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1. Introduction 
The assessment of human motion plays a crucial role 
in evaluating patients undergoing rehabilitation, 
particularly those with anterior cruciate ligament 
(ACL) injuries.  The guidelines recommend assessing 
the symmetry of patient performance in functional 
tasks like single-leg jumps, while also highlighting the 
importance of evaluating movement quality during 
these tasks (Kaplan & Witvrouw, 2019).  Parameters 
that appear pertinent, such as knee flexion angle, 
maximum vertical ground reaction force (vGRF) 
during landing (Lepley & Kuenze, 2018), cannot be 
easily assessed by clinicians in practice.  Using deep 
neural networks for human pose detection and inverse 
dynamics, smartphone videos offer a promising way 
not only to assess joint kinematics in functional tasks 
but also to quantify kinetic parameters.   
The objective of this study is to investigate the 
feasibility of utilizing a simple 2D multibody model to 
predict external forces based on sagittal plane 
kinematics extracted from smartphone video footage.  
The outcomes derived from the smartphone videos 
were compared with those obtained using a 
conventional motion capture system. 
 
2. Methods 
2.1 Experimental set-up 
Six young healthy men were asked to perform 10 
vertical and 10 forward single leg jumps while keeping 
their arms crossed in front of their chest.    Ten 
reflective markers were placed over anatomical 
landmarks: on the head of second metatarsal, the 
lateral malleolus, the lateral epicondyle of the femur, 
the great trochanter and on the acromion.  The motion 

was simultaneously captured by a smartphone video 
and a height-cameras optoelectronic system.  The GRF 
data were collected by a force platform (see Fig.1). 
2.2 Multibody model 
The multibody model of the patient is made of six rigid 
bodies (see Fig. 1): (1) upper body; contact (2) thigh, 
(3) shank, and (4) foot; non-contact (5) thigh and (6) 
shank and foot.   The bodies characteristics were 
extracted from anthropometric table (de Leva, 1996).  
The "upper body" segment has two prismatic and one 
revolute actuated degrees of freedom (DoF) with 
regard to the inertial frame.  Each body has one 
actuated revolute DoF with respect to its parent body, 
corresponding in the sagittal plane to the flexion 
movement. Symbolic equations describing the system 
motion were generated by the multibody software 
Robotran (Docquier, Poncelet, & Fisette, 2013). 

 
Figure 1. Schematic view of the experimental set-up 
and the multibody model.  DoF: Degrees of Freedom 

credit: N. Lambricht 
 
2.3 Data analysis 
The video was processed by the OpenPifPaf neural 
network (Kreiss, Bertoni, & Alahi, 2021).  It allowed 
us to obtain the coordinates of the following keypoints, 
in pixels: the halluces, the ankles, knees and hips joints 
and the shoulders.  Those coordinates were scaled in 
meters based on the average experimental thigh 
segment length and anthropometric expected length. 
Keypoints and markers trajectories as well as GRFs 
were filtered using the same low-pass, zero-lag, fourth-
order Butterworth filter with a 6Hz cut-off frequency.  
The kinematics of the multibody system were 
calculated on the basis of both markers and keypoints 
coordinates.  We used cross-correlation analysis to 
synchronize the angles from the marker-based and the 
markerless systems and calculated the root mean 
square error (RMSE) between the systems. 
The symbolic equations generated by the Robotran 
software were numerically evaluated according to the 
kinematics inputs of the actuated joints, i.e. the 
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extracted angles or positions and their associated 
velocity and acceleration obtained by time derivation.  
We compared the maximum values of horizontal and 
vertical component of the GRF normalized by the 
bodyweight (bw) during landing, as predicted by the 
model utilizing kinematics from the 2 systems, against 
the values obtained from the force platform.  
Agreement was quantified using an Intraclass 
Correlation Coefficient (ICC 2,1). 
 
3. Results and discussion 
The comparison of the kinematics derived from the 
marker-based and markerless systems yields mean 
RMSE of 4.3°, 3.4° and 3.8° respectively for the ankle, 
hip and knee joints.  The joint kinematics results using 
OpenPifPaf align with findings from prior studies 
examining walking, running or squats (Haberkamp, 
Garcia, & Bazett-Jones, 2022), but using different 
neural networks. 
ICC values are presented in Table 1. The agreement of 
the model predictions for the maximum horizontal and 
vertical GRF with the force platform was excellent 
with marker-based kinematics as inputs.  The average 
mean differences were 0.03±0.06 bw and 0.04±0.04 
bw for the vertical and horizontal GRF respectively.   
With the markerless kinematics, the agreement was 
good for the vertical GRF and acceptable for the 
horizontal GRF with average mean differences of 
0.02±0.12 bw and 0.07±0.08 bw. 
 
Table 1. Intraclass Correlation Coefficients between 

model predictions and force platform values. 

 ICC Confidence interval 
Lower Upper 

Marker-
based 

vGRF 0.91 0.87 0.94 
hGRF 0.90 0.87 0.93 

Markerless vGRF 0.74 0.65 0.81 
hGRF 0.67 0.55 0.76 

vGRF, hGRF: maximum landing vertical and 
horizontal ground reaction forces. 

 
The accuracy of the multibody model's external force 
predictions is influenced by various factors.  These 
include the simplification of the human body and 
reliance on anthropometric tables but also the 
kinematics accuracy.  Inaccuracies may arise from 
palpation errors and soft tissue artefacts when using 
markers and from the precision of keypoint 
localization and scaling when employing human pose 
detection. Working in 2D also exposes the system to 
potential cross-talk issues. 
It would be interesting to extend the study to include 
more subjects with different characteristics and actual 
patients. 
4. Conclusions 

The sagittal plane joint kinematics during jumps 
measured via smartphone video closely align with 
marker-based assessments.  While the predictions of 
maximum GRFs by the multibody model exhibit 
excellent agreement with force platform when marker-
based kinematics are utilized, they demonstrate less 
consistency with markerless kinematics.  Nevertheless, 
the ease of use, accessibility, and promising results 
obtained with this system render it compelling for 
enhanced ACL patient's assessment in clinical 
practice. 
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