of the variance is analogous since

Λ0 (t1 ) − Λ0 (n1T ) + Λi (t1 ) − Λi (n1T ) ≤ Λ0 (t2 ) − Λ0 (n2T ) + Λi (t2 ) − Λi (n2T ) .

In the next section, we focus on the jumps in the degradation due to the maintenance actions. Some results are
given analysing the effect of the number of maintenance actions on the degradation reduction and the effect of the
maintenance efficiency on the jump in the degradation

3.2 | Jumps in the degradation due to the maintenance actions

Let Zi (nT ) be the jump in the degradation level of component i due to the maintenance action performed at time
nT , i.e.,

Zi (nT ) =Yi (nT + ) −Yi (nT − ) . (9)

By usingYi (nT + ) = (1 − ρi )Yi (nT − ) , we get that

Zi (nT ) = (1 − ρi )Yi (nT − ) −Yi (nT − )

= −ρiYi (nT − )

= −ρi
©­«
n−1∑
j=1

(1 − ρi )n−j∆Xi (jT ) + ∆Xi (nT ) )ª®¬ . (10)

Hence, the expected length of this jump is equal to

Å[Zi (nT ) ] = −µi ρi
n−1∑
j=1

(1 − ρi )n−j∆Λi (jT ) − µi ρi∆Λi (nT )

= −µi ρi
n∑
j=1

(1 − ρi )n−j∆Λi (jT ) .
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Similar to the previous reasoning related to the monotonicity of the expected degradation levels, we get the following
result.

Lemma 1. If Λi ( ·) has increasing increments, then the expected length of the jump decreases with the number of mainte-
nance actions performed on the system, i.e.,

Å[Zi (nT ) ] ≤ Å[Zi ( (n − 1)T ) ],

for n = 1, 2, . . ..

Lemma 1 states that, on average, the effect of the maintenance on the degradation of each component decreases
with the number of maintenance actions performed on the system if Λi ( ·) has increasing increments. Furthermore, on
average, the absolute values of the sizes of the jump increase with themaintenance efficiency ρi if Λi ( ·) has increasing
increments. Proposition 3 analyzes the effect of the maintenance actions on the expected length of the jump.

Proposition 3. If Λi ( ·) has increasing increments, then the expected length of the jump decreases with the maintenance
efficiency.

Proof. For n = 1, we get that

Å[Zi (t ) ] = −µi ρi∆Λi (T ),

which decreases with respect to ρi . For n = 2, we get that

Å[Zi (2T ) ] = −µi ρi∆Λi (2T ) − µi ρi (1 − ρi )∆Λi (T )

Derivating Å[Zi (2T ) ] with respect to ρi , we get that

∂Å[Zi (2T ) ]
∂ρi

= −µi (∆Λi (2T ) + ∆Λi (T ) − 2ρi∆Λi (T ) ) = −µi (Λi (2T ) − ρi Λi (T ) + (1 − ρi )Λi (T ) )

By applying that Λi ( ·) has increasing increments, then Å[Zi (2T ) ] is decreasing in ρi . Finally, when n > 2, then the
derivative with respect to ρi is given by

Å[Zi (nT ) ]
∂ρi

= −µi
©­«∆Λi (nT ) +

n−2∑
j=0

(1 − ρi ) j (1 − (j + 2)ρi )∆Λi ( (n − j − 1)T )ª®¬ .
The term in (11),

n−2∑
j=0

(1 − ρi ) j (1 − (j + 2)ρi )∆Λi ( (n − j − 1)T ),

is decreasing in ρi , then

n−2∑
j=0

(1 − ρi ) j (1 − (j + 2)ρi )∆Λi ( (n − j )T ) ≤ −∆Λi ( (n − 1)T ) .
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Then

Å[Zi (nT ) ]
∂ρi

≤ −µi (∆Λ (nT ) − ∆Λ ( (n − 1)T ),

hence the jumps are decreasing with respect to ρi .

The following section provides an analysis of the Pearson correlation coefficient between the degradation levels
of the maintained components over time.

4 | CORRELATION ANALYSIS IN THE MAINTAINED SYSTEM

With the foregoing, the covariance between processesY1 (t ) andY2 (t ) at time t , with nT ≤ t < (n + 1)T , is given by

Cov(Y1 (t ),Y2 (t ) ) = σ2
0 gn (t , ρ1, ρ2, Λ0 )

= σ2
0

n∑
j=1

(1 − ρ1 )n−j+1 (1 − ρ2 )n−j+1∆Λ0 (jT ) + σ2
0 (Λ0 (t ) − Λ0 (nT ) ) . (11)

The Pearson correlation coefficient betweenY1 (t ) andY2 (t ) is next evaluated. We get that

θ (t , ρ1, ρ2, Λ0, Λ1, Λ2 ) =
Cov(Y1 (t ),Y2 (t ) )√

Var(Y1 (t ) )
√
Var(Y2 (t ) )

,

where Var(Y1 (t ) ) and Var(Y2 (t ) ) are given by (7) and the covariance between the two degradation processes is given
by (11). Hence, the Pearson correlation coefficient is equal to

θ (t , ρ1, ρ2, Λ0, Λ1, Λ2 ) = (12)
σ2
0 g (t , ρ1, ρ2, Λ0 )√

σ2
0 g (t , ρ1, ρ1, Λ0 ) + σ2

1 g (t , ρ1, ρ1, Λ1 )
√
σ2
0 g (t , ρ2, ρ2, Λ0 ) + σ2

2 g (t , ρ2, ρ2, Λ2 )
,

where g (t , ρ1, ρ2, Λi ) is given by (9). The degradation levels of each component are positively correlated. It is intuitive
since we have assumed that both degradation processes share a common part. Moreover, it is straightforward to
check that

θ (nT −, ρ1, ρ2, Λ0, Λ1, Λ2 ) = θ (nT +, ρ1, ρ2, Λ0, Λ1, Λ2 ),

hence the correlation coefficient is continuous.

Figure 5 represents the Pearson correlation coefficient θ (t , ρ1, ρ2, Λ0, Λ1, Λ2 ) versus time t considering the follow-
ing parameters: σ0 = 4,σ1 = 4.5,σ2 = 3.5, ρ1 = 0.3, ρ2 = 0.5, Λ0 (t ) = Λ1 (t ) = Λ2 (t ) = t and T = 15. Notice that this
coefficient is such that θ (iT , ρ1, ρ2, Λ0, Λ1, Λ2 ) ≤ θ ( (i − 1)T , ρ1, ρ2, Λ0, Λ1, Λ2 ) , for i ≥ 1, but θ (t , ρ1, ρ2, Λ0, Λ1, Λ2 ) is
not monotone in t , for nT ≤ t < (n + 1)T .

Also, the jumps in the degradation levels of the two components due to the maintenance actions are correlated.
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F IGURE 5 ProcessesY1 (t ) andY2 (t ) , and their Pearson correlation coefficient versus time t .

Next, we analyze

θ (Z1 (nT ), Z2 (nT ) ) =
Cov (Z1 (nT ), Z2 (nT ) )√

V ar (Z1 (nT ) )
√
V ar (Z2 (nT ) )

,

where Zi (nT ) is given by (9). By applying Zi (nT ) = −ρiY (nT − ) , we get that

θ (Z1 (nT ), Z2 (nT ) ) =
ρ1ρ2Cov (Y1 (nT − ),Y2 (nT − ) )

ρ1ρ2
√
V ar (Y1 (nT − ) )

√
V ar (Y2 (nT − ) )

,

= θ (nT −, Λ0, Λ1, Λ2, ρ1, ρ2 ),

hence the correlation in the jumps between the two components due to the maintenance actions is equal to the
correlation between the degradation levels of the two components before performing the maintenance actions.

Next, we focus on the monotonicity of the Pearson correlation coefficient. This monotonicity is analyzed con-
sidering two special cases: equal maintenance efficiency ρ1 = ρ2 and equal general time scales functions Λ0 (t ) =

Λ1 (t ) = Λ2 (t ) .

4.1 | Equal maintenance efficiency

By assuming ρ1 = ρ2 = ρ, the Pearson correlation coefficient is equal to

θ (t , ρ, Λ0, Λ1, Λ2 ) =
σ2
0√

σ2
0 + σ2

1h
(1) (t , ρ )

√
σ2
0 + σ2

2h
(2) (t , ρ )

, (13)

with

h (i ) (t , ρ ) =

∑n
j=1 ∆Λi (jT ) (1 − ρ )2(n−j+1) + Λi (t ) − Λi (nT )∑n
j=1 ∆Λ0 (jT ) (1 − ρ )2(n−j+1) + Λ0 (t ) − Λ0 (nT )

, nT ≤ t < (n + 1)T , (14)

where ∆Λi (jT ) and ∆Λ0 (jT ) denote the increments of functions Λi ( ·) and Λ0 ( ·) , given by (8) for i = 1, 2.
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If ρ1 = ρ2 = ρ and Λ0 ( ·) = Λ1 ( ·) = Λ2 ( ·) , then the Pearson correlation coefficient is equal to

θ (t , ρ, Λ) =
σ2
0 g (t , ρ, ρ, Λ)

g (t , ρ, ρ, Λ)
√
σ2
0 + σ2

1

√
σ2
0 + σ2

2

=
σ2
0√

σ2
0 + σ2

1

√
σ2
0 + σ2

2

for nT ≤ t < (n + 1)T . This means that, by using the same maintenance efficiency for the two components and the
same general time scales, the Pearson correlation coefficient is time-invariant and equal to the coefficient obtained in
(4) in absence of preventive maintenance actions (see [2]).

The particular case ρ1 = ρ2 = 1 means that the most efficient maintenance is performed on the two components.
It means that, after each maintenance action, the deterioration of each component resets to zero. However, for Λi ( ·)
and Λ0 ( ·) not homogeneous, the most efficient maintenance action does not imply that an “as good as new” (AGAN)
maintenance (replacement) is performed on the system since the imperfect maintenance reduces the deterioration
but not the system age.

Next, the Pearson correlation coefficient in the case ρ1 = ρ2 = 1 is compared to the Pearson correlation coefficient
by using an “as good as new” maintenance. Imposing ρ1 = ρ2 = 1, the Pearson correlation coefficient is

θ (t , 1, Λ0, Λ1, Λ2 ) =
σ2
0√

σ2
0 + σ2

1h
(1) (t , 1)

√
σ2
0 + σ2

2h
(2) (t , 1)

, nT ≤ t < (n + 1)T , (15)

where h (i ) (t , 1) is given by (14), that is,

h (i ) (t , 1) = Λi (t ) − Λi (nT )
Λ0 (t ) − Λ0 (nT ) , for nT ≤ t < (n + 1)T ,

for i = 1, 2. If a complete replacement of a system is performed at time nT , the Pearson correlation coefficient is given
by

θ∗ (t − nT , ρ, Λ0, Λ1, Λ2 ) =
σ2
0√

σ2
0 + σ2

1h
(1)
∗ (t − nT )

√
σ2
0 + σ2

2h
(2)
∗ (t − nT )

, nT ≤ t < (n + 1)T ,

where

h
(i )
∗ (t − nT ) = Λi (t − nT )

Λ0 (t − nT ) , nT ≤ t < (n + 1)T .

for i = 1, 2. The relationship between θ ( ·) and θ∗ ( ·) is given in proposition 4.

Proposition 4. If h (i )∗ (t ) = Λi (t )/Λ0 (t ) is increasing (decreasing) in t , with nT ≤ t < (n + 1)T , then

θ∗ (t − nT , ρ, Λ0, Λ1, Λ2 ) ≥ (≤) θ (t , 1, Λ0, Λ1, Λ2 ), nT ≤ t < (n + 1)T .

Proof. We get that, for i = 1, 2,

Λi (t ) − Λi (nT )
Λ0 (t ) − Λ0 (nT ) =

Λi (t )
Λ0 (t )

1 − Λi (nT )/Λi (t )
1 − Λ0 (nT )/Λ0 (t )

≥ Λi (t )
Λ0 (t )
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since h
(i )
∗ (t ) is increasing in t and, in consequence,

Λi (nT )
Λ0 (nT ) ≤ Λi (t )

Λ0 (t )

for nT ≤ t . Finally, applying again that h (i )∗ (t ) is increasing in t ,

Λi (t )
Λ0 (t )

≥ Λi (t − nT )
Λ0 (t − nT )

and the result holds. The proof for h∗
i
(t ) decreasing in t is analogous.

Increasing function h (i )∗ (t ) implies that the part of degradation specific to each component (expressed by Λi ) takes
more and more importance with respect to the part of degradation which is common to both components (expressed
by Λ0). Therefore, it is evident that the correlation is weaker than for an as-good-as-new (AGAN) system. Hence, if
Λi (t )/Λ0 (t ) is increasing (resp. decreasing) in t for i = 1, 2, in spite of doing the most efficient maintenance for both
components, the Pearson correlation coefficient is lower (resp. greater) than the Pearson correlation coefficient in the
AGAN case by assuming non-homogeneous general time scales. In the homogeneous case, that is, if Λi (t ) = αi t and
Λ0 (t ) = α0t , then both correlation coefficients are equal.

Propositions 2 and 3 give results about the monotonicity of h (i ) (nT , ρ ) and h (i ) (t , ρ ) in ρ. These results will be
next used to analyze the monotonicity of the Pearson correlation coefficient θ (t , ρ, Λ0, Λ1, Λ2 ) .

Lemma 2. For fixedT > 0, if the function

ai (t ) =
Λi (t +T ) − Λi (t )
Λ0 (t +T ) − Λ0 (t )

, t > 0 (16)

is increasing in t for i = 1, 2, then h (i ) (nT , ρ ) given by

h (i ) (nT , ρ ) =
∑n

j=1 ∆Λi (jT ) (1 − ρ )2(n−j+1)∑n
z=1 ∆Λ0 (zT ) (1 − ρ )2(n−z+1)

=

∑n
j=1 ∆Λi (jT ) (1 − ρ )2(n−j )∑n
z=1 ∆Λ0 (zT ) (1 − ρ )2(n−z )

is increasing in ρ.

Proof. Deriving h (i ) (nT , ρ ) with respect to ρ, we get that, for i = 1, 2,

∂h (i ) (nT , ρ )
∂ρ

=
−2∑n−1

j=1

∑n
z=1 ∆Λi (jT )∆Λ0 (zT ) (n − j ) (1 − ρ )2(n−j )+2(n−z )−1(∑n

z=1 ∆Λ0 (zT ) (1 − ρ )2(n−z )
)2

+
2
∑n

j=1

∑n−1
z=1 ∆Λi (jT )∆Λ0 (zT ) (n − z ) (1 − ρ )2(n−j )+2(n−z )−1(∑n

z=1 ∆Λ0 (zT ) (1 − ρ )2(n−z )
)2

=
2En(∑n

z=1 ∆Λ0 (zT ) (1 − ρ )2(n−z )
)2 .

Hence,

∂h (i ) (nT , ρ )
∂ρ

≥ 0
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if and only if

En =
n∑
j=1

n∑
z=1

(j − z )π (j , z )W (j , z ) ≥ 0,

where

π (j , z ) = ∆Λi (jT )∆Λ0 (zT ) and W (j , z ) = (1 − ρ )2(n−j )+2(n−z )−1 .

SinceW (j , z ) =W (z , j ) , then for n ≥ 2

En =
n∑
j=1

n∑
z=1

π (j , z ) (j − z )W (j , z )

=
n∑
j=2

j −1∑
z=1

π (j , z ) (j − z )W (j , z ) +
n−1∑
j=1

n∑
z=j+1

π (j , z ) (j − z )W (j , z )

=
n∑
j=2

j −1∑
z=1

π (j , z ) (j − z )W (j , z ) +
n∑

z=2

z−1∑
j=1

π (j , z ) (j − z )W (j , z )

=
n∑
j=2

j −1∑
z=1

π (j , z ) (j − z )W (j , z ) +
n∑
j=2

j −1∑
z=1

π (z , j ) (z − j )W (z , j )

=
n∑
j=2

j −1∑
z=1

W (j , z ) (π (j , z ) (j − z ) + π (z , j ) (z − j ) ) .

On the other hand, as ai ( (j − 1)T ) = ∆Λi (jT )/∆Λ0 (jT ) is increasing in j because a (t ) is increasing in t ((16)), then
π (j , z ) ≥ π (z , j ) for j ≥ z . Furthermore,W (j , z ) =W (z , j ) , hence En ≥ 0 for n ≥ 2. If n = 1, the function h (i ) (nT , ρ )
is constant in ρ and the result holds.

Using the previous results, if ai (t ) given by (16) is increasing in t then h (i ) (nT , ρ ) is increasing in ρ, hence

lim
ρ→0

h (i ) (nT , ρ ) ≤ h (i ) (nT , ρ ) ≤ lim
ρ→1

h (i ) (nT , ρ ),

or, equivalently,

Λi (nT )
Λ0 (nT ) ≤ h (i ) (nT , ρ ) ≤ Λi (nT ) − Λi ( (n − 1)T )

Λ0 (nT ) − Λ0 ( (n − 1)T ) . (17)

The monotonicity of h (i ) (t , ρ ) is next analyzed with respect to ρ. This result is given in the following proposition.

Lemma 3. For fixedT > 0, if the function ai (t ) is increasing in t and

Λ′
i (t )∆Λ0 (jT ) ≥ Λ′

0 (t )∆Λi (jT ) j = 1, 2, . . . , n, nT ≤ t < (n + 1)T , (18)

then h (i ) (t , ρ ) is increasing in ρ for fixed t and nT ≤ t < (n + 1)T .
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Proof. Deriving h
(i )
n (t , ρ ) with respect to ρ, we have

∂h (i ) (t , ρ )
∂ρ

≥ 0 ⇔ ∂h (i ) (nT , ρ )
∂ρ

+ ∂

∂ρ

©­«
n∑
j=1

∆Λi (jT ) (1 − ρ )2(n−j+1) (Λ0 (t ) − Λ0 (nT ) )

−
n∑
j=1

∆Λ0 (jT ) (1 − ρ )2(n−j+1) (Λi (t ) − Λi (nT ) )ª®¬ ≥ 0.

From Lemma 2 it follows that

∂h (i ) (nT , ρ )
∂ρ

≥ 0.

Hence if

∂

∂ρ

©­«
n∑
j=1

∆Λi (jT ) (1 − ρ )2(n−j+1) ) (Λ0 (t ) − Λ0 (nT ) )

−
n∑
j=1

∆Λ0 (jT ) (1 − ρ )2(n−j+1) (Λi (t ) − Λi (nT ) )ª®¬ ≥ 0 (19)

then

∂h (i ) (t , ρ )
∂ρ

≥ 0.

To prove this, the term of (19) is derived with respect to t . If

2
n∑
j=1

(n − j + 1) (1 − ρ )2(n−j+1)−1
(
Λ′
i (t )∆Λ0 (jT ) − Λ′

0 (t )∆Λi (jT )
)
> 0, (20)

then (19) is increasing with respect to t . Using the assumption given by (18), (20) is fulfilled and consequently, the
expression given by (19) is greater than or equal to 0. Therefore, it finally follows that

∂h (i ) (t , ρ )
∂ρ

≥ 0

and the result holds.

Proposition 5. If Λi (t ) = t βi and Λ0 (t ) = t β0 for βi > β0 > 1, then the condition given by (18) is fulfilled.

Proof. By using Λi (t ) = t βi and Λ0 (t ) = t β0 in the condition given by (18), we get that

βi t
βi −1

[
(jT )β0 − ( (j − 1)T )β0

]
≥ β0t

β0−1
[
(jT )βi − ( (j − 1)T )βi

]
,
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that is,

βi
β0

t βi −1

t β0−1
≥ (jT )βi

(jT )β0
1 −

(
(j −1)T
jT

)βi
1 −

(
(j −1)T
jT

)β0
βi
β0

(
t

jT

)βi −β0
≥ 1 − uβi

1 − uβ0
,

where u =
(j −1)T
jT . Then, let g (u ) = 1−uβi

1−uβ0
and deriving g (u ) ,

g ′ (u ) = −βiuβi −1 (1 − uβ0 ) + (1 − uβi )β0uβ0−1

= uβ0−1
(
−βiuβi −β0 + βiu

βi + β0 − β0u
βi
)
.

Now, taking the term z (u ) = −βiuβi −β0 + βiu
βi + β0 − β0u

βi , it holds that

z ′ (u ) = −βi (βi − β0 )uβi −β0−1 + β 2
i u

βi −1 − β0βiu
βi −1

= βi (βi − β0 )
(
uβi −1 − uβi −β0−1

)
.

Since u < 1, then uβi −1 − uβi −β0−1 < 0. Consequently, z ′ (u ) ≤ 0 and function z (u ) is decreasing in u . Therefore,
z (u ) ≥ z (1) ≥ 0 and g (u ) is increasing in u . Finally, g (u ) ≤ g (1) = βi

β0
, and the result holds since

(
t
jT

)βi −β0 ≥ 1 for
j = 1, 2, . . . , n and t ≥ jT , given by (18).

Corollary 1. If Λi (t ) = t βi and Λ0 (t ) = t β0 for βi > β0 > 1, then function h (i ) (t , ρ ) is increasing in ρ.

Proposition 6. Assuming Λi (t ) = exp (βi t ) − 1 and Λ0 (t ) = exp (β0t ) − 1, if βi > β0, for i = 1, 2, then condition given by
(18) is fulfilled.

Proof. (18) is fulfilled if and only if,

βi
β0

exp(βi t )
exp(β0t )

≥ exp(βi jT ) − exp(βi (j − 1)T )
exp(β0jT ) − exp(β0 (j − 1)T ) ,

or, equivalently

βi
β0

exp( (βi − β0 ) (t − jT ) ) ≥ 1 − exp(−βiT )
1 − exp(−β0T ) . (21)

We get that

1 − exp(−βiT )
1 − exp(−β0T ) ≤ βi

β0
.

Hence, since exp( (βi − β0 ) (t − jT ) ) ≥ 1, then condition given in (21) is fulfilled.

Corollary 2. If Λi (t ) = exp (βi t ) − 1 and Λ0 (t ) = exp (β0t ) − 1, the function h (i ) (t , ρ ) is increasing in ρ.

Lemma 4. For fixedT and ρ, if ai (t ) given by (16) is increasing in t then function h (i ) (nT , ρ ) is increasing in n .
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Proof. It holds that, for i = 1, 2,

h (i ) ( (n + 1)T , ρ ) − h (i ) (nT , ρ ) ≥ 0 ⇔ h (i ) (nT , ρ ) ≤ Λi ( (n + 1)T ) − Λi (nT )
Λ0 ( (n + 1)T ) − Λ0 (nT ) .

As h (i ) (nT , ρ ) is increasing in ρ, we get that

h (i ) (nT , ρ ) ≤ lim
ρ→1

h (i ) (nT , ρ ) = Λi (nT ) − Λi ( (n − 1)T )
Λ0 (nT ) − Λ0 ( (n − 1)T ) .

Since function ai (t ) given by (16) is increasing in t , then

Λi (nT ) − Λi ( (n − 1)T )
Λ0 (nT ) − Λ0 ( (n − 1)T ) ≤ Λi ( (n + 1)T ) − Λi (nT )

Λ0 ( (n + 1)T ) − Λ0 (nT ) .

By (17), the result is fulfilled.

Proposition 7. With respect to themonotonicity of the Pearson correlation coefficient and assuming that ai (t ) is increasing
in t , the following results are obtained.

1. For fixed T and n , θ (nT , ρ, Λ0, Λ1, Λ2 ) is decreasing with respect to ρ. It means that, if the maintenance efficiency
increases, the correlation between the processes decreases after the maintenance action.

2. For fixed T and ρ, θ (nT , ρ, Λ0, Λ1, Λ2 ) is decreasing with respect to n . It means that the correlation between the
processes decreases with the number of maintenance actions performed on the system.

3. If Λ′
i
(t ) (Λ0 (t ) − Λ0 (nT ) ) ≥ Λ′

0 (Λi (t ) − Λi (nT ) ) for i = 1, 2, then θ (t , ρ, Λ0, Λ1, Λ2 ) is decreasing with respect to
ρ.

4. If Λi (t ) = t βi and Λ0 (t ) = t β0 , with βi > β0 > 1 for i = 1, 2, then θ (t , ρ, Λ0, Λ1, Λ2 ) is decreasing with respect to ρ.
5. If Λi (t ) = exp (βi t ) and Λ0 (t ) = exp (β0t ) , with βi > β0 > 1 for i = 1, 2, then θ (t , ρ, Λ0, Λ1, Λ2 ) is decreasing with

respect to ρ.

Proof. Points 1 and 2 are deduced from Lemmas 2 and 4, respectively. Point 3 follows from Lemma 3. Finally, points
4 and 5 result from Corollaries 1 and 2, respectively.

Example 5. Figures 6 and 7 plot the Pearson correlation coefficient versus ρ and n , respectively, for different values
of β > 1. These figures are plotted using the following parameters: Λ0 (t ) = t , Λ1 (t ) = Λ2 (t ) = t β ,T = 5 and
σ2
0 = 1,σ2

1 = σ2
2 = 0.25. In addition, for Figure 6, n = 3, and for Figure 7, ρ = 0.2 are considered. The correlation

coefficient in both cases is decreasing in ρ and n for different values of β , as it is stated in Proposition 7.

4.2 | Equal general time scales

The monotonicity of the Pearson correlation coefficient θ (nT , ρ1, ρ2, Λ0, Λ1, Λ2 ) is analyzed in the case Λ0 (t ) =

Λ1 (t ) = Λ2 (t ) and ρ1 , ρ2. For the sake of simplicity, we denote Λi := Λ, for i = 0, 1, 2 and θ (t , ρ1, ρ2, Λ) for
the Pearson correlation coefficient. For equal general time scales, the square of the Pearson correlation coefficient is
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F IGURE 6 Pearson correlation coefficient versus ρ for Λ0 (t ) = t and Λ1 (t ) = Λ2 (t ) = t β in Example 5.

F IGURE 7 Pearson correlation coefficient versus n for Λ0 (t ) = t and Λ1 (t ) = Λ2 (t ) = t β . in Example 5.

given by

θ (t , ρ1, ρ2, Λ) =
σ2
0 g (t , ρ1, ρ2, Λ)√

σ2
0 + σ2

1

√
g (t , ρ1, ρ1, Λ)

√
σ2
0 + σ2

2

√
g (t , ρ2, ρ2, Λ)

=
σ2
0√

σ2
0 + σ2

1

√
σ2
0 + σ2

2

g (t , ρ1, ρ2, Λ)√
g (t , ρ1, ρ1, Λ)

√
g (t , ρ2, ρ2, Λ)

(22)

where g ( ·) is given by (9). The first term of (22) corresponds to the correlation coefficient in absence of maintenance
actions. The second term corresponds to the influence on the correlation coefficient of the maintenance actions.

Next, the monotonicity of θ (t , ρ1, ρ2, Λ) with respect to ρi for n andT fixed is analyzed.

Proposition 8. For fixed n and T , the Pearson correlation coefficient θ (nT , ρ1, ρ2, Λ) is increasing in ρ1 if ρ1 ≤ ρ2 and
decreasing in ρ1 if ρ2 ≤ ρ1.

Proof. We get that,

∂θ2 (nT , ρ1, ρ2, Λ)
∂ρ1

=
K

g (nT , ρ2, ρ2, Λ)
∂

∂ρ1

(
g 2 (nT , ρ1, ρ2, Λ)
g (nT , ρ1, ρ1, Λ)

)
,

where

K =
σ4
0

(σ2
0 + σ2

1 ) (σ
2
0 + σ2

2 )
.
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On the other hand,

∂

∂ρ1

(
g 2 (nT , ρ1, ρ2, Λ)
g (nT , ρ1, ρ1, Λ)

)
= 2

n∑
i=1

∆Λ (iT ) (1 − ρ1 )n−i+1 (1 − ρ2 )n−i+1 ·

·
∑n

i=1

∑n
j=1 ∆Λ (iT )∆Λ (jT ) (i − j ) (1 − ρ1 )n−i+2(n−j+1)−1 (1 − ρ2 )n−i+1

g 2 (nT , ρ1, ρ1, Λ)
.

Hence,

∂

∂ρ1

(
g 2 (nT , ρ1, ρ2, Λ)
g (nT , ρ1, ρ1, Λ)

)
≥ 0 ⇔

n∑
i=1

n∑
j=1

Π (i , j ) (i − j ) (1 − ρ1 )n−i+2(n−j+1)−1 (1 − ρ2 )n−i+1 ≥ 0,

where

Π (i , j ) = ∆Λ (iT )∆Λ (jT ) .

Furthermore, the term can be expanded as

n∑
i=1

n∑
j=1

Π (i , j ) (i − j ) (1 − ρ1 )n−i+2(n−j+1)−1 (1 − ρ2 )n−i+1

=
n∑
i=2

i−1∑
j=1

Π (i , j ) (i − j ) (1 − ρ1 )n−i+2(n−j+1)−1 (1 − ρ2 )n−i+1

+
n−1∑
i=1

n∑
j=i+1

Π (i , j ) (i − j ) (1 − ρ1 )n−i+2(n−j+1)−1 (1 − ρ2 )n−i+1

=
n∑
i=2

i−1∑
j=1

Π (i , j ) (i − j ) (1 − ρ1 )n−i+2(n−j+1)−1 (1 − ρ2 )n−i+1

+
n−1∑
i=2

i−1∑
j=1

Π (i , j ) (j − i ) (1 − ρ1 )n−j+2(n−i+1)−1 (1 − ρ2 )n−j+1

=
n∑
i=2

i−1∑
j=1

Π (i , j ) (i − j ) (1 − ρ2 )n−i+1 (1 − ρ1 )n−j+2(n−i+1)−1
(
(1 − ρ1 ) i−j − (1 − ρ2 ) i−j

)
.

In the case ρ1 ≤ ρ2, then

∂

∂ρ1

(
g 2 (nT , ρ1, ρ2, Λ)
g (nT , ρ1, ρ1, Λ)

)
≥ 0.

Similarly, if ρ1 ≥ ρ2, then

∂

∂ρ1

(
g 2 (nT , ρ1, ρ2, Λ)
g (nT , ρ1, ρ1, Λ)

)
≤ 0

and the result holds.

Corollary 3. For fixed n and T , the Pearson correlation coefficient θ (nT , ρ1, ρ2, Λ) is increasing in ρ2 if ρ2 ≤ ρ1 and de-
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creasing if ρ2 ≥ ρ1.

Corollary 4. If ρ1 = ρ2, then the correlation θ (nT , ρ1, ρ2, Λ) reaches the maximum and it is equal to

√
K = θ (t , ρ, Λ) =

σ2
0√

σ2
0 + σ2

1

√
σ2
0 + σ2

2

, t ≥ 0.

As an interpretation of Proposition 8 and Corollary 3, the equality ρ1 = ρ2 means that the maintenance process is
the same for both components, so the resulting degradation levels are linked. If ρ1 and ρ2 move apart, themaintenance
process diverge, so the correlation decreases.

Proof. Using proposition 8, if 0 < ρ1 ≤ ρ2, it follows that

θ2n (nT , 0, ρ2, Λ) ≤ θ2n (nT , ρ1, ρ2, Λ) ≤ θ2n (nT , ρ2, ρ2, Λ) .

Hence, the Pearson correlation coefficient fulfils

θ2n (nT , ρ1, ρ2, Λ) ≤ K ,

where

K =
σ4
0

(σ2
0 + σ2

1 ) (σ
2
0 + σ2

2 )
.

On the other hand, if ρ2 ≤ ρ1 < 1,

θ2n (nT , 1, ρ2, Λ) ≤ θ2n (nT , ρ1, ρ2, Λ) ≤ θ2n (nT , ρ2, ρ2, Λ),

and the Pearson correlation coefficient fulfils

θ2n (nT , ρ1, ρ2, Λ) ≤ K .

Example 6. Figure 8 plots the Pearson correlation coefficient θ (nT , ρ1, ρ2, Λ) versus ρ1 for n = 30, T = 5, σ2
0 = σ2

1 =

σ2
2 = 1, ρ2 = 0.5 and Λ (t ) = t β . As can be seen, this coefficient is increasing in ρ1 for ρ1 ≤ ρ2 and decreasing in ρ1 for

ρ1 ≥ ρ2, where the maximum is reached for ρ1 = ρ2.

5 | CONCLUSIONS AND FURTHER WORKS

The trivariate reduction method is proposed to model the dependence between two degrading processes with one
common factor between the two components. Imperfect preventive maintenance actions are performed periodically
on the system, implementing an ARDmodel of infinite order for describing such maintenance actions. The correlation
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F IGURE 8 Pearson correlation coefficient θ (nT , ρ1, ρ2, t β , t β ) versus ρ1 for different β in Example 6.

analysis between degradation levels of the components is performed evaluating the Pearson’s correlation coefficient.
Different properties of the monotonicity of the Pearson correlation coefficient are studied.

To model the dependence between the two components, just a single common process is considered. In some
practical cases, it could be insufficient and the number of common stochastic processes should be extended to two
or more [20]. On the other hand, to assess the correlation between components, the Pearson correlation coefficient
is used. However, this coefficient has some shortcomings in measuring the associated relationship of variables when
the dependence relationship is non-linear.

As future work, we intend to analyse the correlation from a different perspective than using Pearson’s correlation
coefficient, for instance, with the use of the Kendall rank correlation coefficient or copula functions. Another perspec-
tive to consider would be the estimation of the model parameters in different maintenance situations.
Finally, predicting the lifetime (or the RUL) of the two-component system, taking into account both the series or
parallel configuration and the correlation is another interesting prospect of this study.
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