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1. Introduction  
 
Spinal Cord Stimulation (SCS) is an effective therapy 
to manage refractory chronic pain (Duarte et al., 2020). 
SCS consists in delivering electrical field targeting the 
dorsal column fibers of the spinal through a lead array 
implanted in the epidural space. Thereby, the 
activation of the dorsal column fibers triggers the 
inhibitory interneurons as described in the Gate 
Control theory (Melzack & Wall, 1965).  
 
Computational modelling represents a promising 
avenue to better understand the target of the electrical 
field to the dorsal column fibers of the spinal cord. 
Previous studies rely on a 2-step simulation. First, the 
electrical field is computed through the Finite Element 
Method (FEM) at the spine segment scale, with the 
quasistatic assumption often made. Then, the result of 
the first simulation was used in a second simulation at 
the neuron scale to get insight into the 
electrophysiological behavior of the neural elements of 
interest (namely, dorsal columns and dorsal root axons, 
neurons of the dorsal root ganglion and dorsal horn). 
 
A recent systematic review, synthesizing the available 
models in the literature (Liang et al., 2022), 
highlighted controversy about some parameters, such 
as the dura-mater resistivity (Zander et al., 2020). In 
our study, we investigated the relationship between 

impedance measurements (which are routinely 
obtained in patients with implanted lead array during 
follow-up visits) and parameters of the finite-element 
models to validate the simulation.  
 
2. Methods 
2.1 Geometry 
The spinal canal and spine geometry was based on the 
PAM50 template (De Leener et al., 2018). The spine 
was re-segmented to increase precision, The cross 
section of the spinal cord was based on an anatomical 
atlas (Kahle et al., 1980). 
  
The iso-surfaces of the segmentations of the spine and 
Cerebro-Spinal Fluid (CSF) were exported to the 
stereolithography (STL) format, and then 
automatically processed using Ansys SpaceClaim. A 
thickness of 4mm was assigned to the epidural space. 
Then, a percutaneous lead with 8 contacts (annotated 
from 0 to 7) was added inside the model. A 0.3mm 
cylindrical encapsulation tissue, representing the 
scarring around the lead array, was then manually 
added around the lead. The geometry was 
parametrized, using SpaceClaim scripting (fig. 1.a), 
and allows for some geometrical parameters to be 
changed to assess their influence. In this work, the 
thickness of the dura mater was studied. 
 
2.2 Simulation 
Ansys MAPDL (Mechanical Ansys Parametric Design 
Language) was used to solve the Poisson equation. The 
quasistatic assumption was performed. Dirichlet 
boundary conditions were added at the lead boundaries 
of 1 Volts (V) at the nodes between the cathode and 
encapsulation tissue, and 0 V at the nodes between the 
anode and encapsulation tissue. An implicitly defined 
Neumann condition of no outward flowing current was 
put at the outer boundary of the model. Impedance was 
calculated through elemental energy. The mesh was 
refined at the edges of the lead contacts to avoid 
singularities. 
 
2.3 Design of experiment and response surfaces  
Response surfaces are a type of Reduced-Order Model 
(ROM) consisting in the interpolation of data-points to 
create a geometrical representation of model output in 
the parameter hyperspace. To assess the influence of 
different parameters, a Monte Carlo design of 
experiment of dura mater, encapsulation tissue and 
epidural space resistivity as well as dura-mater 
thickness was drafted using the SALib (Herman & 
Usher, 2017) python package. Geometries for each 
dura-mater thickness were automatically generated. 
For each parameter combination, simulations were run 
according to different anode-cathode sets. The results 
were then used to construct a response surface. 
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3. Results  
The influence of the different parameters was assessed 
using the parametric workflow described above. 
Response surfaces were computed (fig. 1.b) Average 
error was estimated to be less than 5Ω (Ohms). 
 

 
Figure 1. a) One of the generated geometries and a 
cross-section. b) iso-lines of impedance in the space 
of the studied resistivities for a dura mater thickness 

of 0.3mm. 
Sobol indices for each parameter were computed 
(Table 1) using the SALib python package. Those 
indices revealed that encapsulation tissue resistivity 
was by far the most important impacting parameter. 
Surprisingly, dura mater thickness seemed to be the 
least relevant of those parameters.  
 
Table 1. First order Sobol indices for each parameter 

for impedance between contact 0 and 1 (eds = 
epidural space). 

Parameter Sobol index 

eds resistivity 0.123 
dura resistivity 0.172 
encapsulation resistivity 0.605 
dura thickness 0.0290 

 
4. Discussion 
While some of the impedances computed by the model 
were found to be within clinical range, these methods 
still need to be rigorously compared to clinically 
obtained data. The current approach did not consider 
lead positioning which is patient specific and has a 
tremendous impact on measured impedance and 
clinical outcomes. Patient-specific models should give 
us more insight into clinically measured impedance 
data.  
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