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1. Introduction  
Exoskeletons for the upper limbs have been developed 
to support people who are limited in their mobility due 
to diseases such as cerebral palsy. These exoskeletons 
come in various configurations, from simple 
mechanical designs to sophisticated robotic 
technologies (Charafeddine et al., 2021). The advent of 
machine learning promises to have a transformative 
impact on robotic assistance by providing more natural 
and flexible control mechanisms. The main objective 
of this study is to utilize these machine learning 
techniques to improve the control mechanisms of 
upper limb exoskeletons, with a particular focus on the 
application of the neuro-motor index (NMI). The NMI 
was derived from the co-contraction index — a 
quantifiable metric of muscle activity during 
movement — and serves as a critical variable in the 
development of a machine learning-based approach to 
optimize exoskeleton functionality and user interaction 
(Charafeddine et al., 2019). By integrating NMI into 
our models, we aim to improve the predictive accuracy 
and responsiveness of these aids, thereby increasing 
user autonomy and mobility.  
2. Methods  
The data set of Granados et al. (2017) contains surface 
EMG readings from five patients structured in three 
columns: two for EMG signals of the right arm and one 
for flexion and extension angles of the right elbow. 
Customized data manipulation processes facilitated 
precise management and analysis tailored to the 
specific needs of the study. 
 
 

2.1 Data Pre-processing  
In this section, the methodology mirrors that in 
reference (C. Jiangcheng et al., 2018), focusing on 
reducing high and low-frequency noise. Band-pass 
filtering was applied to keep frequencies between 20 
and 450 Hz, determined as the optimal range for EMG 
signal clarity through empirical research and 
experimentation. However, some noise remained, 
complicating analysis. Power spectral density plots 
were used to find the effective filtering interval, with a 
notch filter targeting the 57 to 63 Hz range to reduce 
interference while preserving core signal frequencies. 
The analysis showed segregating the signal into 
positive and negative components did not aid analysis 
and could obscure data interpretation. Thus, the 
process also involved eliminating abrupt data shifts. 
Due to the large dataset size, which challenged timely 
model training, a resampling strategy, selecting every 
250th data point, was adopted to streamline the dataset 
for efficient analysis. 
 
2.1 Machine Learning application 
The aim of this study is to develop a regression model 
for controlling upper limb exoskeletons using the 
neuro-motor index (NMI) based on co-contraction 
indices (J. Charafeddine et al., 2020). 
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Here, A(t), B(t) and C(t) are integrals of 
electromyography (EMG) signals representing muscle 
co-contraction and overall muscle activity during four 
consecutive flexion/extension movements. Rx(t), a 
non-linear regression model based on a Hermitian 
polynomial, captures the complex interactions between 
muscle co-contractions and joint angles. This model 
facilitates the calculation of the neuromotor index by 
analysing the variations in joint angles to determine the 
antagonistic muscles for each movement. A decrease 
in angle indicates a flexion associated with the triceps, 
an increase indicates an extension associated with the 
biceps, and no change indicates a repetition of the 
previous movement. This index is crucial for the 
development of a machine learning model to control 
upper limb exoskeletons. It provides detailed insights 
into muscle activation during movements and enables 
precise prediction of joint angles. The model uses the 
K-nearest neighbors (KNN) algorithm, which uses a 
user-defined distance metric to measure the proximity 
of the test data to the training data, enabling accurate 
angle prediction. The data is split, with 80% used to 
train the KNN model and the remaining 20% used for 
validation. Angle prediction is done by calculating the 
distances between a test point and the corresponding 
training points, where the predicted angle is the 
average of the 'K' closest training data points. 
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3. Results  
The results of this study show that the error rates 
during the training and validation phases are consistent 
with the optimal mean squared error (MSE) for the best 
choice of neighbors (K). As shown in Table 1, the MSE 
for training and validation decreases as the number of 
training examples increases. By applying the K-nearest 
neighbor (KNN) algorithm with this optimally chosen 
K value to the test data set, the performance of the 
model was evaluated using the MSE and the 
coefficient of determination (R²). With a K value of 5, 
the model recorded an MSE of 342.663 and an R² value 
of 80.94%, confirming its high predictive accuracy. 

Table 1. MSE of Training and Validation  
Examples Train - MSE Val - MSE 

20 3,500 2700 
40 1,600 1,450 
60 800 750 
80 600 580 

100 500 490 
120 450 430 

An in-depth analysis of the model’s precision was 
performed using a scatter plot comparing the actual 
and predicted joint angles, with the neuromotor index 
as a predictor. This analytical approach, supported by 
the results shown in Table 1, underlines the accuracy 
of the model in simulating real movements. 

Figure 1. Predicted vs Actual Angle Values  

This illustration (Fig. 1), which was categorized by the 
type of movement (flexion versus extension) and 
featured a line for predicted values, demonstrated a 
significant correlation between the predicted and 
actual values, highlighting the model’s accuracy in 
simulating real world movements.  

4. Discussion and perspective 
This study establishes the neuromotor index as a 
reliable predictor of joint angles in upper limb 
exoskeletons and emphasizes the crucial role of signal 
processing techniques such as notch filtering to 
eliminate electrical noise and improve data quality. 
Integrating the neuromotor index into exoskeleton 

control systems significantly improves precision and 
offers a promising method to increase the accuracy and 
efficiency of these devices. However, the study 
highlights a limitation in that EMG activity from key 
muscles such as the brachialis and brachioradialis, 
which are important for elbow flexion, were not 
included. This omission could affect the completeness 
of the results and the overall effectiveness of the 
neuromotor index. Future research should include 
these muscles to gain a more comprehensive 
understanding of muscle activity and thus improve the 
accuracy and practical applicability of the index. In 
addition, it is proposed to extend the study to different 
patient groups and evaluate the effectiveness of the 
prediction model in controlling experimental 
exoskeletons. This could lead to significant advances 
in exoskeleton technology, especially for patients with 
various conditions. 
5. Conclusions 
The aim of this study was to develop a machine 
learning method for the control of upper limb 
exoskeletons using surface electromyography signals. 
An investigation of both signal pre-processing and 
machine learning strategies confirmed the potential of 
these models to accurately predict upper limb 
movements. This research is a contribution to the 
burgeoning field of machine learning for exoskeleton 
guidance and control. It highlights the importance of 
biomechanical knowledge of the upper limbs in 
formulating effective control mechanisms to assist 
people with upper limb problems. 
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