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1. Introduction 
Computer vision techniques now offer an alternative to 
traditional movement analysis by detecting human 
joints locations in standard videos. One versatile 
approach involves triangulating 3D body keypoints 
and tracking them with musculoskeletal models. 
OpenCap (Uhlrich et al., 2023) is a web-based tool that 
utilizes this method to compute motion metrics and 
estimate musculoskeletal forces from smartphone 
videos. It operates by generating 3D keypoint 
trajectories using Human Pose Estimation algorithms 
and then employing human marker augmenter learning 
models to map sparse joint center positions to 
additional anatomical markers positions. OpenCap has 
been trained and tested on various movements like 
walking and running, but its marker augmenter 
learning models were trained on a specific motion 
database. This study aims to adapt OpenCap's models 
to a new motion database using fine-tuning, a process 
of adjusting a pre-trained neural network for a specific 
task (Fu et al., 2023). Given the differences in the 
number of markers sets between OpenCap and ours, 
we only considered similar markers for evaluating 
inference results and for fine-tuning. 
2. Materials and methods 

 Experimental data 
Our study the motion database from Schreiber et al. 
(2019), with 50 participants walking at five speeds (0– 
0.4 m/s, 0.4–0.8 m/s, and 0.8–1.2 m/s). Each 
participant completed at least 3 trials per speed, 
totalling 1145 trials. Motion was recorded using a 
Qualisys optoelectronic system (23 cameras, 200Hz). 
Three dimensional trajectories of 52 cutaneous 
reflective markers were recorded. To better control the 
experimental set-up, we simulated the input 3D joint 
centers, based on Schreiber et al. (2019) full-body 
motion capture data, as a video HPE would provide. 
To this end, we used the Reed et al. (1999) regression 

equations to emulate the 3D joints J={J1, …, J20} at 
each time. 

 Pre-processing 
The OpenCap's learning model model the function 𝜓𝜓𝚯𝚯 

(𝐕𝐕, 𝐌𝐌, 𝐋𝐋) = ̂ 𝒀𝒀,  mapping input features 𝑉𝑉 (human pose 
modelled as 3D joints), subject weight 𝑴𝑴, and subject 
height 𝑳𝑳, to output 3D marker positions ̂𝒀𝒀.  To use it on 
the new dataset, we processed the database and 
adapted the learning model accordingly. Prior to 
training, the 3D marker positions were normalized 
relative to a root marker (the midpoint of hip 
keypoints), scaled by the subject height, and resampled 
at 60 Hz. Inverse kinematics is applied to both ground 
truth data (originally used to estimate the joint centers, 
as described above), and the resulting estimated 3D 
marker positions ̂ 𝒀𝒀.  The list of markers predicted by 
the OpenCap Arm Model and Lower Body model was 
larger than the ones present in the dataset. Therefore, 
we considered a subset of the markerset to assess the 
inference and the fine tuning, excluding the following 
markers from the outputs of OpenCap: 
['r_thigh1_study','r_thigh2_study','r_thigh3_study','L_ 
thigh1_study','L_thigh2_study','L_thigh3_study','r_sh 
1_study','r_sh2_study','r_sh3_study’,'L_sh1_study','L 
_sh2_study','L_sh3_study']. The OpenCap set of 
anatomical markers corresponds to what is commonly 
used for marker-based motion capture. 

 Fine-tuning marker augmenter learning 
models 

OpenCap human marker augmenter propose two 
LSTM models: the Body Model for body markers and 
the Arm Model for arm markers. The Body Model uses 
lower-limb and torso keypoints, while the Arm Model 
uses arm and torso keypoints. In our fine-tuning 
strategy, named Output Layers Fine-tuning (OLF), we 
freezed all layers except the last one, after this level, 
we added an additional output layer initialized using a 
normal distribution with a mean of zero and a standard 
deviation of 0.022. During the fine-tuning stage, a 
weight decay of 0.01 was applied to all tunable 
parameters, excluding biases, in accordance with the 
methodology outlined by Barone et al.(2017). 
Our learning algorithms were trained on a NVidia 
RTXA3000 GPU. The optimal models were achieved 
using an early stopping technique. Training concluded 
when the loss failed to decrease with a minimum delta 
of 1 × 10−4, with a patience value of 10 epochs. Adam 
optimization was employed with a batch size of 64 and 
a learning rate (𝛼𝛼) of 6×10−6. 

 Evaluation 
The evaluation utilized Leave-One-Out procedure per 
subject. Anatomical marker accuracy was assessed by 
mean Euclidean distance RMSEmarkers per trial, 
averaged across trials of the same movement type in 
millimeters. To assess the impact of the augmenter on 
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Figure 1: Comparison of RIAS (Right anterior-superior iliac spine coordinates) marker results: y-axis = Cartesian 

coordinates (mm), x-axis = frames. Colors: red = ground truth, blue = fine-tuning, black = inference. 

the inverse kinematics, a geometric calibration to scale 
the model and an inverse kinematics step were applied 
to the inferred, fine-tuned and ground truth data to 
obtain the joint coordinates (Muller et al., 2019). Joint 
coordinate accuracy was evaluated using RMSEjoint 

coordinates per trial, averaged across trials of the same 
motion type in degrees. 
3. Results and discussion 
Table 1: (Top) Average root mean square error RMSEmarkers [mm] 
for the marker’s positions and corresponding standard deviation ρ 
are presented. (Bottom) Average root mean square error. RMSEjoint 

coordinates [Degree] for joint coordinates and corresponding standard 
ρ. 
 Inference [mm] OLF [mm] 

Body model 57.86 ± 5.64 24.92 ± 6.98 
Arm model 24.09 ± 3.31 18.54 ± 3.49 

 Inference [°] OLF [°] 
Left knee 

flexion angle 
8,63 ±3,37 9,23 ± 2,08 

Right knee 
flexion angle 

16,26 ± 4,55 9,94 ± 1,52 

Left ankle 
flexion angle 

10,15 ± 2,58 10,48±1,97 

Right ankle 
flexion angle 

10,40 ± 2,94 10,58±2,38 

Left foot 
inversion angle 

25,68 ± 4,35 9,27±2,84 

Right foot 
inversion angle 

33,29 ± 2,94 8,03±2,01 

 
The inference was conducted overall. Then, we fine- 
tuned both the OpenCap human marker augmenter, 
and it was tested on an unseen set of 25 subjects. As 
illustrated in Table 1 (Top) and Figure 1, both fine- 
tuned models consistently outperformed the inference 
models, underscoring their efficacy in reducing marker 
displacement errors across various body parts. 
Additionally, the standard deviations also decreased 
after fine-tuning, suggesting that the models' 
predictions became more consistent. The results 
presented in Table 1 (Bottom) illustrate that the fine- 
tuning generally led to a reduction in the mean values 
and, in some cases, a decrease in the standard 
deviation. The changes in angles after fine-tuning may 
suggest better accuracy in the models’ predictions. 
4. Conclusions and perspectives 

This study evaluated fine-tuning impact for marker 
position prediction and angle estimation, which 
consistently yielding the lowest average RMSE values 
for marker positions compared to inference results. As 
the estimation of joint coordinates is conditioned by 
anatomical markers, as well as geometric calibration 
and inverse kinematics, exploring the impact of 
geometric calibration would be an interesting 
perspective. However, it was noted that part of the 
residual error may stem from data emulation, 
highlighting the significant impact of input skeleton 
topology and marker set on the learning models 
performance. In a future study, we aim at applying 
similar strategies to experimental HPE data to enhance 
the accuracy and generalization of such marker 
augmenter to be used on field. 
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