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Abstract –In this study, we calibrate a Telemac2D model, 

which solves shallow water equations, to improve tidal 

predictions. Observational tide gauge data is assimilated using 

the Particle Swarm Optimization (PSO) algorithm, to calibrate 

and estimate two critical model parameters: bottom friction and 

boundary conditions. The boundary conditions include the 

amplitude and phase of the predominant tidal constituents, 

while bottom friction is estimated as both constant and spatially 

varying. Our results show that while spatially varying bottom 

friction provides a slight improvement over constant friction, 

the most significant reduction in model error is achieved by 

calibrating both the amplitude and phase of the tidal 

constituents. The study concludes that the phase correction of 

predominant tidal constituents is the most critical parameter for 

improving the model’s accuracy, emphasizing the importance of 

precise boundary condition calibration in tidal modeling. 

Keywords: water elevation, PSO, calibration, boundary condition, 
bottom friction. 

I. INTRODUCTION 

Tidal models are essential tools in predicting coastal 
hazards and assessing environmental impacts. Tides in 
shallow water models are influenced by bottom friction, 
boundary conditions and bathymetry. The accuracy of tidal 
models is often compromised by uncertainties in input data. 
For instance, bottom friction is commonly treated as a constant 
despite its known variability across different spatial and 
temporal scales. Similarly, the number of tidal constituents 
and the resolution of boundary condition databases can 
significantly influence model performance. Traditional trial-
and-error methods for calibrating these models are not only 
computationally expensive and time-consuming but also often 
fail to efficiently optimize model parameters. 

Data assimilation (DA) methods can be efficient in 
calibrating coastal models and estimating optimal model 
parameters [1]. Traditional DA techniques include variational 
methods such as 3DVAR and 4DVAR with the adjoint 
method, as well as filtering methods like the Kalman filter. 
These techniques have been effectively employed to calibrate 
and estimate open boundary conditions (OBCs) and bottom 
friction in coastal ocean models. For instance, Taniguchi et al. 
[2] successfully calibrated OBCs in a tidal model using the 
ensemble Kalman filter and a model Green’s function via data 
assimilation. Similarly, Cao et al. [3] optimized the OBC in an 
internal tidal model using the adjoint method, assimilating 
satellite altimetry data. Chen et al. [4] and Jiang et al. [5] 

further refined the spatially varying OBC using the adjoint 
method combined with an independent point scheme, also 
based on satellite altimeter data. Zhang et al. [6] implemented 
an adjoint-based 4DVAR data assimilation technique for OBC 
estimation, while Lardner [7] employed the adjoint variational 
data assimilation method to estimate boundary conditions 
using tide gauge data. Improved OBC estimation has also been 
achieved through the adjoint method with a trigonometric 
polynomial fitting scheme, assimilating multi-satellite data 
[8].  

In addition to boundary condition calibration, data 
assimilation has been applied to the calibration of bottom 
friction. Wang et al. [9] estimated spatially and temporally 
varying bottom friction in a tidal model using the adjoint 
method, demonstrating its effectiveness. Moreover, Wang et 
al. [10] showed that data assimilation-based bottom friction 
parameter estimation can yield better results in global tidal 
models. The calibration of varying bottom friction has also 
been explored in tidal models by assimilating satellite 
altimetry data [11]. 

The focus of this work is on the simultaneous estimation 
of various model parameters with minimum knowledge of 
their initial conditions. Traditional methods such as gradient 
based methods and filtering methods can be sensitive to the 
initial conditions and can be computationally expensive and 
time consuming as the number of calibration parameters 
increases [12,13,14]. In this case, we have tested the Particle 
Swarm Optimisation (PSO) algorithm for data assimilation 
and parameter estimation problem.   

In this study, tidal elevation observations from tide gauges 
are assimilated into the model to calibrate both bottom friction 
and boundary conditions. The primary aim is to compare and 
distinguish the effects of bottom friction and boundary 
conditions on the calibration of the tidal model and to identify 
the most efficient approach for improving model performance.  

In the following sections, Section 2 outlines the 
observational data, hydrodynamic model, calibration 
variables, and the data assimilation framework used in this 
study. Section 3 discusses the validation of the PSO algorithm 
and the calibration process, with a focus on the estimation of 
boundary conditions and bottom friction. Section 4 
summarizes the findings of the study and outlines potential 
future directions.  
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II. METHODOLOGY 

A.  Study site and observations 

The English Channel is a shallow epi-continental sea shared 

between France to the south and the United Kingdom to the 
north. Most of the depth values fall between 50 to 80 m with 
a maximum depth of 174 m. The channel is characterized by 
semi-diurnal tides with a higher tidal range along the French 
coast. 

Measurements of tidal elevation from 21 tide gauge 
locations (Figure 1) across the French and the English coasts 
are used in this study for data assimilation over a period of 10 
days during October 2015. The particular period of the study 
is chosen based on the availability of the data (longer time 
periods had no effect on the methodology).  The tide gauge 
data along the French coast are sourced from the SHOM 
(French navy) and along the English coast from the British 
Oceanographic Data Centre (BODC). 

B. Hydrodynamic model setup 

Telemac2D is the hydrodynamic model used to simulate 
tidal elevation. Telemac2D solves the second-order partial 
differential equations for depth-averaged free surface flow 
called shallow water equations derived from the full three-
dimensional Navier Stokes equations. The vertically averaged 
equations are obtained by integrating from the bottom to the 
surface. This provides a system of equations with mass 
continuity and two momentum equations, considering a 
Newtonian fluid. The continuity equation and momentum 
equations are given by (1), (2) and (3) respectively. 
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where h is the depth, U and V are the velocity components 
(depth-averaged) in the x and y directions, t is the time, g is 
the gravitational acceleration, Z is the elevation of the free 
surface (m), 𝑣𝑒 is the coefficient of diffusion (𝑚/𝑠2), 𝐹𝑥 and 
𝐹𝑦 are the source terms of the momentum equation, which 

include bottom friction and Coriolis force. 

Telemac2D solves the above-mentioned equations using a 
finite element method on a triangular element mesh. The mesh 
resolution varies between 1 km to 5 km. The time step is set to 
60 seconds and the model simulations are obtained for 10 
days. The turbulence closure relies on the k-𝜺 model. 
Bathymetry is from the digital elevation model of the SHOM 
with a resolution of 100 m. At the open boundaries, the model 
is forced with water elevation given by the Previmer database 
of 37 tidal constituents with a resolution of 2 km. 

Amplitude and phase of two tidal constituents M2 and S2 
are calibrated in the boundary condition. Amplitude is 
calibrated by multiplying a dimensionless factor a, where a is 
in the range 0.85 to 1.15. The phase is calibrated by adding a 
value 𝜃, where θ is the phase shift that can vary between -10˚ 
and +10˚. It is to be noted that the a and θ for the tidal 
constituents M2 and S2 are considered separately in the 
calibration.  

The bottom friction is estimated with the Nikuradse 
formula given by (4).  

𝐶𝑏 = (
𝜅

𝑙𝑛(ℎ∕𝑒𝑧0)
)

2

                                                                  (4) 

where 𝐶𝑏 is the friction coefficient, 𝜅 is the von Karman 
constant and 𝑧0 is the bottom roughness defined as the height 
above the seabed where the fluid velocity is zero. This variable 
(bottom roughness 𝑧0) is used for the model calibration. 𝑧0 is 

Figure 1. Study domain and the location of the tide gauges marked as red dots 
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considered either constant or varying in space for calibration 
tests (see Figure 2). When considering a spatially varying 
bottom friction, the calibration becomes more complex but 
considering a heterogeneous seabed can improve the model 
results [15]. In the English Channel, the seabed is highly 
heterogeneous as shown in Figure 2 where the spatial 
distribution of sediments (data from SHOM) is classified into 
four categories (hence four different roughness values). This 
classification is based on hypothetical mean based on the size 
and proportion of the sediments in each class given in the 
sediment map from SHOM. The sediment classes and the 
corresponding ranges of the bottom roughness values (in mm) 

in this study are Sand&Mud [0.01-3], Gravel [1-7], Pebbles 
[4-25] and Rock [20-40]. The ranges of bottom roughness are 
taken from [16] and early studies in which models are 
calibrated with a comparable friction formula [17].  

The DA module ADAO [19] is coupled with Telemac2D. 
ADAO has various coded algorithms within it which enables 
the user to test different algorithms. Figure 3 represents the 
coupling of ADAO with Telemac2D that enables assimilating 
observational data and estimating the calibration parameters. 
The observational data 𝐻0(𝑡) and the model data 𝐻𝑇(𝑥, 𝑡) are 
given to the DA framework along with the ranges of the 
variables to be calibrated. For the present purpose, 𝐻0(𝑡) and 
𝐻𝑇(𝑥, 𝑡) are time-series of water elevations at different tidal 
gauge locations. The model data 𝐻𝑇(𝑥, 𝑡) depends on x which 
is the parameters (𝑧𝑂𝑖 , 𝑎𝑖 , 𝜃𝑖) to be calibrated. The DA 
framework updates the values of the variables in each iteration 
(i) of the algorithm. n is the total number of iterations. A cost 
function 𝐽(𝑥) is calculated with the DA framework which 
gives the error between the observation and the model output. 
The value of cost function is minimized as iterations progress. 
The equation for the cost function 𝐽(𝑥) is as follows: 

𝐽(𝑥) = 𝐽(𝑥) =
1

2
(𝑥 − 𝑥𝑏)𝑇 ⋅ 𝐵−1 ⋅ (𝑥 − 𝑥𝑏) +

1

2
(𝐻0(𝑡) −

𝐻𝑇(𝑥, 𝑡))
𝑇

⋅ 𝑅−1 ⋅ (𝐻0(𝑡) − 𝐻𝑇(𝑥, 𝑡)) (5)                  

where x is the calibration parameter values, xb is the initial 
guess of the calibration parameters, R is the observation error 
covariance matrix (here, it is an identity matrix) and B is the 
background error covariance matrix. Here, weight is given to 
the observation considering greater variance for the 
background error such that first term in the cost function is 
neglected. As a result,  𝐽(𝑥) (m2) can be equated to the Root 
Mean Square Error (RMSE in m) by the following formula: 

𝑅𝑀𝑆𝐸 = √
2𝐽(𝑥)

𝑛𝑇𝐺𝑛𝑡
 

where 𝑛𝑇𝐺 is the number of tide gauge locations and 𝑛𝑡 is the 
length of the timeseries. 

The DA algorithm tested in this study is the PSO (Particle 
Swarm Optimisation) which is a global optimisation algorithm 
[18]. PSO considers a swarm of particles that move towards 

Figure 2. sediment map showing the 4 types of sediments, rock, pebbles, gravel and sand&mud 

Figure 3. Data assimilation framework ADAO 
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the best position or the optimal solution in the given bounds. 
Particles retain the memory of their previous best position 
during the search time both globally and individually. A set of 
iterations are employed in the process to reach the minimum 
error. At each iteration, a new velocity is assigned to the 
particle based on the global best position from which a new 
position is again given to the particle. The following two 
equations give the velocity vector and the position vector in 
PSO algorithm respectively:  

𝑣𝑖𝑑 = 𝑤𝑣𝑖𝑑 + 𝐶1𝑟1(𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝐶2𝑟2(𝑃𝑔𝑑 − 𝑋𝑖𝑑)                (6) 

𝑋𝑖𝑑 = 𝑋𝑖𝑑 + 𝑣𝑖𝑑                                                                     (7) 

where 𝑐1 and 𝑐2 are the acceleration constants. 𝜈𝑖𝑑 is the 
particle's previous velocity. 𝑃𝑖𝑑  is the previous best position of 
the particle.  𝑃𝑔𝑑 is the best particle position among the 

population. The second part on the left-hand side of the 
velocity equation (6) is the cognitive part which represents 
each particle's individual experience. The third part on the left-
hand side of the equation (6) is called the social component 
where the particle gains information from its neighbouring 
particles. w is the inertia weight which controls the particle's 
search for the optimal value between the local and the global 
states. 

Synthetic data are used to check the suitability of the 
algorithm in this study. In this case, the observation data (e.g., 
time-series of water elevations) is replaced by synthetic data, 
i.e., the results of a model simulation performed with 
randomly chosen (known) values of calibration parameters 
(e.g., values of bottom roughness). This model simulation and 
parameter values are considered to be the true state of the 
system. To check if the DA works well, the model results (e.g., 
time-series of water elevations) are assimilated and it is 
expected that the calibrated parameters (e.g., values of bottom 
roughness) will converge to the parameter values used to build 
the synthetic data.  

The application of synthetic data serves multiple purposes. 
Firstly, tuning the PSO parameters for this specific case study 
is crucial to ensure that the algorithmic parameters (e.g., 
number of particles, number of iterations) are set 
appropriately. Secondly, synthetic data helps demonstrate the 
effectiveness of PSO in calibrating multiple parameters (we 
test up to eight calibration parameters), with a focus on 
reducing the objective function J(x). Thirdly, as the tide gauge 
data is only available at the boundaries of the study domain 
(near the coast), with no observations in the middle of the 
study domain, it is essential to verify that the available 
observational data is sufficient to achieve satisfactory 
performance in the data assimilation framework. 

After validating the PSO algorithm with synthetic data, we 
assimilate real observations from tide gauges. Several tests 
will be performed with different combinations of the 
parameters given in Table 1.  The aim is to achieve the 
minimum value of the 𝐽(𝑥) with the optimal values of the 
parameters within the given ranges of the values of the 
parameters. This will lead to the best combination of 
parameters to obtain the model predicted water elevation in 
good agreement with the observations of water elevation. 

Table 1. Parameter combinations tested in calibration 

Case Parameter combination 

1 𝑧0 

2 𝑧01, 𝑧02, 𝑧03, 𝑧04 

3 𝑧01, 𝑧02, 𝑧03, 𝑧04, 𝑎𝑀2, 𝜃𝑀2, 𝑎𝑆2, 𝜃𝑆2 

4 𝑧0, 𝑎𝑀2, 𝜃𝑀2, 𝑎𝑆2, 𝜃𝑆2 

5 𝑧01, 𝑧02, 𝑧03, 𝑧04, 𝑎𝑀2, 𝑎𝑆2 

6 𝑧01, 𝑧02, 𝑧03, 𝑧04, 𝜃𝑀2, 𝜃𝑆2 

 

III. RESULTS AND DISCUSSION 

A. Validation using synthetic data 

As a starting point, limited number of calibration 
parameters, say bottom friction have been considered for 
setting up the parameters of the DA algorithm. After several 
tests with different number of particles and number of 
particles, the number of particles is set to 40 and the number 
of iterations to 12 since higher numbers didn’t show any 
improvement in the cost function. Other parameters of the DA 
algorithm are set to the default values. To calculate the number 
of simulations, the number of particles is to be multiplied by 
the number of iterations giving 480 simulations. Later, more 
parameters to be calibrated are included in the DA process. 
The results have shown that the DA algorithm can handle 
numerous numbers of parameters without an increase in the 
computational time. This has the advantage of testing larger 
set of parameters, see the improvement in 𝐽(𝑥) and find the 
most influential parameters in the model performance. 

The results from the above tests have given 𝐽(𝑥) nearly 
equal to zero indicating that the DA algorithm permitted to 
retrieve the true calibration parameters (the ones used to build 
the synthetic data). Further improvement of  𝐽(𝑥) is expected 
by adding more data (assimilated) points across the domain 
where no tide gauge data is available. However, this hasn’t 
given a considerable improvement in 𝐽(𝑥). This suggests that 
the assimilated observation data and the number of data points 
from the tide gauges are sufficient for the DA framework to 
perform the best.  
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Table 2. True value of the parameters in the synthetic data vs the 

converged value after the DA 

Parameters True Value 
(Synthetic 
data)  

Converged 
value 

𝑧01 (mm) 2.2 2.9 

𝑧02 (mm) 3.7 2.9 

𝑧03 (mm) 4 4.3 

𝑧04 (mm) 27 40 

𝑎𝑀2
( ) 1 0.99 

𝜃𝑀2
 (°) 4 4.1 

𝑎𝑆2
 ( ) 1.1 1.11 

𝜃𝑆2
 (°) 2 2.3 

 

The use of synthetic data permitted to confirm that the DA 
is working properly. As an example, the synthetic data test 
with 21 data points (at all the tide gauge locations) and eight 
calibration variables has given satisfactory results. The 
convergence of the calibration parameters shown in Table 2 to 
the proposed true values in the reference case (synthetic data) 
with a minimum 𝐽(𝑥) of 1.46 m2 [Figure 4], points out to the 
reliability of the algorithm. One of the bottom friction values 
(𝑧04) hasn’t converged to the proposed true value. We expect 
that it is because the corresponding sediment class swaps 
lesser surface area when considering the total surface area of 
the study domain (Figure 2 - Rock). 

 

Figure 4. Reduction of  𝐽(𝑥) over iterations for the reference case 

using synthetic data 

B. Assimilating real observation data 

DA with the (real) observations from the 21 tide gauge 

locations is now done for different parameter combinations as 

listed in Table 1. Calibration using constant bottom friction 

and varying bottom friction have given 𝐽(𝑥) values over the 

iterations as 101.19 m2 and 97.18 m2 respectively. Even 

though constant and varying bottom friction give almost the 

same minimised 𝐽(𝑥) values, varying bottom friction (4 types 

of seabed roughness) has given a 𝐽(𝑥)value by a small 

margin. 

 

 
 

Figure 5. 𝐽(𝑥) values after calibration with different parameter 

combinations 

Adding calibration variables for the boundary condition 

(modification of amplitude and phase) along with the bottom 

friction has resulted in a reduction of  𝐽(𝑥). The 𝐽(𝑥) values 

for the case 3 and case 4 are 78.6 m2 and 80.13 m2 

respectively. When boundary condition variables are 

calibrated with both constant (case 3) and varying bottom 

friction (case 4), the errors show the same trend as seen in 

case 1 and case 2. Specifically, the cases that account for 

spatial variation in bottom friction consistently show lower 

𝐽(𝑥) values compared to those with uniform bottom friction. 

 

To study the influence of the amplitude and phase of M2 

and S2 on 𝐽(𝑥), amplitude and phase are treated separately in 

case 5 and case 6.  It is observed that exclusion of the phase 

or amplitude has a significant effect on 𝐽(𝑥). The variable set 

excluding phase has given 𝐽(𝑥) of 90.29 m2 and excluding 

amplitude has given 77.24 m2. Tuning of phase gives better 

improvement in 𝐽(𝑥) suggesting phase is the most important 

parameter to be calibrated in our model.  

 

The RMSE equivalent of the 𝐽(𝑥) for case 1 and case 6 are 

0.199 m and 0.174 m respectively. This depicts the significant 

improvement of the water elevation by a few centimetres 

from considering one calibration parameter, the constant 

bottom friction to multiple parameters including bottom 

fiction and boundary condition. 

IV. CONCLUSION 

Coastal hydrodynamic models are inherently uncertain and 
require proper calibration to enhance their accuracy. This 
study presents the calibration of a tidal model using data 
assimilation combined with parameter estimation through the 
Particle Swarm Optimization (PSO) algorithm. The use of 
synthetic data generation has reinforced confidence in the 
methodology. The optimal estimation of bottom friction and 



30th TELEMAC User Conference Chambéry, France, 08-10 October 2024 

 

 
boundary conditions, followed by assimilation, has notably 
improved model performance. Incorporating the spatial 
variation of sediments has yielded better results, consistent 
with previous studies [15]. The study found that calibrating 
the model using both friction and boundary condition 
parameters is the most effective approach to improving 
results. Adjusting the amplitude and phase of tidal 
constituents in the boundary condition significantly impacts 
tidal elevation, with phase adjustments contributing more to 
error reduction than amplitude modifications. The influence 
of phase and amplitude adjustments on boundary conditions 
warrants further investigation to determine whether these 
effects stem from errors in the boundary condition database 
or the adjustments themselves. Additional experiments are 
needed to clarify the impact of boundary conditions, 
particularly the phase, on water elevation results. 
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