
HAL Id: hal-04737856
https://hal.science/hal-04737856v1

Submitted on 17 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards optimal spatio-temporal decomposition of
control-related sum-of-squares programs

Vít Cibulka, Milan Korda, Tomas Hanis

To cite this version:
Vít Cibulka, Milan Korda, Tomas Hanis. Towards optimal spatio-temporal decomposition of control-
related sum-of-squares programs. International Journal of Robust and Nonlinear Control, 2024, 34
(18), pp.11847-11867. �10.1002/rnc.7596�. �hal-04737856�

https://hal.science/hal-04737856v1
https://hal.archives-ouvertes.fr

Received: 12 November 2023 Revised: 23 June 2024 Accepted: 6 August 2024

DOI: 10.1002/rnc.7596

R E S E A R C H A R T I C L E

Towards optimal spatio-temporal decomposition of
control-related sum-of-squares programs

Vít Cibulka1,2 Milan Korda1,2 Tomáš Haniš1

1Department of Control Engineering,
Faculty of Electrical Engineering, Czech
Technical University in Prague, Prague,
Czech Republic
2CNRS, Laboratory for Analysis and
Architecture of Systems, Toulouse, France

Correspondence
Vít Cibulka, Department of Control
Engineering, Faculty of Electrical
Engineering, Czech Technical University
in Prague, Prague, The Czech Republic.
Email: cibulka.vitek@gmail.com

Funding information
Czech Science Foundation (GACR),
Grant/Award Numbers: GA19-18424S,
GA20-11626Y; National Research
Foundation, Prime Minister’s Office,
Singapore under its Campus for Research
Excellence and Technological Enterprise
(CREATE) programme.; European Union,
project ROBOPROX, Grant/Award
Number: CZ.02.01.01/00/22_008/0004590;
Grant Agency of the Czech Technical
University in Prague, Grant/Award
Number: SGS19/174/OHK3/3T/13

Abstract
This paper presents a method for calculating the Region of Attraction (ROA)
of nonlinear dynamical systems, both with and without control. The ROA is
determined by solving a hierarchy of semidefinite programs (SDPs) defined
on a splitting of the time and state space. Previous works demonstrated that
this splitting could significantly enhance approximation accuracy, although the
improvement was highly dependent on the ad-hoc selection of split locations.
In this work, we eliminate the need for this ad-hoc selection by introducing
an optimization-based method that performs the splits through conic differen-
tiation of the underlying semidefinite programming problem. We provide the
differentiability conditions for the split ROA problem, prove the absence of a
duality gap, and demonstrate the effectiveness of our method through numerical
examples.

K E Y W O R D S

conic differentiation, polynomial control systems, polynomial optimization, region of attraction,
sum-of-squares optimization

1 INTRODUCTION

This work addresses stability and reachability analysis on controlled nonlinear dynamical systems. The method used in
this paper assesses these properties by calculating the Region of Attraction (ROA) of a given target set. The reachable set
is obtained by reversing the time.

The majority of the currently used methods deal with autonomous systems, where the approximation of ROA is
obtained from level sets of Lyapunov functions (see, e.g., Reference 1). In the case of polynomial systems, one can obtain
the Lyapunov functions by solving a series of semidefinite programs (SDPs), similar to our method. However, these
approaches do not consider control systems and are limited to the equilibria of the considered systems.

Abbreviations: LP, linear program; ROA, region of attraction; SDP, semi-definite program; SOS, sum of squares.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2024 The Author(s). International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.

Int J Robust Nonlinear Control. 2024;34:11847–11867. wileyonlinelibrary.com/journal/rnc 11847

https://orcid.org/0000-0001-8547-9759
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/RNC
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frnc.7596&domain=pdf&date_stamp=2024-09-10

11848 CIBULKA et al.

This paper uses the works from References 2 and 3, which provide converging outer approximations of the ROA for
controlled polynomial systems with respect to a given target set, not necessarily an equilibrium. The original version of
this method, introduced in Reference 2, calculates the ROA by transforming the problem into an infinite-dimensional
Linear Program (LP) on measures, whose dual is then relaxed into a problem on sum-of-squares polynomials of a given
degree which can be equivalently written as an SDP.

The unsolved challenge of that approach was the rapid growth rate of the size of the SDP with respect to the degree
of the used polynomials. The work3 provided a remedy for this issue in the form of spatio-temporal decomposition of the
problem and its variables. The new problem was obtained by splitting the time and state space into several smaller subsets
resulting in multiple smaller, interconnected SDPs of lower complexity. The work provided significant improvement in
terms of time and memory demands, but left one question unanswered: How to split the time and state space?

This work is a step toward answering this question by proposing an optimization-based method for finding the
split configuration. We use the recent work on conic differentiation4 to obtain a gradient of the related sum-of-squares
problem with respect to the parametrization of the splits (e.g., the split positions). The parameters are then optimized by
a first-order method. We provide the conditions for differentiability of the split problem and show the effectiveness of the
method on the examples used in Reference 3.

This work can be seen as complementary to sparsity-based approaches for complexity reduction of the SDP-based
methods 5–7 and could be combined with them. The same philosophy of splitting the state space can be applied to other
problem classes amenable to these methods such as the invariant set 8 or invariant measure computation,9 extreme
values 10 or partial differential equations.11

Structure of the paper: Section 2 defines the Region of Attraction (ROA) and motivates this work. Section 3 presents
the split ROA problem and the conditions for strong duality. The differentiation is described in Section 4 along with the
proof of differentiability. The numerical results are in Section 5 and we conclude in Section 6.

Notation: The set of consecutive integers from 1 to n is denoted by Zn. The Lebesgue measure (the volume) of a set
A is denoted by 𝜆(A).

2 PROBLEM STATEMENT

We shall focus on the problem of calculating the region of attraction (ROA) of a controlled nonlinear dynamical system

ẋ(t) = f (t, x(t),u(t)), t ∈ [0,T], (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, t is time, T > 0 is the final time and f is the
vector field, which is assumed to be polynomial in variables x and u. The state and control inputs are constrained to lie
in basic semialgebraic sets

u(t) ∈ U ∶ = {u ∈ R
m ∶ gU

j (u) ≥ 0, j ∈ ZnU}, t ∈ [0,T],

x(t) ∈ X ∶ = {x ∈ R
n ∶ gX

j (x) ≥ 0, j ∈ ZnX}, t ∈ [0,T],

x(T) ∈ XT ∶ = {x ∈ R
n ∶ gXT

j (x) ≥ 0, j ∈ ZNXT
},

(2)

where gU
j (u), gX

j (x), and gXT
j (x) are polynomials. The Region of Attraction (ROA) is then defined as

X0 = {x0 ∈ X ∶ ∃ u(⋅) ∈ L([0,T];U)
s.t. ẋ = f (t, x(t),u(t)) a.e. on [0,T],

x(0) = x0, x(t) ∈ X ∀ t ∈ [0,T], x(T) ∈ XT},
(3)

where “a.e.” stands for “almost everywhere” with respect to the Lebesgue measure and L([0,T];U) denotes the space of
measurable functions from [0,T] to U.

The work2 introduced an algorithm for calculating an outer approximation of the ROA, based on relaxing a polynomial
optimization problem into a semidefinite program based on the sum-of-squares (SOS) techniques. In Reference 3, we
improved the accuracy of the SOS relaxation by discretizing (or splitting) the time and state space thus allowing for tighter

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11849

F I G U R E 1 ROA approximations of the double integrator. The salmon approximation was obtained with degree 4 polynomials and no
splits,2 the purple approximation with degree 4 polynomials and 4 equidistantly-placed splits,3 and the blue approximation with degree 4
polynomials and 4 splits with optimized positions. The green set is the ground truth. The memory demands for blue and purple are exactly
the same.

approximations with favorable scaling properties. It was, however, unclear how to perform this splitting to obtain optimal
results, which is the focus of this paper.

We build upon the algorithm from Reference 3, which increased the accuracy by splitting the sets X and [0,T] into
multiple subsets, and consider the positions of splits as parameters that are then optimized using gradient descent. The
following example shows the advantage of splitting the problem and then optimizing the splits.

2.1 Motivation example

Let us motivate the idea of optimizing the split positions. Consider a simple double integrator system

ẋ1 = x2

ẋ2 = u
(4)

with X = [−0.7, 0.7] × [−1.2, 1.2] and U = [−1, 1]. Figure 1 shows the difference between the original approach from Ref-
erence 2 (salmon), the improved version from Reference 3 (purple), and the version provided in this paper (blue). The real
ROA is depicted in green. We can see that each version provides a significant improvement in accuracy. The most notable
detail about the ROA calculated by the proposed algorithm (blue) is that it has exactly the same memory demands as the
ROA calculated via the method3 (purple), which provides substantially worse estimation.

3 DISCRETIZING TIME AND STATE SPACE

Although this work is mainly concerned with the SDP formulation of the ROA problem, we will first introduce the
polynomial problem in order to give meaning to the parameters, which will be optimized through the SDP formulation.

We discretize the time axis as

[0,T] =
K−1⋃

k=1
[Tk,Tk+1], where T1 = 0,TK = T (5)

and the state space as

X =
I⋃

i=1
Xi, (6)

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11850 CIBULKA et al.

F I G U R E 2 Illustration of the split sets Xi, the set boundaries xa,b, their normal vectors ha,b, and the parameter set 𝜃X , for which we get
𝜃X = {𝜌1, 𝜌2} in this example.

where K ≥ 2 is the number of time splits (including the boundaries) and I is the number of closed subsets Xi. In this
work, we assume that the subsets Xi are created by splitting the state space into axis-aligned boxes. Therefore, the inte-
riors of the sets Xi do not intersect but the sets can share a zero-volume boundary. Therefore the boundary between two
neighboring cells Xa and Xb is Xa ∩ Xb. The time-splits are the scalars Tk, excluding the fixed boundary terms; we denote
this set as

𝜃T = {T2, … ,TK−1}. (7)

We define the set of all neighboring subsets Xi as

NX ∶= {(a, b) ∶ Xa ∩ Xb ≠ ∅}. (8)

The set of state-space parameters is denoted as 𝜃X and depends on the chosen parametrization of the splits. In this
work, the state space is divided by hyperplanes which are formed by splitting the axes into intervals; this restricts the Xi’s
to axis-aligned boxes as mentioned earlier. The locations of the splits are the parameters in 𝜃X . An illustration is provided
in the Figure 2.

We shall now describe the steps required to turn the problem of finding the ROA into a semidefinite program (SDP).
We will describe the polynomial formulation, then relax it via SOS, and then reformulate it as an SDP.

3.1 Polynomial formulation

The outer approximation of the ROA X0 can be obtained as a super-level set X0 ∶= {x ∶ v(0, x) ≥ 0} of a piece-wise
polynomial

v(t, x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

v1,1(t1, x1) for t ∈ [T1,T2], x ∈ X1

· · ·
vi,k(tk, xi) for t ∈ [Tk,Tk+1], x ∈ Xi

· · ·
vI,K−1(tK−1, xI) for t ∈ [TK−1,TK], x ∈ XI

(9)

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11851

which is a solution to the problem

d⋆s = inf
∑

i
∫Xi

wi(x)d𝜆(x)

s.t. for all i ∈ ZI , k ∈ ZK−1 and

(a, b) ∈ NX , xa,b ∈ Xa ∩ Xb

(vi,k)(t, x,u) ≤ 0 ∀(t, x,u) ∈ [Tk,Tk+1] × Xi × U

wi(x) ≥ vi,1(0, x) + 1 ∀x ∈ Xi

vi,K−1(T, x) ≥ 0 ∀x ∈ XT

wi(x) ≥ 0 ∀x ∈ Xi

vi,k(Tk+1, x) ≥ vi,k+1(Tk+1, x) ∀x ∈ Xi

(va,k(t, xa,b) − vb,k(t, xa,b)) ⋅ h⊤a,b f (t, xa,b,u) ≥ 0,

(10)

where the polynomials wi and vi,k are the problem variables and ha,b is the normal vector of the boundary Xa ∩ Xb, which
is assumed to be element-wise positive. For more insight, we refer the reader to Reference 3.

The problem is parametrized by the time splits 𝜃T and the state splits 𝜃X (which define the boundaries Xa ∩ Xb). Let
us define the vector of the parameters as

𝜃 = 𝜃T ∪ 𝜃X . (11)

3.2 Sum-of-squares relaxation

The SOS approximation of (10) reads

inf
∑

i
w⊤

i li

s.t. for all i ∈ ZI , k ∈ ZK−1 and (a, b) ∈ NX

− (vi,k)(z) = qi,k(z) + s𝝉i,k(z)
⊤g𝝉k(t) + sX

i,k(z)
⊤gX

i,k(x) + sU
i,k(z)

⊤gU(u)

wi(x) − vi,k(0, x) − 1 = q0i,k (x) + s0
i,k(x)

⊤gX
i (x)

vi,K(T, x) = qT
i (x) + sXT

i (x)
⊤gXT

i (x)

wi(x) = qw
i (x) + sw

i (x)
⊤gX

i (x)

vi,k(Tk+1, x) − vi,k+1(Tk+1, x) = q𝜏i,k(x) + st
i,k(x)

⊤gX
i (x)

(va,k(t, xa,b) − vb,k(t, xa,b)) = q1
k,a,b(z) +

nX∑

j=1
s1

j,k,a,b(z)h
⊤

a,bfj(t, xa,b,u) + sa1
k,a,b(z)g

a1
k,a,b(z)

(vb,k(t, xa,b) − va,k(t, xa,b)) = q2
k,a,b(z) −

nX∑

j=1
s2

j,k,a,b(z)h
⊤

a,bfj(t, xa,b,u) + sa2
k,a,b(z)g

a2
k,a,b(z),

(12)

where z = [t, x,u]⊤, wi(x) and vi,k(t, x) are polynomials, wi is a vector of coefficients of wi(x) and li is a vector of Lebesgue
measure moments indexed with respect to the same basis as the coefficients of wi. The decision variables in the problem
are the polynomials vi,k and wi as well as sum-of-squares multipliers q, s and s. The symbols gX

i , gXT
i , gU

i and g𝝉k denote the
column vectors of polynomials describing the sets Xi, XT ∩ Xi, U and [Tk,Tk+1] in that order. The degrees of all polynomial
decision variables are chosen such that the degrees of all polynomials appearing in (12) do not exceed a given relaxation
order d. This is a design parameter controlling the accuracy of the approximation.

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11852 CIBULKA et al.

The outer approximation of the ROA of degree d is defined by the piece-wise polynomial vd as

Xd = {x|vd(0, x) ≥ 0}. (13)

It is worth mentioning that if some splits coincide and create a “degenerate” subset Xd, the subset will simply lose
dimensions; in the most extreme case it will become a point, which is still a valid semi-algebraic set and no special
treatment is necessary.

3.3 Strong duality

We shall now show that the splitting does not break the strong duality property of the original, non-split ROA problem. The
infinite-dimensional setting is addressed later in Theorem 1. Here we focus on the strong duality of the relaxed problem
(12), for which we use the general proof from Reference 12. To use the results from Reference 12, we need to show that
our problem can be written as the augmented version of the generalized moment problem (GMP)

p⋆GMP = sup
∫

cd𝝁

s.t.
∫
𝚽𝛼d𝝁 = a𝛼 𝛼 ∈ A

∫
𝚿𝛽d𝝁 ≤ b𝛽 𝛽 ∈ B

𝝁 ∈(K1)+ × · · · ×(KN)+,

(14)

where (Ki)+ is a set of positive measures supported on a set Ki, A and B are index sets, a𝛼 and b𝛽 are scalars,
𝚽𝛼 =

[
Φ𝛼1 · · · Φ𝛼N

]⊤ is a vector of polynomials and similarly for𝚿𝛽 and c. The vector notation is to be understood as

∫
𝚽𝛼d𝝁 =

N∑

p=1 ∫
Φ𝛼p d𝜇p (15)

The primal of (10) reads

p⋆s = sup
∑

i
∫Xi

1d𝜇i
T1

s.t. 𝜇i
T1
+ 𝜇̂i

0 = 𝜆

− ′𝜇i
k + (𝜇

i
Tk+1

⊗ 𝛿t=Tk+1) − (𝜇
i
Tk
⊗ 𝛿t=Tk)

+
∑

b∈Nout
Xi

(h⊤i,bf)′𝜇i∩b
k −

∑

a∈N in
Xi

(h⊤a,if)
′
𝜇

a∩i
k = 0

∀(t, x,u) ∈ [Tk,Tk+1] × Xi × U

𝜇
i
k ∈([Tk,Tk+1] × Xi × U)+ ∀(i, k) ∈ ZI × ZK−1

𝜇
i
Tk
∈(Xi)+ ∀(i, k) ∈ ZI × ZK−2

𝜇
i
TK−1

∈(XT)+ ∀i ∈ ZI

𝜇̂
i
0 ∈(Xi)+ ∀i ∈ ZI

𝜇
a∩b
k ∈([Tk,Tk+1] × (Xa ∩ Xb) × U)+

∀(k, (a, b)) ∈ ZK−1 × NX ,

(16)

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11853

with decision variables 𝜇i
Tk
, 𝜇̂

i
0, 𝜇

i
k, and 𝜇a∩b

k . The normal vector ha,b of the boundary Xa ∩ Xb is element-wise positive. The
set N in

Xi
contains indices of neighbours of Xi, such that the normal of their common boundary h⋅,i points to Xi. Similarly

for Nout
Xi

in the opposite direction. For our specific case of splits along the axes and element-wise positive normal vectors,
we can write

N in
Xi
= {a ∈ ZI ∶ Xi ∩ Xa ≠ 0, h⊤a,i(xi − xa) ≥ 0}

Nout
Xi
= {b ∈ ZI ∶ Xi ∩ Xb ≠ 0, h⊤i,b(xi − xb) ≤ 0}.

(17)

Considering polynomial test functions Ψ1 = Ψ1(x) and Ψ2 = Ψ2(t, x), we can write the equality constraints of (16) as

∫
Ψ1d𝜇i

T1
+
∫
Ψ1d𝜇̂i

0 = ∫ Ψ1d𝜆 (18)

and

∫
Ψ2d𝜇i

k + ∫ Ψ2(Tk+1, ⋅)d𝜇i
Tk+1

−
∫
Ψ2(Tk, ⋅)d𝜇i

Tk

+
∑

b∈Nout
Xi

∫
h⊤i,bfΨ2d𝜇i∩b

k −
∑

a∈N in
Xi

∫
h⊤a,ifΨ2d𝜇a∩i

k = 0.
(19)

Since ∫ Ψ1d𝜆 is a constant and f is assumed to be polynomial, we can see that (16) fits the general description (14).
To use the results from Reference 12 for showing strong duality of the relaxation (12), we must satisfy the following

two assumptions.

Assumption 1. The description of the sets Ki in (14) contains the ball constraint gBi(x) = R2
B − ||x||2, such

that Ki ⊂ {x ∶ gBi(x) ≥ 0}.

Although the problem (10) does not contain the ball constraints in the presented form, they can be easily added
without changing the optimal value to ensure the strong duality of the problem.

Note that if the subset Ki is a hypercube, it is usually described by gKi,p(x) = R2
p − ||xp||2 for all p = 1 … n; in this case,

the redundant ball constraint is not needed.

Assumption 2. All h⊤a,bf are nonzero on the boundary Xa ∩ Xb for all (a, b) ∈ NX and u ∈ U.

Lemma 1. If Assumption 2 is satisfied, the set X is connected, and h⊤a,bf is nonzero on the splits, then the feasible
set of (16) is bounded, that is, there exists a constant C > 0 such that ∫ 1 d𝜇 < C for all measures 𝜇 appearing
in (16).

Proof. To prove that all masses are bounded, we first sum the equations of (16) over time and space, which
eliminates the additional boundary measures introduced by the time and space splits respectively. This will
give us a similar situation as in the original work2 and simplify the proof for the boundary measures. We shall
denote ∫ 1d𝜇 as mass(𝜇).

The first constraint 𝜇i
T1
+ 𝜇̂i

0 = 𝜆 implies that p⋆s is bounded and 𝜇i
T1

and 𝜇̂i
0 are bounded.

By summing the second constraint over all i and k we obtain

∑

i
𝜇

i
TK−1

⊗ 𝛿t=TK−1 =
∑

i,k

′
𝜇

i
k +

∑

i
𝜇

i
T1
⊗ 𝛿t=0 (20)

A test function Ψ(t, x) = 1 then gives us

∑

i
mass(𝜇i

TK−1
) =

∑
mass(𝜇i

T1
), (21)

meaning that 𝜇i
TK−1

are bounded.

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11854 CIBULKA et al.

With a test function Ψ(t, x) = t we obtain

T
∑

i
mass(𝜇i

TK−1
) =

∑

i,k
mass(𝜇i

k) (22)

which shows that 𝜇i
k are bounded.

Let us sum the second constraint over all i for some time k = s

−
∑

i

′
𝜇

i
s +

∑

i
(𝜇i

Ts+1
⊗ 𝛿t=Ts+1) −

∑

i
(𝜇i

Ts
⊗ 𝛿t=Ts) = 0, (23)

with a test function Ψ(t, x) = 1 we obtain

∑

i
mass(𝜇i

Ts
) =

∑

i
mass(𝜇i

Ts+1
). (24)

Since 𝜇i
T1

are bounded, 𝜇i
T2

are bounded as well; by induction all 𝜇i
Ts

are bounded.
To show the boundedness of the remaining measures𝜇a∩b

k let us first introduce the following sets of indices:

(h, i) ∶= {p ∈ ZI|∀xi ∈ Xi ∃xp ∈ Xp ∶ h⊤xp ≤ h⊤xi}, (25)

(h, i) ∶= {p ∈ ZI|∀xi ∈ Xi ∃xp ∈ Xp ∶ h⊤xp = h⊤xi}. (26)

By summing the second constraint over the indices(h, i), we will be left only with the boundary measures
𝜇
⋅∩∶
k corresponding to the normal vectors in the direction of h, their indices are characterized by the set (h, i).

For convenience, we also define the set of tuples

n(h, i) ∶= {(i, j) ∈ Z
2
I |∀i ∈ (h, i) ∃Xj ∶ hi,j = h}, (27)

which contains the set indices(h, i) and indices of their connecting neighbours in the direction h. See Figure 3
for graphical representation.

F I G U R E 3 Example of split state-space. For the set Xd it holds N in
Xd
= {c, f }, Nout

Xd
= {b}. The blue area is the set Xblue =

⋃
i∈(ha,b ,a)

Xi

and both the red and blue areas together are the set Xred ∪ Xblue =
⋃

i∈(ha,b ,a)
Xi. The set n(ha,b, a) is equal to {(a, b), (c, d), (e, f)}. Note that

(ha,b, a) = (hc,d, c) = (he,f , e), similarly for (⋅, ⋅) and n(⋅, ⋅).

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11855

Let us fix time as k = s and focus only on space. We shall show the boundedness of a measure 𝜇a∩b
s which

corresponds to the normal vector ha,b. Let us sum the equations corresponding to time s and the space indices
(ha,b, a), with a test function Ψ(t, x) = 1 we obtain

0+
∑

i∈(ha,b,a)

(
mass(𝜇Ti

s+1
) −mass(𝜇Ti

s
)
)

+
∑

(i,j)∈n(ha,b,a)
∫

h⊤i,jf d𝜇i∩j
s = 0,

(28)

where all the normal vectors have the same direction, i.e. hi,j = ha,b. The normal vectors with directions dif-
ferent from ha,b have been summed out since they all appear in (ha,b, a) exactly twice with opposite signs
(once as incoming and once as outgoing vector). We can rewrite the Equation (28) as

0 +
∑

i∈(ha,b,a)

(
mass(𝜇Ti

s+1
) −mass(𝜇Ti

s
)
)

+
∫

h⊤a,bf d𝜇s = 0,
(29)

where

𝜇

s =

∑

(i,j)∈n(ha,b,a)
𝜇

i∩j
s . (30)

Since the top part of (29) is bounded, the integral ∫ h⊤a,bf d𝜇s is also bounded. The measure 𝜇s is supported
on a intersection of X and a hyperplane with normal vector ha,b. Using the assumptions on connected X and
that h⊤a,bf is nonzero on the support of 𝜇s , we can conclude that 𝜇s is bounded.

This implies boundedness of all the measures 𝜇i∩j
s from (30), since they all have the same sign. Due to

the construction of the set (ha,b, a), the measure 𝜇a∩b
s is trivially one of the measures 𝜇i∩j

s and is therefore
bounded.

This procedure can be done for all the measures 𝜇a∩b
k .

We can now conclude that under the assumption of

(h⊤a,bf)(t, x,u) ≠ 0 on [0,T] × Xa,b × U ∀(a, b) ∈ NX , (31)

the feasible set of (16) is bounded. ▪

Theorem 1. If Assumption 2 holds then there is no duality gap between (10) and (16), that is, d⋆s = p⋆s .

Proof. The proof is based on classical infinite-dimensional LP duality theory result,13 theorem 3.10, following
the same arguments as in Reference 2, theorem 2. The key ingredients to these arguments are the bounded-
ness of masses established in Lemma 1 and the continuity of the operators ′ appearing in (16) that holds
trivially. ▪

Lemma 2. The SOS relaxation (12) of (10) and its dual, the moment relaxation (not presented) of (16), have
zero duality gap if Assumptions 1 and 2 hold.

Proof. The proof follows directly from Reference 12, proposition 6, where the only missing part is
boundedness of the masses of the relaxed problem, which follows from boundedness of masses of (16)
since the proof of the boundedness of the masses of (16) in Lemma 1 uses only constant or linear test
functions. ▪

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11856 CIBULKA et al.

4 SDP DIFFERENTIATION

We will consider the SDP in the form of a primal-dual pair, parametrized by 𝜃. To stay consistent with the usual notation,
we shall abuse ours and use x as a vector of decision variables in the context of semidefinite programming.

p⋆(𝜃) = min c(𝜃)⊤x d⋆(𝜃) = min b(𝜃)⊤y
s.t. A(𝜃)x + s = b(𝜃) s.t. A⊤(𝜃)y + c = 0

s ∈  y ∈ ⋆
,

(32)

with variables x ∈ Rn, y ∈ Rm, and s ∈ Rm with data A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. We can assume strong duality due
to the Lemma 2 and therefore p⋆ = −d⋆. The KKT conditions are

Ax + s = b,A⊤y + c = 0, s⊤y = 0, s ∈ , y ∈ ⋆
. (33)

Notice that the conic constraints do not depend on 𝜃, this reflects the fact that neither the number of the split regions Xi
nor the number of the time splits Tk changes.

We can describe the (primal) SDP concisely as a function of 𝜃 as

p⋆(𝜃) = (A(𝜃), b(𝜃), c(𝜃)) = ((𝜃)), (34)

where(𝜃) is a shorthand for all the program data depending on 𝜃. The goal of this paper is to find a (sub)optimal set of
parameters 𝜃⋆ such that

𝜃
⋆ = argmin

𝜃

(𝜃). (35)

Note that we are dealing with multiple meanings for the optimal value p⋆; let us clarify that p⋆(𝜃) is the minimal objective
value of (32) for some parameters 𝜃, while p⋆(𝜃⋆) is the minimal objective value for the optimal parameters 𝜃⋆ which is
what we are after. In the context of ROA, p⋆(𝜃⋆) corresponds to the ROA with optimal splits.

We shall tackle (35) by assuming differentiability of  which will be rigorously proven later, in Lemma 3. Assuming
an existing gradient, we can search for 𝜃⋆ via a first-order method, which iteratively updates the parameters 𝜃 by using
the gradient of s as

𝜃k+1 = 𝜃k − 𝛾∇((𝜃)) (36)

for some initial guess 𝜃0 (e.g., obtained from the recommendations in Reference 3) and a stepsize 𝛾 . The stepsize can
be a function of k and/or some internal variables of the concrete gradient descent algorithm. The following section will
present two ways of calculating ∇((𝜃)).

The parameter 𝜃 is considered to be a column vector of size n𝜃 . The perturbation of the vector 𝜃 in direction k is

𝜃 + 𝜖𝜃ek =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜃1

⋮

𝜃k + 𝜖k

⋮

𝜃n
𝜃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(37)

where ek is the kth vector of standard base, containing 1 at kth coordinate and 0 everywhere else. The scalar 𝜖k is the
perturbation size.

The object(𝜃) is to be understood as a vector of all the SDP data, for example

 = [A1,1, … ,Am,n, b1, … , bm, c1, … , cn]⊤, (38)

where we dropped the dependence on 𝜃 to lighten up the notation.

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11857

4.1 Methods for finding the derivative

4.1.1 Finite differences

The estimate of the derivatite of (34) at the point 𝜃 in the direction ek is

delta
delta𝜃k

= ((𝜃 + 𝜖fek)) − ((𝜃))
𝜖f

, (39)

where the step 𝜖f is a free parameter. The gradient is then estimated as

delta =
[

deltap⋆

delta𝜃1
· · · deltap⋆

delta𝜃n𝜃
.

]
(40)

4.1.2 Analytical derivative

The gradient of  can be written as

∇((𝜃)) = d()
d𝜃

= d
d

d
d𝜃
. (41)

The first fraction d
d

signifies how the problem solution changes with respect to the input data. This problem has been
tackled in Reference 4 for general conic programs; here we shall address some specific issues tied to SOS-based SDPs.

The second fraction d
d𝜃

shows how the problem data changes with the parameters 𝜃. Modern tools (YALMIP,14,15

GloptiPoly,16 The sum of Squares Programming for Julia,17,18) allows the user to write directly the polynomial problem (10)
or its SOS representation, alleviating the need for constructing the problem data (A, b, c) directly. Despite the undeniable
advantages this abstraction brings, it makes it more difficult to work on the problem data directly, since these parsers are
usually not created to be autodifferentiable. For this reason, we shall estimate the derivatives d numerically, striking a
tradeoff between convenience and accuracy.

For example, sensitivity to 𝜃k is obtained as

𝜕

𝜕𝜃k
= 1

|P𝜖|
∑

𝜖∈Pk
𝜖

(𝜃 + 𝜖ek) −(𝜃)
𝜖

, (42)

where Pk
𝜖 = {−𝜖d, … , 𝜖d} is a set of perturbation steps sizes of the parameter 𝜃 in the direction k. Each evaluation of is

to be understood as a call to one of the aforementioned programming tools which constructs (32) from (10).
The following subsection will explain how to obtain the derivative ds

d
.

4.1.3 Obtaining d
d

This subsection summarizes the approach listed in References 4 and 19, while focusing on the specific case of the
SOS-based SDPs. The generic approach presented in Reference 4 is not immediately usable for our concrete problem,
therefore we shall provide some remedies in the following subsections.

We shall first quickly review the generic approach in Reference 4. In the following text, Π shall denote a projection
onto the set and Π a projection onto Rn ×⋆ ×R+. We shall also drop the dependence on 𝜃 to lighten up the notation.
Lastly, we abuse our notation again and use v and w to denote vectors corresponding to the primal-dual solution of (32)
in the context of semidefinite programs.

The derivative of the solution can be written as

d() = d(c⊤x) = dc⊤ + c⊤dx = db⊤y + bdy, (43)

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11858 CIBULKA et al.

where the primal-dual derivatives are obtained as

[
dx
dy

]
=

[
du − x⊤dw

dΠ⋆ (v)⊤dv − y⊤dw

]
, (44)

where the variables u, v, and w are related to the solution by

z =
⎡
⎢
⎢
⎢⎣

x
y − s

1

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

u
v
w

⎤
⎥
⎥
⎥⎦
. (45)

Note that is w a normalization parameter which is in our case always equal to 1, and thus not necessary; we only keep
it to stay consistent with Reference 4. The meaning and other possible values of w are explained in Reference 19. The
derivative of z is obtained as the solution to

M ⋅ dz = g, (46)

where M = ((Q − I)dΠ(z) + I)∕w and g = dQ ⋅ Π(z∕|w|). Note that the matrix M depends only on the current solution, not
the perturbations; we shall exploit it later in this section. The matrices Q and dQ are defined as

Q =
⎡
⎢
⎢
⎢⎣

0 A⊤ c
−A 0 b
−c⊤ −b⊤ 0

⎤
⎥
⎥
⎥⎦
, dQ =

⎡
⎢
⎢
⎢⎣

0 dA⊤ dc
−dA 0 db
−dc⊤ −db⊤ 0

⎤
⎥
⎥
⎥⎦
. (47)

Let us now write relevant cone projections and their derivatives:

ΠRn(x) = x ∀x ∈ R, (48)

dΠRn(x) = 1 ∀x ∈ R, (49)

Π{0}(x) = 0 ∀x ∈ R, (50)

dΠ{0}(x) = 0 ∀x ∈ R, (51)

ΠR+(x) = max(x, 0) ∀x ∈ R, (52)

dΠR+(x) =
1
2
(sign(x) + 1) ∀x ∈ R ⧵ {0}, (53)

ΠS+(X) = UΛ+U⊤ ∀X ∈ S
r×r
, (54)

where X = UΛU⊤ is the eigenvalue decomposition of X , that is, Λ is a diagonal matrix of the eigenvalues of X and U an
orthonormal matrix. The matrix Λ+ is obtained as max(Λ, 0), element-wise.

Finally, the derivative of ΠS+ at a non-singular point X in the direction X̃ ∈ Rr×r is

dΠS+(X)(X̃) = U(B◦(U⊤X̃U))U⊤
, (55)

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11859

where ◦ is element-wise product and

Bi,j =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 for i ≤ k, j ≤ k
|𝜆i|

|𝜆i|+|𝜆j|
for i > k, j ≤ k

|𝜆j|
|𝜆i|+|𝜆j|

for i ≤ k, j > k

1 for i > k, j > k,

(56)

where k is the number of negative eigenvalues of X , and U is chosen such that the eigenvalues 𝜆i in the diagonal
matrix Λ in the decomposition X = UΛU⊤ are sorted in increasing order, meaning that the first k eigenvalues are
negative.

4.1.4 Exploiting problem structure

The most demanding task in this approach is solving

M ⋅ dz = g (57)

for dz. The paper4 suggests the use of LSQR20 instead of direct solve via factorization when the matrix M is too large to
be stored in dense form.

Luckily, we can also factorize the matrix M in its sparse form, via free packages such as SuiteSparse21 (the default
factorization backend in MATLAB22 and Julia23), Intel MKL Pardiso,24 and MUMPS.25,26 Moreover, recall that we have
n𝜃 parameters and have to solve (57) in n𝜃 directions resulting in

M ⋅ dz = [g1, g2, … , gn𝜃]. (58)

Since the matrix M does not depend on the perturbed data, we need to factorize it only once to solve (57) for all n𝜃
directions of 𝜃.

In this paper, we factorize M by the QR factorization,27,28 as

M = QR, (59)

where Q is orthonormal and R is upper triangular. The Equation (57) then becomes

QR ⋅ dz = g
R ⋅ dz = Q⊤g,

(60)

which is solved by backward substitution due to R being a triangular matrix.
All the aforementioned methods (Finite differences, LSQR, and QR) are compared in Section 4.3.

4.2 Conditions of differentiability

As was mentioned above, the analytical approach for obtaining the derivative is preferable to the finite differences. How-
ever, the analytical approach also assumes differentiability of the ROA problem with respect to the split positions, which
is proved in the following Lemma. We use the notion of genericity from Reference 29, definition 19. We call a property
P of an SDP generic if it holds for Lebesgue almost all parameters (A, b, c) of the SDP. In other words, the property fails
to hold on a set of zero Lebesgue measure.Concretely, we will use the genericity of uniqueness,29 theorems 7, 10, and 14,
and strict complementarity,29 theorem 15 of the primal-dual solutions to (32).

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11860 CIBULKA et al.

Lemma 3. The mapping from the split positions to the infimum of the SOS-relaxation (10) is differentiable at a
point 𝜃 if Assumptions 1 and 2 hold, and the primal-dual solution of (32) is unique and strictly complementary
for the problem data(𝜃).

Proof. The conditions of differentiability according to Reference 4 are uniqueness of the solution and differen-
tiability of the projection Π of the vector z, needed for construction of (46). Since the uniqueness is assumed,
only the projection Π needs to be investigated.

Assuming (x, y, s) to be the optimal primal-dual solution, the projection Π(z) can be written as

Π(z) =
⎡
⎢
⎢
⎢⎣

ΠRn(x)
Π⋆ (y − s)
ΠR+(w)

⎤
⎥
⎥
⎥⎦
, (61)

where ΠRn is differentiable everywhere and ΠR+ is also differentiable since we are at the solution with w = 1.
The only cause for concern isΠ⋆ , where⋆ is a product of the positive semidefinite cone S+ and the free/zero
cone. Therefore Π⋆ is differentiable if and only if ΠS+ is differentiable.

Let us denote the semidefinite parts of y and s as matrices Y and S respectively. The matrices Y and S
commute, since YS = SY = 0. They also share a common set of eigenvectors Q such that Q⊤Q = I, making
them simultaneously diagonalizable as

Y = QΛY Q⊤ (62)

S = QΛSQ⊤
, (63)

where ΛY and ΛS are diagonal matrices with eigenvalues on the diagonal. The product YS can be then
written as

YS = QΛY Q⊤QΛSQ⊤ = QΛYΛSQ⊤
, (64)

and for ith eigenvalue we get the condition

𝜆
i
s𝜆

i
y = 0. (65)

Strict complementarity of the SDP solution means that the ranks of Y and S sum up to full rank. Taking the
sum, we can write

Y + S = Q(ΛY + ΛS)Q⊤ (66)

and since ΛY and ΛS are diagonal, we can claim that

𝜆
i
s + 𝜆i

y ≠ 0, (67)

otherwise the rank of Y + S would decrease.
By putting (65) and (67) together, we conclude that for ith eigenvalues 𝜆i

s and 𝜆i
y, one has to be zero and

the other nonzero. This implies that the matrix Y − S will not be singular and thus the projection ΠS+(Y − S)
is differentiable, and therefore the whole SDP (32) is differentiable. ▪

4.3 Comparison of differentiation approaches

The Figure 4 shows scaling of the proposed methods with an increasing number of parameters and the Figure 5
investigates their scaling with the degree of approximation.

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11861

F I G U R E 4 Computation time needed to obtain derivatives for degree 6 double integrator with respect to the number of parameters.
The LSQR method always reached the maximum number of iterations, which was set to 1000. The times for LSQR and QR include the cost of
obtaining the matrices M and g in (46).

F I G U R E 5 Computation time needed to obtain derivatives for double integrator with six parameters and increasing degree. The LSQR
method always reached the maximum number of iterations, which was set to 1000. The times for LSQR and QR include the cost of obtaining
the matrices M and g in (46).

We see that using QR factorization to solve (46) clearly outperforms both LSQR, suggested in Reference 4, and Finite
differences in Section 4.1.1. We see that QR is preferable, since the factorization is done only once for all parameters
whereas LSQR needs to solve (58) n𝜃-times, similarly for Finite differences which solves the ROA for each parameter
individually.

The concrete software packages used are Krylov.jl30 for LSQR and SuiteSparse21 for QR factorization, both used
through their interfaces to the programming language Julia.23

5 NUMERICAL EXAMPLES

This section presents the optimization results on Double integrator and Brockett integrator, the optimization results are
presented in Section 5.1. The section is divided into optimization of low degree and high degree problems, the degree is to
be understood as the degree of the polynomial variables in (10).

All of the examples use ADAM31 as the first-order method for the optimization; the stepsize of ADAM was 0.05 and
the decay rates 0.8 and 0.9. The results were obtained on a computer with 3.7GHz CPU and 256GB RAM.

To simplify the following, let us define 𝜽d as the parameter path obtained by optimizing degree d problems, that
is, 𝜽d contains the split locations of each iteration of the optimization algorithm. Similarly, p⋆d (𝜽) will denote the vec-
tor of optimal values for degree d approximation calculated along 𝜽. For example, p⋆6 (𝜽4) denotes a vector of optimal
values of degree 6 approximation, evaluated on parameters obtained from optimizing the split locations of a degree 4
approximation.

5.1 Low degree

5.1.1 Double integrator

First, we consider the double integrator example from Reference 2, 9.3, which is defined as

ẋ1 = x2, ẋ2 = u

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11862 CIBULKA et al.

with X = [−0.7 × 0.7] × [−1.2 × 1.2], XT = {0} and T = 1. Figure 6 shows the results for optimization of the split locations
with degree 4 polynomials. The initial conditions were equidistantly placed split positions. The dotted black line shows
the estimated global optimum, which was attained by sampling the parameter space on a grid of square cells with sizes
of 0.1. A total of 25,116 unique split positions were evaluated in 23 h.

The optimizer attained by the proposed method was 𝜃⋆ =
[
− 0.059 0.070 −0.017 0.015

]
while the global estimate

was at 𝜃⋆g =
[
0 0.2 −0.4 0

]
.

The obtained optimum improves the initial guess by 58% with respect to the global optimum estimate, and it was
found in 2 min whereas the global estimate took 23 h.

The Figure 7 shows one-dimensional line segment parametrized by r ∈ [0, 2], connecting the attained solution 𝜃
⋆

(t = 0) to the global estimate 𝜃⋆g (t = 1). We see that in this particular direction, the optimum is quite sharp, which makes
it difficult to find precisely using gridding.

5.1.2 Brockett integrator

The Brockett integrator is defined according to Reference 32 as

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 − u2x1,

(68)

where X = {x ∈ R3 ∶ ||x||∞ ≤ 1}, XT = {0}, U = {u ∈ R2 ∶ ||u||2 ≤ 1}, and T = 1. This system usually serves as a bench-
mark for nonholonomic control strategies, because it is one of the simplest systems for which there exists no continuous
control law which would make the origin asymptotically stable.32

F I G U R E 6 Double integrator: degree 4 polynomials and 4 splits. The optimal values of the SDP relaxation of the ROA are shown in the
top plot. The bottom plot shows how the split positions evolved during the optimization process. There were two splits for each state variable.
The black-and-yellow dot represents the attained minimum. The estimated global optimum is shown by a black dotted line.

F I G U R E 7 Double integrator: Double integrator: degree 4 polynomials and 4 splits. Slice of the value function between the attained
optimum (r = 0) and the estimated global optimum (r = 1).

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11863

Figure 8 shows the optimization results for degree 4 approximation. The estimate of the global optimum was attained
by sampling the parameter space on a grid with cell size 0.1. Furthermore, we assumed that the splits are symmetrical
along all three axes, making the search space three-dimensional. The computation time of the sampling was 16 h over
1000 unique split positions. Without the symmetry assumption, the computation would be intractable as the full search
space has six dimensions. The optimizer attained by our method was

𝜃
⋆ = [0.011,−0.011, 0.011,−0.011, 0.004,−0.004]⊤,

while the global estimate was

𝜃
⋆

g = [0, 0, 0, 0, 0, 0]⊤.

Both minimizers are quite close in this case. The found optimum improves the initial guess by 62% with respect to the
global optimum estimate, and it was found in 30 min whereas the global estimate with symmetry assumption took 16 h.
A brute-force search in the whole parameter space would take roughly 12 years on the same computational setup.

The Figure 9 shows a one-dimensional line segment parametrized by r ∈ [0, 2], connecting the attained solution 𝜃⋆
(r = 0) to the global estimate 𝜃⋆g (r = 1). Note that the x-axis has a very small scale, concretely ||𝜃⋆ − 𝜃⋆g || = 0.02 while
the system is bounded between ±1.

5.2 High degree

This section contains optimization results for the same systems but at a higher degree of the SOS approximation. We do
not provide the estimates of global minima, because they would take very long to compute. The high-degree systems had
numerical difficulties and their optimization was more demanding than the low-degree case.

F I G U R E 8 Brockett integrator: degree 4 polynomials and 6 splits. The volume of the ROA approximation is shown in the top plot. The
bottom plot shows how the split positions evolved during the optimization process. There were 3 splits for each state variable. The
black-and-yellow dot represents the attained minimum. We see that all the splits were close to the origin at the minimum.

F I G U R E 9 Brockett integrator: degree 4 polynomials and 6 splits. Slice of the value function between the attained optimum (r = 0)
and the estimated global optimum (r = 1).

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11864 CIBULKA et al.

We provide two plots for each system, the first one being the application of the same method directly on the
high-degree system. The second shall plot objective values of the high-degree system, for the parameter paths obtained
from the low-degree optimization; the low-degree problems were optimized first and the high-degree system was simply
evaluated along their parameter paths. Given the positive results, this technique could be a possible measure to circumvent
the inherently bad numerical conditioning of high-degree SOS problems.

5.2.1 Double integrator

Figure 10 shows the results for the Double integrator with degree 8 polynomials. We see that the path of the objective
values is not as smooth as in the low-degree case.

Figure 11 shows the objective values with degree 8 polynomials while using parameter path obtained with degree 4
and 6 polynomials. We see that we can obtain almost the same optimal values much faster (120 times for the degree 4
path and 24 times for the degree 6 path).

5.2.2 Brockett integrator

Figure 12 shows the results for the Brockett integrator with degree 6 polynomials. Again, we see that the objective path
is not as smooth as in the low-degree case.

Figure 13 shows the results from using the split parameter path obtained with degree 4 polynomials. We see that in
this case, the found minimum was improved by approximately 55% compared to the initial guess.

F I G U R E 10 Double integrator: degree 8 and 4 splits. The volume of the ROA approximation is shown in the top plot. The bottom plot
shows how the split positions evolved during the optimization process. There were two splits for each state variable. The black-and-yellow
dot represents the attained minimum.

F I G U R E 11 Double integrator: degree 8 polynomials and 4 splits, split parameters computed with lower degree polynomials. The
computation times per iteration were 7.91, 41.6, and 990.5 s for degrees 4, 6, and 8 in this order. We can see that all the trajectories reach
similar optimal values, while the lower-degree ones were calculated significantly faster.

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CIBULKA et al. 11865

F I G U R E 12 Brockett integrator: degree 6 polynomials and 6 splits. The volume of the ROA approximation is shown in the top plot.
The bottom plot shows how the split positions evolved during the optimization process. There were 3 splits for each state variable. The
black-and-yellow dot represents the attained minimum.

F I G U R E 13 Brockett integrator with degree 6 polynomials and 6 splits with split-parameter paths obtained from degree 4 (green) and
degree 6 (red) approximations. We see that the ROA approximations for parameters optimized with degree 4 polynomials are better than
those obtained by optimizing the parameters with degree 6 polynomials. This may be caused by numerical instability present in high-order
sum-of-squares approximations.

6 CONCLUSION

We have presented a method for optimizing the split locations for ROA computation via conic differentiation of the under-
lying SDP problem and first-order methods. We have adopted a differentiation method for multi-parametric SDPs and
improved its scaling by a considerable margin as can be seen in Figures 4 and 5. In Section 5, we demonstrated the viability
of the method by optimizing the split ROA problem with an off-the-shelf first-order method without any problem-specific
tuning. We have managed to improve the objective values by 60% improvement across the presented examples, where
100% would mean attaining the (estimated) global optimum.

Finally, we have discussed the possibility of saving time and avoiding numerical issues of high-degree approximations
by using optimal solutions from low-degree approximations as starting points.

Possible generalizations of the presented method include using non-axis aligned splits or, more generally, a suitably
parametrized semialgebraic partition of the constraint set. Another avenue for future research is merging the pro-
posed approach with sparsity exploiting methods of References 5–7, which are complementary means of reducing the
computational complexity of the moment-sum-of-squares approaches for dynamical systems.

ACKNOWLEDGMENTS
The authors would like to thank Antonio Bellon for fruitful discussions about the generic properties of SDPs. This research
was supported by the Czech Science Foundation (GACR) under contracts no. GA19-18424S, GA20-11626Y, and by the
Grant Agency of the Czech Technical University in Prague, grant no. SGS19/174/OHK3/3T/13. This work has also been
supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie
Actions, European Union, project ROBOPROX CZ.02.01.01/00/22_008/0004590 by the AI Interdisciplinary Institute
National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11866 CIBULKA et al.

Technological Enterprise (CREATE) programme funding, through the French “Investing for the Future PIA3” program.
Open access publishing facilitated by Ceske vysoke uceni technicke v Praze, as part of the Wiley - CzechELib agreement.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Vít Cibulka https://orcid.org/0000-0001-8547-9759

REFERENCES
1. Chesi G. Domain of Attraction: Analysis and Control Via SOS Programming. Vol 415. Springer Science & Business Media; 2011.
2. Henrion D, Korda M. Convex computation of the region of attraction of polynomial control systems. IEEE Trans Automat Contr.

2014;59(2):297-312.
3. Cibulka V, Korda M, Hanis T. Spatio-temporal decomposition of sum-of-squares programs for the region of attraction and reachability.

IEEE Control Syst Lett. 2022;6:812-817. doi:10.1109/lcsys.2021.3086585
4. Agrawal A, Barratt S, Boyd S, Busseti E, Moursi WM. Differentiating through a cone program. J Appl Numer Optim. 2019;2019(2):107-115.

doi:10.23952/jano.1.2019.2.02
5. Wang J, Schlosser C, Korda M, Magron V. Exploiting term sparsity in moment-sos hierarchy for dynamical systems. IEEE Trans Automat

Contr. 2023;68(12):8232-8237.
6. Tacchi M, Cardozo C, Henrion D, Lasserre JB. Approximating regions of attraction of a sparse polynomial differential system.

IFAC-PapersOnLine. 2020;53(2):3266-3271.
7. Schlosser C, Korda M. Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence. arXiv

preprint arXiv:2012.05572. 2020.
8. Korda M, Henrion D, Jones CN. Convex computation of the maximum controlled invariant set for polynomial control systems. SIAM

J Control Optim. 2014;52(5):2944-2969.
9. Korda M, Henrion D, Mezić I. Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes.

J Nonlinear Sci. 2021;31:1-26.
10. Fantuzzi G, Goluskin D. Bounding extreme events in nonlinear dynamics using convex optimization. SIAM J Appl Dyn Syst.

2020;19(3):1823-1864.
11. Korda M, Henrion D, Lasserre JB. Moments and convex optimization for analysis and control of nonlinear PDEs. Handbook of Numerical

Analysis. Vol 23. Elsevier; 2022:339-366.
12. Tacchi M. Convergence of Lasserre’s hierarchy: the general case. Optim Lett. 2021;16(3):1015-1033. doi:10.1007/s11590-021-01757-6
13. Nash P, Anderson EJ. Linear programming in infinite-dimensional spaces: theory and applications. (No Title). 1987.
14. Löfberg J. YALMIP: a toolbox for modeling and optimization in MATLAB. https://yalmip.github.io/. 2004.
15. Löfberg J. Pre- and post-processing sum-of-squares programs in practice. IEEE Trans Automat Contr. 2009;54(5):1007-1011.

doi:10.1109/tac.2009.2017144
16. Henrion D, Lasserre JB, Lofberg J. GloptiPoly 3: moments, optimization and semidefinite programming. 2007.
17. Weisser T, Legat B, Coey C, Kapelevich L, Vielma JP. Polynomial and moment optimization in Julia and JuMP. JuliaCon Test. 2019.
18. Legat B, Coey C, Deits R, Huchette J, Perry A. Sum-of-squares optimization in Julia. The First Annual JuMP-Dev Workshop

Test. 2017.
19. Busseti E, Moursi W, Boyd S. Solution Refinement at Regular Points of Conic Problems. 2018.
20. Paige CC, Saunders MA. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw. 1982;8(1):43-71.

doi:10.1145/355984.355989
21. Davis T. SuiteSparse. https://people.engr.tamu.edu/davis/suitesparse.html
22. TM Inc. MATLAB version: 9.13.0 (R2022b). https://www.mathworks.com. 2022.
23. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59(1):65-98.
24. Intel. Intel MKL Pardiso. https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
25. Amestoy P, Duff IS, Koster J, L’Excellent JY. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix

Anal Appl. 2001;23(1):15-41.
26. Amestoy P, Buttari A, L’Excellent JY, Mary T. Performance and scalability of the block low-rank multifrontal factorization on multicore

architectures. ACM Trans Math Softw. 2019;45:2:1-2:26.
27. Francis JGF. The QR transformation a unitary analogue to the LR transformation–part 1. Comput J. 1961;4(3):265-271.

doi:10.1093/comjnl/4.3.265
28. Kublanovskaya V. On some algorithms for the solution of the complete eigenvalue problem. USSR Comput Math Math Phys.

1962;1(3):637-657. doi:10.1016/0041-5553(63)90168-x

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8547-9759
https://orcid.org/0000-0001-8547-9759
http://info:doi/10.1109/lcsys.2021.3086585
http://info:doi/10.23952/jano.1.2019.2.02
http://info:doi/10.1007/s11590-021-01757-6
https://yalmip.github.io/
https://yalmip.github.io/
http://info:doi/10.1109/tac.2009.2017144
http://info:doi/10.1145/355984.355989
https://people.engr.tamu.edu/davis/suitesparse.html
https://people.engr.tamu.edu/davis/suitesparse.html
https://www.mathworks.com
https://www.mathworks.com
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.h%25tml
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.h%25tml
http://info:doi/10.1093/comjnl/4.3.265
http://info:doi/10.1016/0041-5553(63)90168-x

CIBULKA et al. 11867

29. Alizadeh F, Haeberly JPA, Overton ML. Complementarity and nondegeneracy in semidefinite programming. Math Program.
1997;77(1):111-128. doi:10.1007/bf02614432

30. Montoison A, Orban D, Krylov JL. A Julia Basket of Hand-Picked Krylov Methods. https://github.com/JuliaSmoothOptimizers/Krylov.jl.
2020.

31. Kingma DP, Adam BJ. A Method for Stochastic Optimization. 2014.
32. Brockett RW. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory Test. Birkhauser; 1983:181-191.

How to cite this article: Cibulka V, Korda M, Haniš T. Towards optimal spatio-temporal decomposition of
control-related sum-of-squares programs. Int J Robust Nonlinear Control. 2024;34(18):11847-11867. doi:
10.1002/rnc.7596

 10991239, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7596 by C

ochrane France, W
iley O

nline L
ibrary on [17/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://info:doi/10.1007/bf02614432
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl

	Towards optimal spatio-temporal decomposition of control-related sum-of-squares programs
	1 INTRODUCTION
	2 PROBLEM STATEMENT
	2.1 Motivation example

	3 DISCRETIZING TIME AND STATE SPACE
	3.1 Polynomial formulation
	3.2 Sum-of-squares relaxation
	3.3 Strong duality

	4 SDP DIFFERENTIATION
	4.1 Methods for finding the derivative
	4.1.1 Finite differences
	4.1.2 Analytical derivative
	4.1.3 Obtaining d𝒮d𝒟
	4.1.4 Exploiting problem structure

	4.2 Conditions of differentiability
	4.3 Comparison of differentiation approaches

	5 NUMERICAL EXAMPLES
	5.1 Low degree
	5.1.1 Double integrator
	5.1.2 Brockett integrator

	5.2 High degree
	5.2.1 Double integrator
	5.2.2 Brockett integrator

	6 CONCLUSION

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

