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1. Introduction 
For rehabilitation or assistance applications, a new 
class of wearable devices called ‘soft exoskeletons’ or 
‘exosuits’ emerged this last decade. Exosuits are 
lightweight with compliant material, soft actuators and 
respect of biological joints (Xyolannis et al, 2022). The 
design of these devices is challenging, particularly in 
terms of cable routing and physical human-robot 
interactions, which impose safety and comfort criteria 
(Rocon et al, 2008). Literature reveals various 
approaches ranging from bioinspired methods to 
optimization aimed at reducing contact forces or 
ensuring human workspace (Lu et al, 2023). Then 
energy savings for users are assessed experimentally 
using prototypes (Xyolannis et al, 2022). This study 
aims to implement a human model wearing a cable-
driven exosuit in a closed loop simulation and optimise 
placement of cable anchors considering metabolic cost 
and interaction forces. In this way, safety constraints 
are met and energy expenditure is quantified before 
creating a less energy-consuming device. 
 
2. Methods 
To conduct multi-criteria optimisation, the arm model, 
simulation methods, as well as acceptable force limit 
values considered are outlined below. 
 
2.1 Musculoskeletal model 
Musculoskeletal model is developed with OpenSim, a 
widely used open source software (Delp et al, 2007). 
The chosen model, ‘arm26’, is an upper limb model 

with two degrees-of-freedom (DoF) (shoulder 
elevation and elbow flexion) and six muscles. To 
integrate the exosuit, two cylindrical rigid bodies are 
added: one cuff embedded to the humerus (length: 
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.1 m; radius: 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.0375 m) and one cuff 
embedded to the radius/ulna group (length: 0.1 m; 
radius: 0.0292 m), along with one cable allowing 
elbow flexion with  anchors at each cuff. Finally, a 
dumbbell mesh simulating a load is placed in the hand. 
 
2.2 Human in the loop simulation platform 
The simulation platform is implemented in MATLAB 
and incorporates OpenSim features via its Application 
Programming Interface. It follows the framework 
presented by Sambhav et al. 2022. The input are cable 
anchors and a trajectory: an elbow flexion from 0 to 
𝜋𝜋/2 in one second described by a sinus signal. The 
outputs are metabolic cost (�̇�𝐸) and angular position. A 
gravity compensation control law computes cable 
tension and knowing its direction, the projection along 
the normal and tangential axes gives normal and shear 
forces. 
 
2.3 Safety and constraints on interaction forces 
Pain pressure threshold 
Algometry literature assures that humans feel 
discomfort and pain around 25kPa for circumferential 
compression (Kermavnar et al, 2018). Assuming the 
cable can only pull, pressure is distributed around the 
posterior side of cuffs. Maximal peak of normal force 
𝐹𝐹𝑁𝑁����⃗  is constrained such as: 

�𝐹𝐹𝑁𝑁����⃗ � ≤ 25. 103.  
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
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No slipping conditions 
When a cuff applies continuous pressure on human 
body, the limit pressure is 4kPa (Rocon et al, 2008). 
3.5kPa is a comfortable compression level. Assuming 
well-distributed forces, to avoid slipping on the skin 
the tangential force must guarantee Coulomb's law: 

�𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐����������⃗ �. 𝜇𝜇 ≥ �𝐹𝐹𝑇𝑇����⃗ �
with �𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐����������⃗ � =  3500𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

 

�𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐����������⃗ � is the force required to hold the cuff in place 
and 𝜇𝜇 is the coefficient of friction between skin and 
cuff, equal to 0.6 (Sanders et al, 1998). 
 
2.4 Optimisation strategy and Objective functions 
The design of the exosuit must minimise the effort and 
the forces on the forearm. Let  �̇�𝐸𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖  and �̇�𝐸𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 be 
metabolic costs with and without exosuit. Thus, two 
objective functions are defined as follows: 
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Multiobjective optimisation: NSGA-II 
To solve this multi-objective problem, NSGA-II (Deb 
et al, 2002) is set up on MATLAB. An individual 
consists of six genes: three Cartesian coordinates for 
each anchor points in respective cuff's frame. 
Moreover, the parameters are restricted to fit the 
anterior side of cuffs. Computations involve a 
population of 60 individuals and 100 generations. 
 
3. Results and discussion 

 
Figure 1.Multiobjective optimisation results. a) 

Pareto front b)𝑆𝑆2 actuator configuration 
According to the Pareto front (Figure 1), the exosuit 
reduces the metabolic cost by 36% on average, but 
cable routing has a greater influence on shear and 
normal stress. The solution producing the lowest forces 
is a cable anchored at the top of the arm cuff and at the 
bottom of the forearm cuff where the force direction is 
in the same plane as the movement. 
Table 1. Mean metabolic savings and forces with the 

optimal solution 𝑆𝑆2 for different loads. 
Outputs m=0kg m=2kg m=3kg m=5kg 
 100− 𝑓𝑓1 36 % 63 % 68 % 68 % 
max �𝐹𝐹𝑁𝑁����⃗ � 14.2 N 45.3 N 60.4 N 89.3 N 
max �𝐹𝐹𝑇𝑇����⃗ � 19.9 N 64.3 N 86.5N 131.0N 
 
If weight is added, the exosuit will fully compensate 
the load with the gravity compensation controller, 
optimal solution that minimizes forces will be the 
same, but the force limits defined previously will no 
longer be respected (Table 1). A way of dealing with 
could be to include an assistance rate in the control law. 
For example, assistance of 30% for a 5kg load saves 
23% of energy with a reasonable shear force of 39N. 
 
4. Conclusions and perspectives 
This work presents the optimisation of the design of an 
exosuit for elbow flexion according to 2 criteria, 
energy expenditure and forces applied on the upper 
limb. They are evaluated with a simulation platform 
and optimised using NGSA-II. According to 
simulations, cable placement plays a more important 

role in force distribution. The results are promising, 
showing a 36% reduction in metabolic cost with 
exosuit and a 37% average decrease in interaction 
forces between solution S1 and 𝑆𝑆2 . However, to design 
a complete exosuit with all  DoF for shoulder and 
elbow, further studies must be conducted, including 
movements that demand additional DoF and cables 
and using a more thorough musculoskeletal model like 
the 'MoBL-ARM' (Saul et al, 2015).  
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