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2Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR),

University “Federico II” of Napoli, Italy

SUMMARY

Taking advantage of the simultaneous recording during 471 days between 2019 and 2021

by two superconducting gravimeters installed at the surface and 520 m under the surface

at the Low Noise Underground Laboratory (LSBB) in Rustrel, France, we investigate

whether a difference between the tidal gravity signals at the two locations can be de-

tected. First, we model the periodical variations of the Earth’s gravity owing to the tidal

influence from the Sun and Moon, at the Earth’s surface and at shallow depths. We pro-

vide analytical formulas for the Love numbers, gravimetric factor and gravity variation

of simple spherical planetary models. We also numerically compute those parameters and

function for a realistic spherical Earth model. We find that the fractional difference be-

tween the semi-diurnal tidal gravity variations at the surface and 520 m below is as small

as 8.5 10−5. We next evaluate the effect on the amplitude of the recorded gravity signal

due to the calibration factors of the two superconducting gravimeters at LSBB. Finally,

we compute the spectra of the difference between the gravity variations measured on and

under the surface in the semi-diurnal band of the M2 tidal wave. We find that the uncer-

tainties associated to the calibration factors are larger than the theoretical or observational

difference between the tidal gravity variations on the surface and at a 520-m depth.

Keywords: Earth tides, Time variable gravity, Gravimetric factor
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1 INTRODUCTION

The body and ocean tides generated by the Sun, the Moon and, to a lesser extent, by other celes-

tial bodies, are the causes of the largest periodical gravity variations on Earth. Body tides, which are

planetary scale, are very well understood from a theoretical point of view, which involves both celes-

tial mechanics and geophysics. Their accurate prediction requires the knowledge of the positions of

the Sun and the Moon and of the orientation of the Earth in space, as well as the modelling of the

global elasto-gravitational deformation of the Earth. In the following, we will only be interested in the

geophysical side of the phenomenon. We refer the reader to Wilhelm, Zürn & Wenzel (1997) for a

selection of references on this topic.

Often involved in studies of the tidal gravity variations is the gravimetric factor, which is a dimen-

sionless number defined at the surface of the Earth. According to the recommendations of the Working

Group on the Theoretical Tidal Model (Special Study Group of the Earth Tide Commission Sec. V

of the International Association of Geodesy), the gravimetric factor is defined as the Earth’s transfer

function between the body tide signal measured at the station by a gravimeter and the amplitude of the

vertical component of the gradient of the external tidal potential at the station. From a theoretical point

of view, the Earth model being assumed spherically symmetric, both the small disturbing force and

the resulting small gravity variation are expanded in vector spherical harmonics, so that a disturbing

force of harmonic degree ℓ causes a gravity variation of the same degree. Moreover the corresponding

gravimetric factor is of the same degree and shall be denoted by δℓ.

The classical derivation of the linearised analytical expression for δℓ is based on the decomposition

of the Lagrangian gravity variation at a point in a sum of three terms. The first term comes from the

perturbing force itself, in our case the tidal force. The second term comes from the displacement of

the mass point in the initial surrounding Earth’s self-gravity field. And the third term comes from the

Eulerian variation of the Earth’s self-gravity. The second and third terms are proportional to Love

numbers (Love 1909). The derivation can be found in Wahr (1981) or Hinderer & Legros (1989).

We however rederive the expression for the gravimetric factor in Section 2. Because the density and

the particle displacement are discontinuous across the surface, so are both the gradient of the initial

gravity and the Eulerian variation of the gravity potential. Care must then be taken in distinguishing

the definition of the gravimetric factor by approaching the surface from above or from below. Since

the gravimetric factor can be expressed in terms of Love numbers, we derive original formulas for the

degree-2 dynamic Love numbers of homogeneous and incompressible models, fluid or solid. Although

of no much use nowadays in geophysics, such simple models are of interest in planetary science (for

instance, Rambaux & Castillo-Rogez 2013; Peale & Canup 2015; Bierson 2024).

In Section 3, which is the core of the theoretical part of the paper, we analytically and numerically
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investigate the tidal gravity variation as a function of depth for different Earth models. A motivation

to develop a theory of subsurface tidal gravity variation is that available softwares for tidal

analysis, such as ETERNA-X (Schüller 2020), only handle gravity measurements at the surface

of the Earth. They do not allow for a tidal analysis of the data recorded at a station under

the ground. In view of the subsequent analysis of observational data acquired with superconducting

gravimeters on the surface and under the surface (Sections 4 and 5), we limit our computations to

semi-diurnal tides at depths smaller than 1 km. The results would not be significantly different for

other periods of the forcing, for instance for ter-diurnal or diurnal periods. The Love numbers and

gravimetric factor would abruptly change in case of resonance, that is if the frequency of the forcing

was close to the frequency of a normal mode. But there are no nearly semi-diurnal or ter-diurnal modes,

either computed for realistic Earth models or observed. Our homogeneous Earth models do not have

semi-diurnal or ter-diurnal modes either. The Free Core Nutation and Free Inner Core Nutation are

rotational nearly-diurnal normal modes of rotating elliptical Earth models. They do not matter for

the theory developed in the paper since we only consider non-rotating spherical Earth models. There

are no known long-period normal modes, except the Chandler wobble that, anyway, is not a resonant

mode because its period is not close to a tidal period. Moreover, spherical non-rotating models have

no Chandler wobble. We could speculate on the existence, theoretical or observational, of long-period

inertia-gravity modes confined to the liquid core. But, having most of their energy in the deep Earth,

they would not much influence the tidal deformation in the crust.

Besides, from gravity data, a software like ETERNA-X derives, among other things, the am-

plitude and phase of the gravimetric factor for separate sets of tidal waves that have close fre-

quencies. Therefore, to provide a consistent presentation to the reader familiar with ETERNA-X

or similar programs, we also search to determine whether the expression for the gravimetric fac-

tor in terms of Love numbers can be generalized downward to small depths.

First measurements of tidal gravity variations were made by Schweydar in Potsdam, Germany,

in 1914 (Torge 1989). From the middle of the twentieth century, long-term observations with spring

gravimeters developed (see Calvo [2015] for a brief historical account). In the 1980s, superconducting

gravimeters became commercially available. They are today the most stable and most sensitive relative

gravimeters (Hinderer, Crossley & Warburton 2015).

In this paper, we focus on the difference between the gravity signals simultaneously recorded

during 471 days between 2019 and 2021 by two superconducting gravimeters on the surface and at

a 520-m depth at the Low Noise Underground Laboratory (LSSB = Laboratoire Souterrain à Bas

Bruit, https://lsbb.cnrs.fr/) in Rustrel, France. Their location at LSBB is shown in Fig.

1, emphasizing the 520-m height difference. The surface instrument iGrav31 was installed in May

https://lsbb.cnrs.fr/
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2019 in the framework of the CRITEX project, which aims at studying the critical zone (https:

//www.critex.fr). The underground instrument iOSG24 is part of the MIGA experiment (first

laser-based atom interferometer for gravitational wave detection, http://miga-project.org).

It was installed in 2016 (Rosat et al. 2018).

In Section 4, we estimate the calibration factors of the gravimeters. In Section 5, we process

the data sets from the two instruments in a similar way over a common duration and investigate the

difference between the tidal signals. Finally, in Section 6, we draw the conclusion about this study.

Figure 1

2 TIDAL GRAVITY VARIATION, LOVE NUMBERS AND GRAVIMETRIC FACTOR

We consider an unperturbed self-gravitating non-rotating Earth model in hydrostatic equilibrium. It is

therefore spherically symmetric. If we denote by r the position-vector whose origin is at the centre of

mass, which is the centre of the sphere, gravity g at r derives from gravitational potential ϕ(r):

g(r) = −g(r)
r

r
= −∇ϕ(r), (1)

where ∇ is the gradient operator. Because there cannot be two material particles simultaneously at the

same geometrical position, the mass point initially located at space point r is also called r.

The Earth is then perturbed by a periodic tidal force which is the opposite of the product of the

density and the gradient of tidal potential ϕT (r, ω), where ω is the angular frequency of the oscillation.

The displacement vector of mass point r is u(r, ω). The time variation of the gravitational potential at

a geometrical location is called Eulerian variation of ϕ and is denoted by ϕ∆(r, ω). The time variation

of gravity following a mass point in its displacement is called Lagrangian variation of g and is denoted

by gδ(r, ω). To the first order in u, gδ, and ϕ∆, which are assumed to be small, we have (Dahlen &

Tromp 1998)

gδ = −∇ϕT + (u · ∇)g −∇ϕ∆. (2)

https://www.critex.fr
https://www.critex.fr
http://miga-project.org
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Therefore, the radial component of gδ is

gδr = −ϕ′
T − urg

′ − ϕ∆′
, (3)

where ur is the radial displacement and the prime denotes the radial derivative. It should be stressed

that relations (2) and (3) are, theoretically, valid where g, u, gδ, ϕ∆, and ϕT are defined, which is

inside the Earth. Outside the Earth, g, ϕT and ϕ∆ are well defined but gδ and u are not because there

is no material particle.

We then decompose the scalar functions ϕ∆, ur and ϕT in series of fully normalised spherical

harmonics Y m
ℓ (θ, φ), θ and φ being the colatitude and longitude, respectively:

ϕ∆(r, θ, φ, ω) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

ϕ∆m
ℓ (r, ω) Y m

ℓ (θ, φ) (4)

ur(r, θ, φ, ω) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

ur
m
ℓ (r, ω) Y m

ℓ (θ, φ) (5)

ϕT (r, θ, φ, ω) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

ϕT
m
ℓ (r, ω) Y m

ℓ (θ, φ) (6)

To simplify the notations, we drop subscript ℓ and superscript m from ϕ∆m
ℓ , urmℓ , and ϕT

m
ℓ , as well

as the explicit dependence on ω. So, we simply write that ϕT (r) varies as rℓ (Wenzel 1997):

ϕT (r) ∼ rℓ (7)

for any r.

We are interested in evaluating gδr at the surface r = a of the Earth and 520 m under the surface.

However, evaluating gδr at the surface r = a poses a problem because g′ and ϕ∆′
are discontinuous

there (see boundary conditions [11] and [13] below). We now address this issue.

Let us respectively denote by f+ and f− the limits

f+ = lim
r↘a

f(r) (8)

and

f− = lim
r↗a

f(r) (9)

of the function f(r) at r = a. The surface r = a being a discontinuity boundary for the density ρ, we
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have the following boundary conditions (Kellogg 1953; Alterman, Jarosch & Pekeris 1959):

g+ − g− = 0 (10)

g′+ − g′− = −4πGρ− (11)

ϕ∆
+ − ϕ∆

− = 0 (12)

ϕ∆′
+ − ϕ∆′

− = 4πGρ−ur− (13)

ϕT+ − ϕT− = 0 (14)

ϕ′
T+ − ϕ′

T− = 0, (15)

where G is the gravitational constant. Boundary conditions (10) and (11) are associated to Poisson’s

equation for ϕ inside the Earth

∇2ϕin = −∇ · gin = 4πGρ for r < a, (16)

where ∇2 and ∇· are the Laplace and divergence operators, respectively, and Laplace’s equation for

ϕ outside the Earth

∇2ϕout = −∇ · gout = 0 for r > a. (17)

Boundary conditions (12) and (13) are associated to Poisson’s equation for ϕ∆ inside the Earth

∇2ϕ∆in
= −4πG∇ · (ρu) for r < a (18)

and Laplace’s equation for ϕ∆ outside the Earth

∇2ϕ∆out
= 0 for r > a. (19)

We ascribe the displacement ur− to the material particles initially at r = a. So, we can write

ur(a) = ur−. (20)

Whereas gδr− is well defined, it does not make sense to speak of gδ outside the Earth because there is

no particle to move with. Nevertheless, we define gδr+ as follows:

gδr+ = −ϕ∆′
+ − ur−g

′
+ − ϕ′

T+. (21)

This is justified by the experimental setup (Wahr 1981). Indeed, the support of a superconducting

gravimeter (Hinderer, Crossley & Warburton 2015), for instance, is rigidly connected to the surface

and simultaneously moves with it. Therefore, we used ur− in formula (21). Inside the instrument, a

levitated sphere is maintained at rest by a magnetic force that exactly compensates the gravity forces

exerted by the Earth, Sun and Moon and the inertia force due to the motion of the instrument with

the surface. Neglecting the inertia force, measurements of the variations of the applied magnetic force
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allows for estimating the gravity variations. The levitated sphere is maintained above the surface, that

is in the exterior Earth’s gravity field, explaining why we used g′+, ϕ∆′
+ and ϕ′

T+ in relation (21).

As a consequence of the definition (21) and relations (11) - (15), we have

gδr+ = gδr−, (22)

which is the Lagrangian gravity variation gδr(a) we ascribe to the surface. Consequently, this last

relation and relation (21) are the solution to the problem raised above about the evaluation of the tidal

gravity variation at the surface of the model.

Taking advantage of the linearity of the equations of motion and of the spherical symmetry of

the Earth model, one defines dimensionless functions Hℓ(r) and Kℓ(r) independent of m and of the

forcing by (Love 1909)

ur(r) = −Hℓ(r)
ϕT (r)

g(r)
(23)

ϕ∆(r) = Kℓ(r)ϕT (r). (24)

Similarly to the functions Hℓ(r) and Kℓ(r) that are related to the particle displacement and Eulerian

gravitational potential variation, respectively, we define the dimensionless function ∆ℓ(r) related to

the Lagrangian variation of gravity by:

∆ℓ(r) = − gδr(r)

ϕ′
T (r)

. (25)

In particular, at the surface r = a of the spherical model, Hℓ(a) and Kℓ(a) are the tidal Love numbers

hℓ and kℓ (Love 1909)

hℓ = Hℓ(a) (26)

kℓ = Kℓ(a) (27)

and ∆ℓ(a) is the gravimetric factor δℓ

δℓ = ∆ℓ(a). (28)

Given Eqs (22) and (25), δℓ can be calculated by using either gδr+, defined by formula (21), or gδr−,

obtained by letting r increase towards a in Eq.(3). The usual derivation of δℓ in terms of the Love

numbers relies on formulas (21) and (23)-(28) (for instance, Wahr 1981; Hinderer & Legros 1989).

For r > a, the gravity gout outside a spherically symmetrical body of mass M is proportional to r−2 :

gout(r) =
GM

r2
(29)

and ϕ∆out is proportional to r−(ℓ+1) for a given degree ℓ

ϕ∆out
(r) ∼ r−(ℓ+1) (30)
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because it is solution of Laplace’s equation (19). Consequently, for any ℓ ̸= 0, we have

δℓ = 1 +
2

ℓ
hℓ −

ℓ+ 1

ℓ
kℓ. (31)

In particular, for ℓ = 2, which is the case of semi-diurnal tides, we obtain

δ2 = 1 + h2 −
3

2
k2. (32)

In the next section, we calculate the tidal variation of gravity under the surface.

3 SUBSURFACE TIDAL GRAVITY VARIATIONS

To evaluate gδr+, defined by Eq.(21), we needed analytical expressions for g and ϕ∆ outside the Earth.

Of course, to evaluate gδr by approaching the Earth’s surface from the inside, that is gδr−, we would

need analytical expressions for g and ϕ∆ inside the Earth. However, one or the other, or both, are

generally not known analytically inside realistic Earth models. We therefore turn either to simple

Earth models for which gin and ϕ∆in can be determined analytically, or to numerical computation for

a realistic Earth model.

First, let us consider an incompressible homogeneous Earth model, be it solid or liquid. Self-

gravity inside the unperturbed model is

gin(r) =
4π

3
Gρr (33)

where ρ is the constant density. Moreover, the Eulerian variation of the potential ϕ∆in is proportional

to rℓ because it is a solution of Laplace’s equation

∇2ϕ∆in
= 0 (34)

when the material is both homogeneous and incompressible:

ϕ∆in
(r) ∼ rℓ. (35)

Consequently, for any ℓ ̸= 0, we obtain

δℓ = 1− 1

ℓ
hℓ + kℓ (36)

by inserting gδr− in ∆ℓ(a) in Eq. (28). The comparison between Eqs (31) and (36) provides a relation

between the Love numbers hℓ and kℓ:

kℓ =
3

2ℓ+ 1
hℓ, (37)

then a relation between the gravimetric factor δℓ and the Love number hℓ:

δℓ = 1 +
2(ℓ− 1)

ℓ(2ℓ+ 1)
hℓ (38)
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We insist that the last two relations only hold true for incompressible homogeneous models. In partic-

ular, for ℓ = 2, we obtain

k2 =
3

5
h2 (39)

and

δ2 = 1 +
h2
10

. (40)

In Appendix A, we show that, if the model is fluid, the Love number h2 is

h2 =
10

4− 5m
, (41)

where m is the dimensionless parameter defined by

m =
ω2a

g(a)
. (42)

If the model is solid, we have, to a good approximation,

h2 ≃
5

2

{
1 +

19µ

2ρg(a)a

[
1− 79

570
x2(a)− 143

410400
x4(a)

]}−1

, (43)

where

x = x(r) = κr, (44)

κ2 =
ρω2

µ
(45)

and µ is rigidity.

We take ρ = 5515 kg m−3 and a = 6371 km, hence g(a) = 9.82 m s−2. At the M2 tidal period,

which is 12h25m14s, we find m = 1.2807 10−2, h2 = 2.5407, k2 = 1.5244 and δ2 = 1.2541

for a fluid sphere. If, moreover, we take µ = 1.46 1011 Pa, we find h2 = 0.4998, k2 = 0.299 and

δ2 = 1.04998 for a solid sphere.

Because we assumed the Earth model to be a homogeneous and incompressible sphere when we

derived gδr−, Eqs (33) to (40) are not valid anymore for realistic Earth models, which are compressible,

inhomogeneous, partially solid and partially liquid. We consider the PREM model (Dziewonski &

Anderson 1981) where we replace the global ocean by a 3-km thick extension of the upper crust. We

numerically integrate the equations of motion (Alterman, Jarosch & Pekeris 1959) at the M2 period

and obtain the results displayed in the second column of Table 1.

Table 1
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Let us next have a look at the function ∆ℓ(r), defined by relation (25), inside the Earth. Actually,

we would like to know whether relation (31) can also be used inside the Earth, close to the surface, as

an approximation to ∆ℓ(r), provided, of course, hℓ and kℓ be replaced by Hℓ(r) and Kℓ(r), respec-

tively.

Again, we consider a simple homogeneous incompressible Earth model. Let us assume it is fluid.

Taking into account Eqs (7), (33), (35) and (A1), we find that the Lagrangian gravity variation gδr

varies as rℓ−1. For ℓ = 2, it is a linear function of r so that the fractional variation of gδr between the

surface and depth d ≪ a is d/a, which is 8.16 10−5 for d = 520 m. As for ∆ℓ(r) defined by relation

(25), it is actually depth independent and is given by Eq. (A6).

Let us next consider a solid model. We show in Appendix A that the radial displacement ur(r) is

not a linear function of r. Therefore gδr(r) is not a linear function of r either and ∆ℓ(r) is not constant.

However, the differences between, respectively, gδr and the degree-2 gravimetric factor at r = a and at

r = a − d are 0.12 nm s−2 and 2.5 10−5 only. The fractional difference between the values of gδr at

the surface and at a 520-m depth is 10−4, barely more than in the liquid case.

Again by lack of analytical solution for the tidal deformation of realistic Earth models, we have

to rely on the numerical computation of the tidal gravity variation inside them. So, for our modified

version of PREM, we obtain the third column of Table 1, which gives the values of various quantities

at a 520-m depth. We see that the semi-diurnal tidal gravity variation gδr is bigger by 0.11 nm s−2 at

the surface than under the surface. Consequently, the fractional difference between the values of gδr at

the surface and at a 520-m depth is 8.47 10−5, which is close to what we found for our simple fluid

Earth model right above. Moreover, the difference at a 520-m depth between 1 + H2 − 3K2/2 and

∆2 amounts to 7.7 10−5 only. This answers our question about how close to ∆2 would be the formula

(32), with h2 and k2 replaced H2 and K2 at r = a − d. In Fig. 2, gδr is plotted as a function of depth

between the surface and 1 km. The difference between gδr and its linear fit is also plotted. It shows that

the non-linear part of gδr is 108 to 109 times smaller than its linear part.

Figure 2

A more refined Earth model, which would include Earth rotation, ellipticity and lateral variations

(Wahr 1981; Dehant & Ducarme 1987; Dehant, Defraigne & Wahr 1999), would probably give a more
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accurate estimate of the tidal gravity variations. But, a deformation of low harmonic degree is global

and taking into account non radial variations of the Earth’s structure would not dramatically change

the results we obtained for the tidal gravity variations and gravimetric factor of spherical models.

They actually show that the depth dependence of the tidal gravity variation is almost as simple as it

can be, that is a linear function of depth when the latter is small compared with the Earth radius. As a

consequence, function ∆2 is almost constant. This is the conclusion of this section.

In the next two sections, we investigate whether the difference of tidal gravity variations between

the surface and 520 m under the surface can be detected with superconducting gravimeters.

4 CALIBRATION OF SUPERCONDUCTING GRAVIMETERS

In Section 5, we analyse the data provided by two superconducting gravimeters located at LSBB in

Rustrel, France. The first one, the iOSG24, was installed in 2016 in a tunnel 520 m under the ground.

The second one, the iGrav31, was installed in 2019 on the surface (Fig. 1).

Beforehand, we have to determine the calibration factors of the instruments. The calibration fac-

tor, or scale factor, of a gravimeter allows for the conversion of the output signal of the instrument,

expressed in volt, into gravity variations, expressed in nm s−2.

Two different types of calibration have been applied to the data of the iOSG24 and iGrav31. The

first one is the classical calibration based on the simultaneous recording during up to a week by a

FG5 absolute gravimeter running side by side with a superconducting gravimeter. The second one is

a relative calibration of a superconducting gravimeter with respect to the other, at the same site and

at the same distance from the centre of the Earth, by using two overlapped time series of usually one

month but sometimes longer than one year.

The absolute calibration factors Kabs given in Table 2 were obtained with the help of the FG5#206

operated by the Strasbourg team, except in 2021 when the Montpellier team operated the FG5#202.

The fractional errors for the absolute calibration factors are of the order of a few parts per thousand,

ranging between 3.3 and 8.9 10−3 for the L1-norm calibration. Our results are in agreement with other

studies on calibration with an absolute gravimeter, which show errors at the 10−3 level or a few parts in

10−4 (Hinderer et al. 1991; Francis & Van Dam 2002; Imanishi, Higashi & Fukuda 2002; Riccardi,

Rosat & Hinderer 2011; Meurers 2012; Crossley et al. 2018; Fukuda et al. 2005, 2021).

Table 2
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The relative calibration factor KRel of the iGrav31 was obtained by a simultaneous recording

in May 2017 with the iOSG23 installed at the station J9 near Strasbourg, France (Fig. 1), with the

calibration factor -451 nm s−2/V as a reference. The instruments were a few meters apart in the same

building (Hinderer et al. 2022). A linear time regression on a 30-day duration record with 1 minute

samples was applied. The relative calibration uncertainty given in Table 2 is one order smaller than

the absolute calibration uncertainties. This was also found in previous studies on relative calibration

(Meurers 2012; Riccardi, Rosat & Hinderer 2011; Hinderer et al. 2022). However, the scale factor

of the iGrav31 probably changed when it was warmed up to room temperature to be transported to the

LSBB in Rustrel. The stability of calibration factors due to re-levitation or transportation of iGravs is

discussed by Schäfer et al. (2020) and Hinderer et al. (2022).

Table 3

The absolute calibration factors of the iOSG24 and iGrav31 are shown in Fig 3. The average values

of the absolute calibration factors for the two superconducting gravimeters are given in Table 3. The

average values using the L1 and L2 norms agree within the error bars. The L2-norm estimate provides

larger error bars than the L1-norm estimate, although the L1-norm error bars of individual calibration

values are larger because of the outliers in absolute gravimeter drop estimates. Actually, the scatter of

the L1-norm estimates of the calibration factors is smaller, which gives a weighted average value with

a smaller uncertainty.

Figure 3

Now knowing the calibration factors of the two superconducting gravimeters installed at the
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LSBB, we can proceed with the analysis of the tidal gravity variations, both on and under the sur-

face.

5 OBSERVED TIDAL GRAVITY VARIATIONS AT THE SURFACE AND

UNDERGROUND

As can be calculated from the geographical coordinates of the LSBB stations given in the caption

of Fig. 1, the horizontal, latitudinal and longitudinal distances between the instruments are 90.1 m,

57.6 m and 70.4 m, respectively. Before we launch into the analysis of the data provided by the two

instruments, we have to compare the latitudinal tidal gravity variation to the vertical one. The fractional

tidal gravity variation due to latitude differences is the fractional difference between the degree 2, order

2 associated Legendre function evaluated at the two locations, that is 1.8 10−5. This is 5 to 10 times

smaller than our theoretical estimates of the corresponding vertical ratio, so we can safely ignore it.

The signals gδiGrav31 and gδiOSG24 simultaneously recorded during 471 days between 2019 and

2021 by the superconducting gravimeters located respectively on the surface and 520 m under the

surface are plotted in Figs 4a and 4b. Being largely dominated by the tidal gravity variations, they look

very similar. The iOSG24 recording shows some short gaps due to different problems affecting the

instrument chain. The gaps are filled with the local tide calculated on the basis of the tidal parameters,

namely the gravimetric factor and phase, estimated by a tidal analysis conducted on the entire available

dataset.

The difference gδiGrav31 − gδiOSG24 displayed in Fig. 4c mainly contains a residual long-term drift

and a mostly annual residual signal, the latter being related to the gravity effect of the time-variable

hydrological contribution of the water distribution inside the Fontaine de Vaucluse catchment (Kumar

et al. 2023). If the fractional difference (gδiGrav31 − gδiOSG24)/g
δ
iGrav31 for the M2 tide was 8.47 10−5,

as we found for PREM in Section 3, and if we take as surface gravity variation the signal gδiGrav31, the

difference gδiGrav31 − gδiOSG24 would be given by Fig. 4d. Its maximum absolute value is smaller than

0.15 nm s−2, which is to be compared to the maximum absolute value of the actual difference shown

in Fig. 4c, which peaks at 300 nm s−2.

To detect elusive differences between the tidal signals from the two superconducting gravimeters,

we focus on one of the largest tidal component in the semi-diurnal band at the latitude of Rustrel,

namely the M2 tide. Considering minor waves in the semi-diurnal band would not provide significantly

different results. Moreover, a smaller wave such as S2 could probably be affected by thermal and baro-

thermal effects, which would be different at the surface and 520 m below. For a similar reason, we do

not search for the diurnal K1 tide that, although larger than the M2 tide, is spectrally very close to the

thermal band and could therefore be contaminated by the S1 solar wave.
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To isolate the M2 frequency band, from 1.931 to 1.934 cycle per day (cpd), we first filter the data

with two low-pass Fast Fourier Transform filters with band-width 0.01 cpd and cut-off frequencies

1.91 cpd and 1.96 cpd. This is equivalent to a pass-band filter having as corner frequencies 1.91 cpd

and 1.96 cpd. In contrast to time domain filters, such as the Infinite Impulse Response filter or the Finite

Impulse Response filter, the Fast Fourier Transform filter is based on manipulating specific frequency

components of a signal. It consists in taking the Fourier transform of the signal, then attenuating or

amplifying specific frequencies and finally inversely transforming the result. It is particularly suitable

for extracting the low peaks of signals where large harmonics are present nearby; in such a case,

time domain filters would fail (Oppenheim & Schafer 2014). This bandpass filtering also allows for

minimizing the non-tidal influences that may vary according to the location of the instrument. This is

especially true for solar radiation, hydrology and long-term instrumental drift. To test the efficiency

of the filter used to extract the M2 signal, it is applied to both the raw and filtered data of a 10-year

time series of synthetic tides. The amplitude spectra shown in Fig. 5a confirm that the M2 tidal signal

is corrrectly filtered.

Next, we identically apply the filtering procedure to both the iOSG24 and iGrav31 data. By the

way, we obtain amplitude spectra in full agreement with the amplitude found by a least-square

adjustment of the M2 wave using the time signals. We then subtract the filtered signals from each

other. Apart from small amplitude secondary waves, which are still present in the M2 band, the differ-

ence between the filtered signals of the two gravimeters is dominated by the M2 wave. Again, the M2

spectral amplitude is similar to the one we find when we apply, without any filtering, the FFT to

the difference gδiGrav31 − gδiOSG24.

It is worth noting it would be pointless to run a tidal analysis software like ETERNA-X

(Schüller 2020) that fits the time signal to a series of sinusoids at the tidal frequencies. Indeed,

in ETERNA-X or similar codes, it is assumed that gravity is measured at the Earth’s surface,

even if the elevation above the ellipsoid can be adjusted. This means that the masses between an

undergound station and the surface are not taken into account.

To highlight amplitude discrepancies between spectra, the difference between the filtered signals

of the iGrav31 and iOSG24 is calculated for three different calibration factors of the iGrav31. The

amplitude spectra are shown in Figs 5b-d. First, we consider the scale factor coming from the relative

calibration performed with the iOSG23 at the station J9 in Strasbourg (Table 2 and Fig. 5b). Second,

we consider the scale factors retrieved from L1 and L2-norms linear regression with FG5 absolute

gravity measurements (Table 3 and Figs 5c-d). All the spectra are normalized with respect to the

amplitude of the M2 tide at the LSBB, which is 449.2 nm s−2.

The red error bars, named fractional errors to shorten the expression ‘fractional calibration errors’,
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are obtained in the following way. In the case of relative calibration, the fractional calibration error

only comes from the regression since the scale factor of the reference gravimeter, the iOSG23, is

assumed to be not affected by error. As the numbers within parentheses in the last column of Table 2, it

is simply given by σiGrav31
Rel /KiGrav31

Rel , where σiGrav31
Rel is the error associated to the relative calibration

factor. In the case of absolute calibration, one has to account for the calibration error of the two

gravimeters, which leads to a fractional calibration error equal to√
(σiGrav31

Abs /KiGrav31
Abs )2 + (σiOSG24

Abs /KiOSG24
Abs )2, where the σs and Ks are provided in Table 3.

As expected, the spectra obtained with the absolute scale factors of the iGrav31 display larger

amplitudes (Figs 5c-d) than the spectrum obtained by calibrating the iGrav31 relatively to the iOSG23

in Strasbourg (Fig. 5b). The relative calibration aims at making the difference between the two signals

as small as possible. It is not exactly zero mainly because the relative scale factor is obtained by using

all the tidal components, not only the M2 wave. The relative calibration factor leads to the largest

amplitude difference for the M2 tidal wave. However, as mentioned in Section 4, the scale factor of

the iGrav31 may have changed when it was moved from Strasbourg to the LSBB in Rustrel.

The normalized amplitude of the spectra is of order 10−3. Hence, it is smaller than the confidence

interval, which is twice the fractional error, except in Fig. 5b where we used the relative scale factor

found at J9. However, as we have just seen above, it might not be appropriate to use this relative scale

factor at the LSBB.

The spectra clearly show that inaccuracies of calibration are larger than the predicted fractional

difference, 8.47 10−5, between the tidal gravity variations at the surface and 520 m under the surface of

PREM, making it undetectable. Therefore, a conclusion of our analysis is that one of the fundamental

limits to the possibility of detecting a difference in the tidal signals of such small amplitude, smaller

than 0.1 nm s−2, is the accuracy of the calibration. Our only metrologically meaningful calibrations are

the absolute ones, but the fractional errors we obtain are 0.0011 and 0.003 according to the L1-norm

or L2-norm, respectively, Relative calibration only makes sense if it is done with the two gravimeters

installed side by side, measuring the same gravity variations (Hinderer et al. 2022). The smallest error

bar, 1.2 10−4, is from the J9 relative calibration experiment, but obviously the scale factor may have

changed when the iGrav31 was moved from J9 to the LSBB. Even in this case the error bar would be

too large to detect the predicted tidal difference between the underground and surface sites.

Figure 5
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6 CONCLUSION

We have theoretically and observationally investigated the difference between the tidal gravity varia-

tions on the surface and 520 m under the surface at the Low Noise Underground Laboratory (LSBB =

Laboratoire Souterrain à Bas Bruit) in Rustrel, France.

Analytical modelling with homogeneous and incompressible spherical Earth models has shown

that the Lagrangian variation of gravity due to tidal forces is strictly a linear function of depth when

the model is fluid. Analytical modelling with a homogeneous and incompressible solid Earth model

and numerical modelling with a realistic Earth model have shown that the Lagrangian variation of

gravity due to tidal forces is only approximately a linear function of depth. Given the smallness of

both the depth and the Lagrangian tidal variation of gravity, the linear approximation is sufficient,

providing a fractional difference of semidiurnal tidal gravity variation of 8.5 10−5 between the surface

and the 520-m depth.

Gravity variations have been measured at LSBB between 2019 and 2021 simultaneously with

two models of superconducting gravimeters. The first one, the iOSG24, is installed 520 m under the

surface. The second one, the iGrav31, is installed on the surface and horizontally distant by 90.1

m from the iOSG24. Both instruments have been calibrated at their installation sites with absolute

gravimeters. Calibration of the iGrav31 relative to the iOSG23 at the station J9 near Strasbourg has

also been made.

The raw data of the gravimeters have been Fast Fourier Transformed in the semidiurnal M2 band.

Then the difference betweens the two FFTs has been computed. The process has been repeated three

times by using various estimates of the iGrav31 calibration factor. We found that the uncertainties

associated to the calibration factors are too large to allow for the detection of a difference between

the semidiurnal tidal variations at the surface and at a 520-m depth as small as what was theoretically

predicted.

With the same limitation due to the calibration factors, and assuming a linear downward

extrapolation of the tidal gravity variation, the difference between the tidal signals would be ob-

servable if the underground gravimeter was installed 4 to 5 km from the surface. Presently, such

an experiment is, however, not feasible. In addition to logistic problems due to the size of the

superconducting gravimeters, the increase of temperature with depth is another limiting factor.

Indeed, superconducting gravimeters need to be continuously cooled by using a helium com-

pressor. But this device does not work at temperatures above 35 C. Given that most geothermal

gradients are approximately 25 C km−1, the depth where one could plan to install a super-

conducting gravimeter is thus strongly limited. Although mechanical borehole gravimeters of

reduced size exist (Jiaming et al. 2011), their precision, of the order of 10 nm s−2, would be by
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far too low in comparison to the one of superconducting gravimeters such as those used in this

study. The same holds for the MEMS, which are microscopic mechanical gravimeters (Middle-

miss et al. 2016).
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Table 1. For the M2 period of 12h25m14s and a slightly modified version of PREM, tidal potential, its radial

derivative and other quantities listed in the first column, and defined in the text, at the surface (second column)

and at a 520-m depth (third column). The degree-2 harmonic component of the lunar tidal potential ϕT is

GM$r2/D3
$, where M$ = 7.349 1022 kg is the mass of the moon and D$ = 3.844 108 m is the mean

Earth-moon distance.

r = a = 6371 km r = 6370.48 km

ϕT (m2 s−2) 3.5044062 3.5038342

ϕ′
T (10−6 m s−2) 1.1001118 1.1000220

g (m s−2) 9.8239685 9.8244386

g′− (10−7 s−2) -9.0372421 -

g′+ (10−7 s−2) -30.8396437 -

g′ (10−7 s−2) - -9.0412351

ur (m) -0.2190984 -0.2191067

H2 h2 = 0.6142029 0.6143555

ϕ∆ (m2 s−2) 1.0649805 1.0649929

ϕ∆′

− (10−8 m s−2) -2.3794623 -

ϕ∆′
(10−8 m s−2) - -2.3907717

K2 k2 = 0.30389754 0.3039507

gδr (10−6 m s−2) -1.2743218 -1.2742138

∆2 δ2 = 1.1583566 1.1583530

1 +H2 − 3K2/2 δ2 = 1 + h2 − 3k2/2 1.1584294

= 1.1583566
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Table 2. Absolute and relative calibration factors KAbs and KRel for the iOSG24 and iGrav31. Each L1 and

L2 norm adjustment value is given with its error. The numbers within parentheses are the fractional errors (in

h), as explained in the text. The iGrav31 superconducting gravimeter has been calibrated at LSSB and at the

J9 station near Strasbourg, France, whose location is shown in Fig. 1.

Superconducting Time Duration KAbs KAbs KRel

gravimeter (year day) (days) (nm s−2/V) (nm s−2/V) (nm s−2/V)

Location L1 norm L2 norm

iOSG24 2015 280 5 -451.7 ± 2.7 -451.6 ± 0.6

(6.0) (1.3)

Underground LSBB 2016 322 4 -451.6 ± 2.6 -452.6 ± 0.7

(5.8) (1.5)

2019 291 2 -451.3 ± 2.9 -452.6 ± 0.7

(6.4) (1.5)

2020 266 4 -451.1 ± 3.6 -450.5 ± 1.0

(8.0) (2.2)

2021 153 6 -452.8 ± 1.5 -453.1 ± 1.2

(3.3) (2.6)

iGrav31 2019 297 6 -854.4 ± 4.3 -854.8 ± 1.7

(5.1) (2.0)

Surface LSSB 2020 272 5 -846.0 ± 7.4 -843.8 ± 3.1

(8.7) (3.7)

2021 147 6 -853.2 ± 1.6 -853.6 ± 1.2

(1.9) (1.4)

iGrav31 2016 242 4 -852.8 ± 4.2 -853.7 ± 2.2

(4.9) (2.6)

J9 Strasbourg 2016 340 3 -859.0 ± 4.5 -857.8 ± 2.3

(5.2) (2.7)

2017 94 2 -854.6 ± 7.6 -855.1 ± 3.6 -850.5 ± 0.1⋆

(8.9) (4.2) (0.12)

2017 184 8 -854.0 ± 2.8 -853.2 ± 0.9

(3.3) (1.1)

⋆ Linear regression using a 30-day duration with 1 minute samples by using the iOSG23 as a reference (-451

nm s−2/V) at the station J9 in Strasbourg, France.
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Table 3. Average values of absolute calibration factors KAbs, in nm s−2/V.

Superconducting gravimeter L1 norm L2 norm

iGrav31 -853.7±0.7 -853.5 ± 1.5

iOSG24 -451.6 ± 0.3 -452.1 ± 1.1
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Figure 1. Superconducting gravimeters iGrav31 and iOSG24 vertically distant by 520 m at the LSBB site in

Rustrel, France (modified from Sénéchal, Rousset & Gaffet (2013)). The hydrological catchment is in a

karstic context with an estimated water table lower than the iOSG24 location in a tunnel. Upper right cor-

ner inset: Location of Rustrel and Strasbourg. The geographical coordinates of the iGrav31 are 43◦56’28.13741”

N, 5◦29’1.42274” E and those of the iGrav31 are 43◦56’30.00080” N, 5◦29’4.70715” E. The iGrav31 was also

calibrated at the station J9 (48.622◦N, 7.684◦E) approximately 10 km northwest of Strasbourg (Section 4).
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Figure 2. For the M2 period of 12h25m14s and a slightly modified version of PREM, Lagrangian varia-

tion of gravity gδr as a function of depth D and difference between gδr and its linear fit aD − b, where

a = 2.07116 10−13 s−2 and b = 1.27432 10−13 m s−2. The non-linear part of gδr is 108 to 109 times smaller

than its linear part.
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Figure 3. L1- and L2-norm estimates of absolute scale factor KiOSG24
Abs (Top) and KiGrav31

Abs (Bottom) at LSBB.

In chronological order, the number of days of the simultaneous recording was 5, 4, 2, 4, 5 for the iOSG24 and

4, 3, 2, 8, 6, 5, 6 for the iGrav31.
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Figure 4. Gravity data at LSBB. (a) gδiGrav31 raw data, (b) gδiOSG24 raw data, (c) actual difference gδiGrav31 −

gδiOSG24 and (d) hypothetical difference gδiGrav31 − gδiOSG24 based on the assumption that the surface gravity

variation is gδiGrav31 and that the ratio (gδiGrav31 − gδiOSG24)/g
δ
iGrav31 is PREM’s, that is 8.47 10−5.
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Figure 5. Spectral analysis of the gravity data at LSBB shown in Fig. 4. (a) Check of the efficiency of the filter

used to extract a frequency signal centred in the M2 tidal band: spectra of a 10-year synthetic raw (black curve)

and filtered (red curve) tidal signal; (b)-(d) normalized amplitude spectrum of the bandpass filtered difference

for three scale factors of the iGrav31 denoted by KRel and KAbs and expressed in nm s−2/V in the insets and

given in Tables 2 and 3; the normalising factor is the amplitude of the M2 tide at the LSBB, which is 449.2 nm

s−2. The fractional calibration error, which can be obtained from the data in Tables 2 and 3 as explained in the

text, is plotted in red.
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APPENDIX A: DYNAMIC LOVE NUMBERS AND GRAVIMETRIC FACTOR OF

INCOMPRESSIBLE HOMOGENEOUS EARTH MODELS

Let us consider a spherical homogeneous incompressible fluid Earth model that is subjected to a tidal

deformation. By solving the equations of motion (Alterman, Jarosch & Pekeris 1959), one finds that

the radial displacement ur(r) of harmonic degree ℓ varies as

ur(r) ∼ rℓ−1 (A1)

and that ϕ∆in
(r) varies as rℓ [Eq. (35)]. The Love numbers are found to be

hℓ =
1

2(ℓ−1)
2ℓ+1 − m

ℓ

(A2)

and

kℓ =
3

2ℓ+ 1
hℓ, (A3)

where m is the dimensionless parameter defined by

m =
ω2a

g(a)
. (A4)

For ρ = 5515 kg m−3, a = 6371 km, ℓ = 2 and a semi-diurnal tide, we have g(a) = 9.81 m s−2,

m = 1.3738 10−2, h2 = 2.5439, k2 = 1.5263 and δ2 = 1.2544.

We notice that Eq. (A3) is consistent with Eq. (37) and that hℓ and kℓ tend to infinity when

ω2 =
2ℓ(ℓ− 1)

2ℓ+ 1

g(a)

a
. (A5)

ω is then an eigenfrequency of the model (Thomson 1863b). For ℓ = 2, the corresponding eigenperiod

is approximately 94 minutes and is therefore significantly smaller than the tidal periods, so that we

can assert that there could be no resonance phenomenon.

With relation (38) and the Love number hℓ given by Eq.(A2), we find

δℓ = 1 +
(ℓ− 1)

ℓ(2ℓ+ 1)
hℓ =

ℓ− 1−m

ℓ
hℓ =

(2ℓ+ 1)(ℓ− 1−m)

2ℓ(ℓ− 1)−m(2ℓ+ 1)
. (A6)

The specific static case, i. e. m = 0, was studied by Rogister (1995).

Let us now assume that the homogeneous incompressible Earth model is solid with rigidity µ.

Then, ur(r) is given by (Bromwich 1899)

ur(r) = C1

(r
a

)ℓ−1
+ C2

jℓ(x)

x
, (A7)

where C1 and C2 are constants, jℓ(x) is the spherical Bessel function of the first kind of order ℓ,

x = x(r) = κr (A8)
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and

κ2 =
ρω2

µ
. (A9)

The behaviour of jℓ(x) when x is small is

lim
x→0

jℓ(x) =
xℓ

(2ℓ+ 1)!!
, (A10)

where (2ℓ + 1)!! = (2ℓ + 1)(2ℓ − 1)(2ℓ − 3) . . . With this approximation, both terms of ur(r) in

Eq. (A7) are proportional to rℓ−1 and, therefore, ur(r) ∼ rℓ−1 as in the liquid case. Let us see if

the approximation is sufficiently accurate. We take ρ = 5515 kg m−3 and µ = 1.46 1011 Pa. The

maximum of κr is at the surface r = a. For ℓ = 2 and a semi-diurnal tide, we have κa = 0.18058740.

Since

j2(x) =

(
3

x3
− 1

x

)
sinx− 3

x2
cosx, (A11)

we obtain, with 10 significant digits, j2(κa) = 2.169060709 10−3. The same accuracy can be achieved

if we expand j2(x) in the following way:

j2(x) ≃
x2

15
− x4

210
+

x6

7560
− x8

518400
. (A12)

Keeping only the first three terms in Eq. (A12) provides a 8-digit accuracy, keeping only the first two

terms provides a 5-digit accuracy, and the quadratic approximation, a 3-digit accuracy. This shows

that, for ℓ = 2, ur(r) is only very approximately a linear function of r. Using the approximation

(A12) for j2(x), we obtain the degree-2 Love number

h2 ≃
5

2

{
1 +

19µ

2ρg(a)a

[
1− 79

570
x2(a)− 143

410400
x4(a)

]}−1

. (A13)

Eqs (37) and (38), which rely on ur(a) but not on the r-dependence of ur, remain valid in the solid

case. Therefore, k2 and δ2 are still given by

k2 =
3

5
h2 (A14)

and

δ2 = 1 +
h2
10

. (A15)

For a semi-diurnal tide, we have h2 = 0.4997, k2 = 0.2998 and δ2 = 1.04997. When ω = 0 and,

consequently, x = 0, one recovers Thomson’s exact static solution (Thomson 1863a).


	Introduction
	Tidal gravity variation, Love numbers and gravimetric factor
	Subsurface tidal gravity variations
	Calibration of superconducting gravimeters
	Observed tidal gravity variations at the surface and underground
	Conclusion
	Dynamic Love numbers and gravimetric factor of incompressible homogeneous Earth models

