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1. Introduction 
 
Equine locomotion is usually evaluated visually by 
veterinarians, but this method is subjective (Keegan et 
al. 2019). Recently, inertial measurement unit (IMU) 
systems have been used for quantitative evaluation, 
mainly computing symmetry indices at trot. However, 
other gaits, such as walk and gallop, are known to 
impact locomotion variables, and some disorders are 
mainly visible at a specific gait (Robilliard et al. 2007). 
Gait classification can be performed by rule-based 
methods such as the limb stance sequence. However, it 
is not robust enough for horses with specific 
locomotion or types of lameness. Therefore, some 
works use machine learning models for gait 
classification (Bragança et al. 2020). More precisely, 
the Long Short-Term Memory (LSTM) network is 
widely used for gait classification in humans (Prasanth 
et al. 2021). To our knowledge, no study has been able 
to work with horse raw IMU data without any manual 
pre-selection of signal parts. The study aims for 
automatic multi-gait classification (walk, trot, gallop, 
other) from raw data of diverse veterinary lameness 
assessment settings. 
 

2. Methods 
2.1 Data collection 
Data from 326 horses seen during standard 
veterinarian locomotor assessment at the CIRALE 
clinic between 2021 and 2022 were used. Data were 
collected at different gaits (walk, trot, gallop), grounds 
(soft, hard), and figures (eight, straight line, circle). 
Each horse was equipped with 7 IMUs (3-axis 
accelerometer and 3-axis gyroscope) on the head, 
withers, pelvis and 4 metacarpal-tarsal bones. IMUs 
were synchronized and sampled at 200 Hz. 
 
2.2 Data processing 
Gaits of 12 horses across 120 conditions were labelled 
as walk, trot, gallop, and ‘other’ for non-constant gait 
signal parts. It was performed manually using the 
gyroscopes’ dorso-ventral axis of the four limbs and 
synchronized videos, resulting in 556732 timestamps. 
IMU signal was down-sampled to 100 Hz. Input 
sequences were of length 256, every 10 timesteps, 
ensuring continuity within each sequence. The feature 
set was selected based on preliminary experiments. 
Data were split into 60% training and 40% testing for 
each horse group. Each feature was independently 
standardized from training set mean and standard 
deviation. When mentioned with (aug), the data were 
augmented using time-warping (sigma=0.2, knots=3) 
and scaling (alpha=0.01) every two sequences. 
 
2.3 Gait classification 
The models were implemented in python 3.11.5 using 
the keras library (2.14.0). Classification models tested 
include a convolutional neural network (CNN) and a 
LSTM. For each input sequence, the models output a 
gait class for every timestep. To address the small 
labelled dataset size compared to the unlabelled 
dataset, we also implemented a transfer learning 
approach. It combines an encoder (trained as part of an 
auto-encoder to reconstruct signals on the unlabelled 
dataset) and the CNN or LSTM, as shown on Figure 1. 
For each input sequence, the encoder-based models 
output one gait class. 

  
Figure 1. Auto-encoder network and its role in the 

transfer learning approach. 
The CNN architecture was: 3 convolutional layers with 
batch normalization, ReLU activation, maxpooling, 



and dropout. Followed by upsampling and a fully 
connected layer with sigmoid activation. Kernel size 
was set to 3 and padding to ’same’. It was trained with 
a 1e-3 learning rate. The LSTM architecture was: 2 
LSTM layers with batch normalization, tanh 
activation, and dropout. Followed by a fully connected 
layer with batch normalization and ReLU activation. It 
was trained with a 1e-4 learning rate. Both neural 
networks were cross-trained with MAE loss for 100 
epochs. The encoder had 4 convolutional layers, ReLU 
activation, and maxpooling, with batch normalization 
in the first layer. The autoencoder was trained on 10 
epochs, a 1e-3 learning rate and MSE loss. Batch sizes 
were 1024 and optimizers were Adam.  
As the sequence length is longer than the step between 
each sequence, each timestamp can have several 
classes. A majority voting classifier was used to finally 
classify each timestamp. 
 
3. Results and discussion  
 
Considering base models, the LSTM, known to be 
more suited to timeseries dataset, outperformed the 
CNN with 87% accuracy on test timesteps. With 
augmented data, the LSTM achieves a better accuracy: 
90%. The cross-validation accuracy has a smaller 
standard deviation, and no gap was seen between 
training and testing accuracies. The augmentation is 
promising towards better model generalisation. 
Overall, the best model was the encoder followed by 
the CNN achieving 93% on test timesteps. After the 
encoder, the signal of size (16, 4) is no more in the 
time-series shape as the features were extracted. Thus, 
the output of the encoder is more adapted to the input 
of a CNN than a LSTM. 
 
Table 1. Comparison of model’s accuracy, written in 

percentage. 
 Cross-training Testing accuracy 
Model Accuracy±sd Sequence Timestep 
CNN 89±2 82 83 
LSTM 90±3 87 87 
LSTM 
(aug) 

90±1 90 90 

Encoder
+CNN 

93±2 91 93 

Encoder
+LSTM 

91±4 90 91 

 
To our knowledge, no related work classified gaits 
with a sample possibility outside all defined gait 
classes. The multi-gait classification developed by 
Bragança et al. (2020) presents an accuracy of 97%. 
Our best accuracy is of 93%, however we see on 
confusion matrices that most of the confusions are 
done related to the ’other’ class. The challenge of this 
additional class is to gather very different samples (for 

instance, halt is the opposite of kicks when looking at 
signal amplitude) and gait transition, aiming for 10ms 
precision. The addition of the ‘other’ class enables the 
model to work with raw IMU data, without any manual 
preselection. Models with reject options may be a good 
alternative to the added ‘other’ class. 

 
4. Conclusions 
Our best model, the encoder followed by the CNN, 
classifies gaits (walk, trot, gallop, other) with 93% 
accuracy on test timesteps. Transfer learning 
efficiently leverages the lack of labelled data. The 
proposed approach is therefore promising for end-to-
end automatic multi-gait classification in diverse kinds 
of veterinary locomotor assessment. 
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