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1. Introduction 
Gait analysis yields useful data to healthcare providers, 
whether it be in diagnosis, treatment, or rehabilitation 
of their patients. Optical motion capture systems are 
the current standard used in the industry since they 
generate the best accuracy. However, the complexity 
of this type of system restricts their usage to a lab 
environment. To overcome this limitation, the use of 
inertial measurement units (IMU) is explored as it 
offers an unconstrainted condition alternative. 
Nonetheless, noise and drift induce inaccuracies, even 
more so for lower range of motion (ROM) movements 
such as the knee internal/external rotations (Ir/Er) and 
abduction/adduction (Ab/Ad) (Poitras et al. 2019). 
 
Combined with proper optimization algorithms, 
integration of machine learning approaches such as 
neural networks (NN) offer an improvement in the 
accuracy of the predicted joint kinematics (Sharifi-
Renani et al. 2021). Long short-term memory (LSTM) 
networks are a class of recurrent NN very well suited 
for time series data. By making predictions one frame 
at a time, LSTM uses feedback to remember long-term 

time dependencies (Mundt et al. 2021) and upgrade its 
internal state, thus propagating previous information 
while addressing the vanishing gradient problem 
(Rapp et al. 2021). 
 
Multiple previous LSTM networks have been trained 
on databases usually containing not more than 75 
different patients to estimate knee joint kinematics 
from IMUs data. While they usually perform great on 
angle estimations for higher ROM movements such as 
flexion/extension (Fl/Ex), normalized-RMSEs 
(nRMSE) for lower ROM movements such as Ab/Ad 
and Ir/Er are usually very high, respectively 
representing around 12% and 14% of the actual range 
of the expected values (Rapp et al. 2021; Sharifi-
Renani et al. 2021). 
 
The goal of the present study is to train an LSTM 
network on a larger database and to separate the 
estimations of each movement to possibly prevent the 
larger domain of Fl/Ex data to affect the estimations on 
the lower ROM movements and obtain lower 
nRMSEs.  
 
2. Methods 
2.1 Database and pre-processing 
To train the model, we merged marker-based motion 
capture data from two databases previously collected 
by CIUSSS de l’Est-de-l’Île-de-Montréal and 
Maisonneuve-Rosemont hospital, in collaboration 
with CHUM Research Center, TÉLUQ and ÉTS. The 
first database consists of 115 healthy subjects (52 men 
and 63 women, age: 38±17). The second one consists 
of 560 patients suffering of knee osteoarthritis (OA) to 
various degrees (216 men and 344 women, age: 62±9, 
OA grades 2-4). 
 
Participants were asked to perform multiple 45 
seconds walking trials (speed of 0.8 m/s) on a treadmill 
wearing the KneeKG system (Emovi inc, Canada) on 
one knee. The trajectories of the shank and thigh 
clusters of markers were captured at a speed of 60Hz 
using the Polaris SpectraTM camera system. Inertial 
data was simulated by deriving the clusters’ markers 
positions, hence providing 3D angular velocity data 
from the shank and thigh segments which are used as 
inputs for the model. Output data was the 3D rotations 
directly obtained from gait analysis using the KneeKG 
system. 
 
2.2 LSTM Network 
The model used for this study is an LSTM network 
which combines six (6) normalized angle vectors into 
a matrix to estimate three (3) knee joint kinematics 
vectors for each trial. The network contains an LSTM 
of 200 units, followed by a dropout layer of 0.3, then 
two hidden layers of sizes 150 and 100, respectively, 
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both using a tanh activation function. Output layers all 
used a linear activation function.  
 
A window size of 17 frames (W17) was tested using a 
window function to walk through each trial, providing 
722 545 samples. Thus, the model’s input is a [17 × 6] 
matrix and the outputs are three [17 × 1] matrices. 
Model training was performed on a total of 50 epochs 
with a batch size of 100. The learning rate was set to 
0.0001 using an Adam optimizer. 
 
The LSTM network was trained using a 10-folds cross-
validation method. Prior to partitioning, 50 subjects 
were removed from the database to provide a final 
testing database for further analysis. Each partition 
contained 62±3 subjects. The models’ estimation 
accuracy was quantified using nRMSE. 
 
3. Results and discussion 
Mean nRMSEs over the 10-folds was evaluated for 
each movement and is presented in Table 1. The model 
had an overall mean nRMSE of 5.15±0.45 %. Ab/Ad 
nRMSE was 5.67±0.52 %, Fl/Ex nRMSE was 
3.00±0.60 % and Ir/Er nRMSE was 6.57±0.30 %. The 
model’s estimation over each fold for the Fl/Ex axis 
had consistently the highest accuracy, as opposed to 
the estimations of the Ir/Er and Ab/Ad axes. 
 
Table 1. 10-folds cross-validation’s mean nRMSEs of 

each output layers 
credit: Daphnée Lalonde-Larocque (2024) 

Win. 
size 

Ab/Ad 
(%) 

Fl/Ex  
(%) 

Ir/Er 
(%) 

Mean 
(%) 

W17 5.94 
±0.53 

3.00 
±0.60 

6.57 
±0.30 

5.17 
±0.48 

 
Multiple studies have trained LSTM networks to 
predict joint angles of the knee in a similar manner, but 
only Sharifi-Renani et al. (2021) provides nRMSE 
values for all three axes. Their study obtained an 
overall mean nRMSE of 7.5±3.1 % (6.6±2.3 % for 
Ab/Ad, 1.9±0.7 % for Fl/Ex and 14.1±6.4 % for Ir/Er). 
The model we trained yielded better accuracies for the 
lower ROM movements, as well as a better overall 
accuracy. On the other hand, nRMSE for the Fl/Ex 
movement of our model was 1% more than the one of 
Sharifi-Renani et al. (2021). 
 
This study has a few limitations, such as the number of 
metrics used to quantify the model’s estimations 
accuracy. To offer better grounds of comparison with 
the literature, more metrics will be added in the future. 
Also, it should be noted that gait measurements were 
taken in a laboratory environment, which could 
influence the subjects’ normal gait patterns.  
 

4. Conclusions 
The proposed LSTM network yielded nRMSEs lower 
than what can currently be seen in the literature for 
Ab/Ad and Ir/Er movements, which leads us to 
continue exploring the hypothesis that outputs need to 
be separated from one another to prevent Fl/Ex data to 
affect estimations on the other axes.  
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