
HAL Id: hal-04737700
https://hal.science/hal-04737700v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

vPIM: Processing-in-Memory Virtualization
Dufy Teguia, Jiaxuan Chen, Oana Balmau, Stella Bitchebe, Alain Tchana

To cite this version:
Dufy Teguia, Jiaxuan Chen, Oana Balmau, Stella Bitchebe, Alain Tchana. vPIM: Processing-in-
Memory Virtualization. Middleware 2024, In press. �hal-04737700�

https://hal.science/hal-04737700v1
https://hal.archives-ouvertes.fr

vPIM: Processing-in-Memory Virtualization
Dufy Teguia*

dufy.teguia@orange.com
University of Grenoble Alpes

France

Jiaxuan Chen*
jiaxuan.chen2@mail.mcgill.ca

McGill University
Canada

Stella Bitchebe
stella.bitchebe@mcgill.ca

McGill University
Canada

Oana Balmau
oana.balmau@mcgill.ca

McGill University
Canada

Alain Tchana
alain.tchana@grenoble-inp.fr

Grenoble INP
France

ABSTRACT
Data movement is the leading cause of performance degradation
and energy consumption in modern data centers. Processing in-
memory (PIM) is an architecture that addresses data movement by
bringing computation inside the memory chips. This paper is the
first to study the virtualization of PIM devices by designing and
implementing vPIM, an open-source UPMEM-based virtualization
system for the cloud. Our vPIM design considers four requirements:
Compatibility such that no hardware and no hypervisor changes
are needed; Multiplexing and isolation for a higher utilization ratio;
Utilizability and transparency such that applications written for
PIM can be efficiently run out-of-the-box, leading to rapid adoption;
Minimalization of virtualization performance overhead.

We prototype vPIM in Firecracker, expanding the virtio stan-
dard. Our experimental evaluation uses 16 applications provided by
PrIM, a recent PIM benchmark suite. The virtualization overhead is
between 1.01× and 2.07× for untouched PrIM applications. To keep
overhead low, vPIM introduces several optimizations: zero-copy
from guest OS to Firecracker, efficient virtio queues management,
efficient Guest Physical Address to Host Virtual Address translation,
parallel processing on multiple ranks, automatic data batching and
pre-fetching, and the reimplementation of some specific functional-
ities in C instead of Rust. We hope this work will lay the foundation
for future research on PIM for cloud computing.

CCS CONCEPTS
• Software and its engineering→ Virtual machines; • Hard-
ware→ Dynamic memory.

KEYWORDS
VirtIO, Processing In Memory, Data transfer, DRAM Processing
Unit, Virtualization

ACM Reference Format:
Dufy Teguia*, Jiaxuan Chen*, Stella Bitchebe, Oana Balmau, and Alain
Tchana. 2024. vPIM: Processing-in-Memory Virtualization. In 25th Inter-
national Middleware Conference (MIDDLEWARE ’24), December 2–6, 2024,
Hong Kong, Hong Kong. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3652892.3700782

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 25th International
Middleware Conference (MIDDLEWARE ’24), December 2–6, 2024, Hong Kong, Hong
Kong, https://doi.org/10.1145/3652892.3700782.

1 INTRODUCTION
Modern applications such as health monitoring, augmented/virtual
reality, transportation, and recommender systems, require rapid
processing of large amounts of data [9, 13, 23]. Datamovement is the
main cause of performance degradation and energy consumption in
modernmachines [19, 34]. Near-data processing [14, 29, 46, 54] is an
alternative to address the data movement problem in the traditional
compute-centric model. The main idea is placing compute inside
memory chips or in the memory controllers, virtually eliminating
the data movement between memory and the main compute units
(e.g., CPU, GPU, and other ASICs). The Processing In-Memory (PIM)
architecture follows the near-data processing principles. While PIM
is not a new idea [11, 18, 21, 37, 48, 57], emerging commercial de-
vices promise to make PIM practical and easy to deploy. UPMEM [5]
is the first commercial PIM device that commodity servers can use
out-of-the-box.

This progress in hardware has recently spurred the attention of
the research community and the industry. The characterization of
PIM DPUs and their comparison with CPUs and GPUs have been
extensively researched by prior work [25, 27, 31, 39, 42]. In this
paper, in contrast, we focus on PIM virtualization. Virtualization is
one of the key building blocks in cloud computing, as it provides
flexible resource consumption and efficient resource utilization
through resource sharing. To facilitate large-scale adoption of PIM,
its virtualization is crucial [32].

Currently, users looking to leverage PIM devices must reserve
an entire server with a fixed number of devices. However, many
applications do not require the full capacity of such a server, leading
to underutilization of these PIM resources. Virtualization addresses
this inefficiency by allowing applications to dynamically allocate
the exact number of PIM devices they need, optimizing resource
usage and enabling more flexible and cost-effective deployment.

This paper studies the virtualization of PIM devices for the first
time by designing and implementing vPIM, an open-source UPMEM
virtualization system for the cloud. We consider the following re-
quirements when designing vPIM. (𝑅1) Compatibility: vPIM requires
no hardware and no hypervisor changes to allow its rapid adop-
tion by cloud providers. (𝑅2) Multiplexing: vPIM allows UPMEM
utilization by several VMs in an isolated manner for a higher utiliza-
tion ratio. (𝑅3) Utilization and Transparency: vPIM is application
transparent, allowing cloud users to deploy and use from inside the

∗The authors have made equivalent contributions to the work

https://doi.org/10.1145/3652892.3700782
https://doi.org/10.1145/3652892.3700782
https://doi.org/10.1145/3652892.3700782

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Teguia, Chen, Bitchebe, Balmau,

VM effortless and does not require application changes. (𝑅4) Perfor-
mance: vPIM minimizes virtualization overhead. To satisfy 𝑅1 − 𝑅3,
vPIM follows the para-virtualization approach by expanding the
virtio standard [45]. We prototype vPIM in Firecracker [12], an
open-source virtual machine monitor (VMM) powered by AWS.

To minimize performance overhead compared to native execu-
tion on PIM devices (𝑅4), vPIM incorporates several optimization
techniques. At the data level, vPIM leverages zero-copy from guest
OS to Firecraker, efficient Guest Physical Address to Host Virtual
Address translation, and automatic data batching and pre-fetching
to amortize the overhead posed by small data transfers to/from
the virtualized PIM device. At the thread management level, we
introduce efficient virtio queue management, as well as efficient
handling of parallel operations. Finally, we perform additional op-
timizations related to the utilization of Firecraker (e.g., recasting
Rust to C for some portions of code).

One of the main goals of this work is to understand the per-
formance implications posed by PIM virtualization. Our experi-
mental evaluation uses two applications (Checksum [6] and Index
Search [7] on a subset of the Wikipedia) provided by UPMEM
and PrIM [31]. The latter is a recent PIM benchmark suite con-
taining 16 realistic workloads from different domains, including
dense/sparse linear algebra, databases, data analytics, graph pro-
cessing, neural networks, bioinformatics, and image processing.
First, all the applications run on vPIM without errors and with no
modifications required to the applications or the hardware, thus
confirming the effectiveness of vPIM. Second, vPIM’s overhead can
be as low as 1.01× compared to the native UPMEM execution. How-
ever, a straightforward virtualization of the PIM device can lead
to overhead as high as 53.1× in specific workloads. For context,
Firecracker’s native overhead for 4KB-IO read operations is about
26× [12]. Note that prior studies [25, 27, 31, 39, 42] focused on in-
PIM processing, neglecting data transfer cost. Our work fills this
gap. To avoid rewriting PIM applications, we observed that it is cru-
cial to minimize guest-hypervisor-VMM transitions. By applying
adaptive batching for writes and data prefetching optimizations for
reads, we reduce the overhead by 45×, compared to a more naive
approach to virtualization. In particular, we found that the primary
source of the virtualization overhead is the number of read/write
calls and not the amount of transferred data. Each data transfer
performed by the guest OS traps in the hypervisor (KVMmodule in
Linux), which forwards the trap to the VMM (Firecracker). These
transitions cause a performance bottleneck compared to the native
UPMEM execution.

Even though our goal is to allow PIM application execution
out-of-the-box in virtualized environments, our experience imple-
menting vPIM led to two guiding principles for developing new
PIM applications running on virtualized devices. First, when pro-
gramming applications for vPIM, a fundamental principle should
be to minimize data transfers. Second, the choice between serial
and parallel transfer impacts the overall performance in virtualized
environments. Like all pioneering work, we recognize that vPIM
can be perfected and discuss current limitations. We hope this work
will lay the foundation for future research on PIM for cloud comput-
ing. Our prototype will be open-sourced at anonymous-link upon
publication.

In summary, this paper makes the following contributions:
(1) A new specification for PIM virtualization, based on the virtio

standard. We instantiate this specification for UPMEM, based
on Firecracker.

(2) The design and implementation of vPIM, the first open-source
system for virtualizing UPMEM.

(3) An extensive experimental evaluation of vPIM in a wide range
of applications provided by UPMEM [6, 7] and PrIM [31].

(4) Key lessons about UPMEM virtualization and its implications
on application programming.

The rest of the paper is organized as follows. Section 2 provides
details on PIM and UPMEM. Section 3 shows the design of vPIM.
Section 4 describes the main performance optimizations in vPIM.
Section 5 presents our experimental evaluation. Section 6 presents
the related work, and Section 7 concludes the paper. The Appendix
describes the PIM virtio specification we plan to discuss with the
OASIS VIRTIO Technical Committee.

2 BACKGROUND ON UPMEM PIM
This section introduces UPMEM PIM (UPMEM for short). We use
the latter for three main reasons. (1) UPMEM is the most recent
PIM technology that can be employed on off-the-shelf machines.
Other commercial PIM devices [3, 35] need special memory tech-
nologies. (2) UPMEM is provided with a software stack that sim-
plifies the development and deployment of PIM applications. (3)
UPMEM is the most popular PIM technology used in recent re-
search [16, 24, 27, 31, 32, 39, 41, 42].

Hardware Architecture. Fig. 1 presents a typical architecture
of a machine equipped with UPMEM. The main components are
standard CPUs (host CPUs), standard DRAM main memory (host
DRAM), and UPMEM PIMs. The latter are traditional DDR4-2400
DIMM modules and thus can be plugged into standard memory
channels. An UPMEM PIM device is called a rank and includes 8
memory chips, hereafter called a PIM chip. The operations are sent
to chips by writing to their control interfaces (CI). A PIM DIMM
has 2 ranks, each with 64 DRAM Processing Units (DPUs). There
are 8 DPUs per PIM chip.

Main Memory

UPMEM PIM RAM

DPU
Chip

DPU
Chip

Host CPU

Control/Status Interface DDR4 Interface

Pipeline

24-KB
IRAM

64-KB
WRAM

64-MB
DRAM
Bank

(MRAM)
64 bits

D
M

A
E

ng
in

e

...

...

Figure 1: Typical machine architecture with UPMEM.

DPU Architecture. DPUs have a specific Instruction Set Archi-
tecture (ISA) and a frequency reaching 400 MHz. A given DPU

anonymous-link

vPIM: Processing-in-Memory Virtualization MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

has access to a 64MB DRAM memory bank called Main Memory
(MRAM); 24KB instruction memory (IRAM), where the DPU pro-
gram shall be loaded; and 64KB of working memory (WRAM). The
host CPU can access MRAM banks to transfer input data from host
memory to MRAM (CPU→DPU) and transfer results back from
MRAM to host memory (DPU→CPU). The DPU can run up to 24
threads called tasklets. These share the different memory regions
described above. In order to fully utilize the DPU’s performance,
the program should run at least 11 tasklets. This is because of a
hardware constraints that states that for a given thread, 11 cycles
should separate 2 consecutive instructions.

 1 #def�ne DPU_BINARY "./bin/dpu_code"
 2
 3 uint32_t count_zero(uint32_t �array, int array_size){
 4 struct dpu_set_t set, dpu;
 5 uint32_t zero_count = 0, dpu_zero_count;
 6 size_t dpu_count, each_size = array_size / NR_DPUS;
 7 dpu_alloc(NR_DPUS, NULL, &set); ��allocate DPU
 8 dpu_load(set, DPU_BINARY, NULL); ��load DPU program
 9 DPU_FOREACH(set, dpu, dpu_count) {dpu_prepare_xfer(dpu, &each_size);}
10 dpu_push_xfer(set, DPU_XFER_TO_DPU, "partition_size", 0,
11 sizeof(uint32_t), DPU_XFER_DEFAULT);
12 DPU_FOREACH(set, dpu, dpu_count) {
13 dpu_prepare_xfer(dpu, &array[dpu_count * each_size]);
14 } ��transfer parameter
15 dpu_push_xfer(set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0,
16 each_size * sizeof(uint32_t), DPU_XFER_DEFAULT); ��transfer data
17 dpu_launch(set, DPU_SYNCHRONOUS); ��launch DPU program
18 DPU_FOREACH(set, dpu) {
19 DPU_ASSERT(dpu_copy_from(dpu, "zero_count", 0,
20 &dpu_zero_count, sizeof(dpu_zero_count)));
21 zero_count += dpu_zero_count;
22 } ��copy result to CPU
23 dpu_free(set);
24 return zero_count;
25 }

10/7/24, 6:37 AM Convert Code to PDF Online: Free Tool for Programming Languages

https://tarikjaber.github.io/Code-to-PDF/ 1/1

(a) Host-side code.
 1 #def�ne NUM_TASKLET 16
 2 ��host uint32_t zero_count = 0;
 3 ��host uint32_t partition_size;
 4 BARRIER_INIT(my_barrier, NUM_TASKLET);
 5
 6 int main() {
 7 if(me()��0) mem_reset(); barrier_wait(&my_barrier);
 8 int size_per_tasklet = partition_size/NUM_TASKLET;
 9 int �partition = (int *) mem_alloc(size_per_tasklet * sizeof(int));
10 int �mram = (int *) DPU_MRAM_HEAP_POINTER +
11 (me() * size_per_tasklet) * sizeof(int);
12 mram_read((const ��mram_ptr void*) mram, partition,
13 size_per_tasklet * sizeof(int));
14 for (int i = 0; i < size_per_tasklet; i��)
15 {if(partition[i]��0) zero_count��;}
16 return 0;
17 }

10/7/24, 6:39 AM Code

https://tarikjaber.github.io/Code-to-PDF/ 1/1

(b) DPU-side code.

Figure 2: An example of UPMEM program that counts the
total number of zeros in an array.

ProgrammingModel.UPMEM follows the single-programmultiple-
data (SPMD) programming paradigm. The same code is executed
on all threads (tasklets) of all allocated DPUs while each tasklet
processes different part of the data. In practice, to use the UPMEM
PIM, the developer must split the application logic into the host-
side program and the DPU-side program. Fig. 2 gives an example
UPMEM program that counts the total number of zeros in an array.

The host-side program (Fig. 2.a) runs on host CPUs. It orches-
trates the dataflow and the execution of DPU programs. The typical
workflow of a host program is as follows: (1) allocate the desired
number of DPUs (line 7) and offload theDPU-side program binary to
the hardware (line 8), (2) partition and distribute the input datasets
across the DPUs (CPU→DPU, line 12-16), (3) launch the DPU-side
program (line 17), (4) after the DPU program terminates, it retrieves
the results from the memory bank of the DPUs (DPU→CPU, line 18-
22), and (5) free the DPUs (line 23). Similarly to GPUs, UPMEM PIM
follows the offload model where the input data has to flow through
the host CPU to the UPMEM PIM hardware before computation.

The DPU program (Fig. 2.b) runs inside the UPMEM chips. It
manages the workload for each tasklet in one DPU (line 7-16), and
defines computation to process the partition of the data loaded to
the DPU (line 8-11). Note that the DPU processing pipeline only has
access to the 64-KB WRAM while data loaded from the host CPU
are stored in the MRAM banks. The DPU program has to explicitly
manage the data load/store between WRAM and MRAM to support
the computation of the tasks (line 12-13).

UPMEM PIM Hardware

Safe Mode: IOCTL

UPMEM SDK

Applications

API Calls

Expose
 Device

User Space

Perf Mode: DMA

UPMEM Driver
Kernel Space

Figure 3: Software Components of a UPMEM System.

Software Stack. The UPMEM applications are written with the
UPMEM Software Development Kit (SDK). The SDK provides a set
of programming interfaces to manage the UPMEM PIM hardware,
which is exposed to the Linux kernel as a device by the UPMEM dri-
ver. As Fig 3 shows, the SDK operates the hardware either through
the kernel driver (safe mode) or directly from the user space (per-
formance mode). In safe mode, operations are done through ioctls
sent to the driver, providing isolation between host applications. In
performance mode, the host application mmaps the whole MRAMs
and control interfaces, allowing it to bypass the driver completely.
vPIM uses both modes for different purposes.

UPMEMHardware Limitations. UPMEM has the following three
limitations which pose challenges for virtualization. First, UPMEM
does not support direct communication between DPUs. Second,
UPMEM needs data to flow through the host CPU before reaching
the DPU chips. Third, UPMEM does not support the pause/resume
of a task once it has been launched. This aspect is outside the scope
of this paper and will be addressed in future work. For the first and
second limitations, we propose two data transfer optimizations that
alleviate the overhead of virtualized UPMEM devices (see Section 4).
However, the virtualization overhead could be further decreased if
inter-DPU transfer or direct DRAM-DPU transfer was possible. In

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Teguia, Chen, Bitchebe, Balmau,

a future version of vPIM, we plan to extend our prototype beyond
UPMEM PIM (e.g., adapting our work for [35] and [3]).

3 VPIM DESIGN
vPIM is the first work that virtualizes a PIM device. This step is key
to bringing PIM to the cloud, the defacto execution infrastructure
for companies.

Guest userspace Guest
kernel

322

1 4
Frontend Backend

KVM

Host
kernel UPMEM

driver

File
in /dev

Process
Host app

Host lib

VMM (Firecracker)

vUPMEM device

sysfs

Manager

UPMEM device

Native
apps

Figure 4: vPIM architecture. The client process in the guest
userspace sends requests to the vUPMEM frontend driver,
which then forwards them to the backend in the VMM. The
backend executes operations on the UPMEM device, while
the Manager manages UPMEM allocation across VMs.

3.1 Overview
Although our design is generic, we use Linux KVM [36] (the hy-
pervisor) and Firecracker [12] (the virtual machine monitor) for
illustration. We choose these systems for their wide adoption by
cloud providers. Fig. 4 presents a high-level view of vPIM’s archi-
tecture. It depicts the way vPIM’s components interact and the path
that a request takes when initiated from the VM. vPIM follows the
para-virtualization approach, which requires no hardware and no
hypervisor changes (𝑅1) to present a device to VMs. Throughout
this section, we use vPIM to virtualize UPMEM devices, which we
refer to as vUPMEM. VMs see vUPMEM devices thanks to the new
virtio-based specification vPIM introduces. virtio is an I/O device
para-virtualization standard offering efficiency and extensibility.
More details about our new specification can be found in Appen-
dix A.1. vPIM consists of three components:
• Frontend. The frontend is a virtio device driver located in the
guest kernel. It exposes a virtual UPMEM device to the guest
userspace and forwards the requests and data from UPMEM SDK
to the backend in Firecracker (Fig. 4 step 1, Section 4.1). The
client application uses vUPMEM in safe mode (via the frontend
driver).

• Backend. The role of the backend is to represent the rank for the
VM, decode the host-side requests, perform the desired operation
on the rank, and return the request payload (Fig. 4 steps 2 to 4,
Section 4.2). It uses UPMEM in performance mode (by mmaping
the device).

• Manager. To enforce isolation between VMs, vPIM relies on a
manager which runs on each host OS (Section 3.5). The manager
is a userspace program that implements the rank-sharing/allocation
policy (𝑅1). It’s role is to monitor the ranks on the system and
attach available ranks to virtual machines.

To utilize vPIM, cloud providers are required to install the frontend
driver in the virtual machine kernel, while cloud users can directly
utilized the untouched UPMEM’s SDK within the guest (𝑅1). The
process of device virtualization remains transparent to cloud users,
eliminating any need to modify the SDK or the application interface
(thus satisfying 𝑅3).

This design is extensible to new features, ensuring compatibility
with future SDK updates. To achieve this user space level trans-
parency, the frontend driver exposes identical parameters to the
VM’s userspace as the native driver does in the host environment.
The SDK leverages these provided details for configuration pur-
poses. Within the virtual machine, rank operations (read/write to
rank memory) and control interface operations (read/write to the
hardware’s control interface) are initiated by the SDK. These oper-
ations are managed as requests from the guest to the backend with
Rank operations having a maximum transfer capacity of 4GB per
operation due to hardware limitations.

Virtualizing UPMEM introduces two key challenges. First is
the efficient handling of large data transfers without duplication
between the guest and host. Second is managing frequent transfers
efficiently, as they can significantly amplify virtualization overhead.
Both challenges are critical to maintaining performance in the
virtualized environment.

3.2 vUPMEM Bootstraping
When a Firecracker VM is launched, a thread establishes a listening
socket to handle incoming requests, starting to receives the VM’s
configuration, such as the path to the kernel, the root file system, the
virtio devices (including vUPMEM), and the VM launch command.

During boot, Firecracker passes information about its virtio de-
vices to the VM via the command line. This includes details like the
MMIO region allocated for Firecracker-guest communication and
the IRQ number assigned for event triggering for vUPMEM. Upon
reading the vUPMEM devices’ description from the command line,
the guest activates the vUPMEM frontend driver to manage the
corresponding device.

The device initialization process configures virtio communica-
tion settings within the guest, sends a configuration request, and
retrieves device attributes such as frequency and the number of
available DPUs in the rank. After configuration, the vUPMEM fron-
tend driver exposes the device to userspace through a device file
(safe mode). Our evaluation shows that adding a vUPMEM device
to a VM increases boot time by up to 2ms, which is negligible.

3.3 vUPMEM Booking
vPIM follows the same approach as Firecracker to specify resource
allocation needs (e.g., number of CPUs). More precisely, hosts send
requests to the Firecracker API server detailing the requested re-
sources, including the desired amount of vUPMEMs. A VM can
request as many vUPMEM devices as needed, up to the maximum
number of physical UPMEMs available.

vPIM: Processing-in-Memory Virtualization MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Due to UPMEM hardware limitations, vPIM performs alloca-
tion at the rank granularity rather than level of individual DPUs.
However, vPIM allows dynamic rank allocation, allowing vUPMEM
devices to be linked to different physical ranks during the same
VM execution. For instance, once a vUPMEM device completes
operations with a rank and no longer needs it, the rank can be
released and reallocated to another VM. The vUPMEM device can
then request a new available rank from the manager.

3.4 vUPMEM Usage
Within the guest OS, applications utilize the SDK’s safe mode as the
preferred mode. This choice arises from concerns related to rank
isolation and the potential overhead associated with migrating a
rank from one VM to another. This approach respects the isolation
requirement (𝑅2) compared to the performance mode. Using the
performancemode gives the cloud user’s application direct access to
the rank. This leads to security problems as the cloud application is
untrusted. Moreover, the seamless usage and allocation of the device
to the VM, as suggested by 𝑅3, aligns well with the characteristics
of the safe mode.

However, Firecracker interacts with the physical UPMEM device
in performance mode. By employing mmap operations, Firecracker
bypasses the kernel driver in the host (𝑅4). Using the performance
mode in Firecracker (the VMM) does not lead to security concerns,
as it is a trusted environment associated with the cloud provider.
In addition, Firecracker works with vPIM’s external manager to
securely arbitrate rank sharing among VMs.

3.5 vUPMEM Sharing

NANA

NAAV

ALLO

Rank alloc.

Rank realloc.

Rank release

Rank content
reset

Figure 5: Rank states in the manager. Unallocated ranks start
in theNAAV state, and set to theALLOC state upon allocation.
Set to the NANA state after released for content reset.

Multitenancy is a critical feature for cloud computing, yet the
current UPMEM PIM hardware does not natively support it. Un-
like the approach by Bongjoon Hyun et al. [32], which suggests
hardware modifications such as introducing an MMU into UPMEM,
vPIM adopts a different strategy by sharing UPMEM at the rank
level. This approach requires no hardware changes (𝑅1), thus allows
rapid adoption and deployment of vPIM.

The Manager monitors the availability of physical ranks and
allocates them to VMs as needed. Fig. 5 illustrates the life cycle
of a rank in vPIM, showing the different state it transits through.
The manager maintains a rank table that tracks all ranks in the
system, including essential information such as the rank’s index,
rank status file location, the currently assigned vUPMEM device,
and the rank’s state. A rank’s state can be one of the following:
in use (allocated, ALLO), available for allocation (not allocated and

available, NAAV), or temporarily unavailable due to a reset process
(not allocated and not available, NANA).

VMs initiate rank allocation requests to the manager either dur-
ing vUPMEM device instantiation or at DPU allocation (called by an
application in the VM). The manager listens for such requests via
a UNIX domain socket. To effectively handle concurrent requests,
the manager employs a thread pool with a configurable number of
threads (set at 8 in our prototype) for asynchronous processing.

The allocation strategy is as follows. First, the manager checks
any NANA rank requested by its previous user. This strategy opti-
mizes resource usage by avoiding the need for resetting the rank,
saving CPU cycle. If no suitable NANA device is found, the manager
looks for a NAAV rank using a round-robin algorithm. If no NAAV
ranks are available and NANA ranks exist, the manager enters a
waiting state until a NANA rank becomes available. If neither type
is available, it waits for a configurable timeout before retrying, up
to a configurable number of attempts. If all attempts fail, the request
is abandoned. In the current prototype, the manager assigns ranks
to VMs in a FIFO manner.

Rank releases are managed by a dedicated observer thread which
tracks the status of ranks via the sysfs files. Upon detecting a
rank release, the manager updates its rank table and triggers the
erase process to reset the rank’s memory, ensuring no residual
data is accessible to subsequent users and preventing information
inference between VMs.

Note that the rank release process differs from rank allocation,
where VMs explicitly calls the manager. Instead, a VM does not
inform the manager when releasing a rank. This design choice
enables the detection of UPMEMusage by both VM applications and
native applications in the host without requiring any modification
to those applications, allowing them to coexist seamlessly with
VMs in the vPIM system, thus satisfying requirement 𝑅3.

Data isolation between the VMs is maintained by requiring all
rank allocations to go through the manager, which resets rank
memory before reassigning it. Additionally, when UPMEM PIM
is used as a memory device, byte interleaving prevents DPU pro-
grams from accessing rank memory data. This hardware feature
makes it impossible for a DPU program to read the memory data of
another VM when the device is used as a memory resource, thereby
effectively meeting requirement 𝑅2.

Currently, vPIM supports spatial sharing at rank granularity due
to the lack of hardware support for application colocation. However,
we plan to develop a software-based solution to enable application
colocation within ranks. As the hardware evolves, we anticipate
that future PIM hardware will incorporate direct support for appli-
cation colocation, as suggested in related work [32].

4 IMPLEMENTATION
This section presents implementation details and optimizations
vPIM integrates into the frontend and the backend to minimize the
para-virtualization overhead (𝑅4).

4.1 Frontend
Data Transfer. In rank operations (read-from-rank, write-to-rank),
to facilitate data transfer between the guest and device, the frontend
needs to send the transfer matrix to the backend.

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Teguia, Chen, Bitchebe, Balmau,

Fig. 6 provides an overview of this transfer matrix, sourced from
the SDK. It contains three components: the metadata for the entire
transfer, the metadata for each DPU’s the data transfer, and arrays
of Linux page struct, each representing the data for one DPU in
the rank. A single rank can have up to 64 DPUs and each DPU has a
memory bank of 64MB, so the transfer matrix can consist of at most
64 arrays, and each with up to 16,384 pages (64MB/4KB). Since the
pages are allocated in the guest userspace, and Firecracker cannot
directly access them via the Linux page struct in the guest address
space, it is not feasible to directly transfer the matrix to the backend
using the virtqueue.

Metadata

DPU0: Metadata Page0 Page1 ...

DPU1: Metadata Page0 Page1

DPU63: Metadata Page0 Page1

int size
int offset

int nb_pages
int offset

...
...

...

struct page **pages;

...

...

...

Figure 6: Example of a transfer matrix showing the structure
of data and metadata and their distribution to DPUs.

vPIM serializes the matrix to fit the data into the virtqueue by
breaking down the matrix into two buffer types: metadata buffers
and page buffers, which are arrays of 64-bit unsigned integers.
Each integer in the array is derived from a Linux page struct
by converting it to a physical address in the VM (Guest Physical
Addresses). This allows Firecracker direct access to the VM pages
without copying data.

Fig. 7 illustrates the serialized matrix registered in the virtqueue.
The maximum number of buffers is 130, ensuring that the seri-
alized matrix fits within the virtqueue’s capacity of 512 pointers,
regardless of the data size.

Virtqueue

Request
info

Matrix
metadata
buffer

DPU0
metadata
buffer

DPU0
page
buffer

DPU1
metadata
buffer

DPU1
page
buffer

DPU63
page
buffer

DPU63
metadata
buffer

...

0 1 2 3 4 5 ... 128 129

Figure 7: Serialized matrix in virtqueue, showing the alterna-
tion of metadata and data in the buffer.

Prefetch Cache In our para-virtualization design, each request
triggers message passing between the frontend and backend, in-
curring a fixed communication overhead regardless of data size.
For small data transfers, this overhead can dominate execution
time. A critical challenge is thus posed by frequent small-size data
transfer operations, which led to repetitive frontend-backend com-
munication, causing up to 53× overhead compared to native. These
repetitive transfers typically result from the host application pro-
cessing DPU data block by block in a loop. Consequently, these
transfers generally occur within contiguous memory regions in the
MRAM of the DPUs.

Following this observation, we implement a prefetch mechanism
within the frontend: 1○ At boot time, a prefetch cache is allocated
within the frontend with the current implementation reserving
16 pages of cache per DPU. 2○ When a read request below the
cache size is received, the frontend checks the cache for the data’s
availability and validity. If found, it is directly served from the cache,
avoiding further backend communication. 3○ If a cache miss occurs
or the cache is invalidated, the frontend requests a data segment,
starting at the request address and matching the cache size, from
the backend to repopulate the cache.

The cache remains valid unless the rank is released, data is writ-
ten to the MRAM (write-to-rank), or DPU programs are launched
(via CI operations). Only in these cases is the cache invalidated,
prompting a subsequent small read-from-rank to update the cache.

Request Batching. Similarly, to efficiently handle write-to-rank
operations with frequent small-size data transfers, a request batch-
ing mechanism is introduced in the frontend.

In the UPMEM PIM programming model, data written to the
MRAM from the host is not immediately utilized until either a DPU
program is launched or a read-from-rank operation is performed.
This delay provides an opportunity to batch multiple small write
requests into a single message transfer between the frontend and
backend. To achieve this, a batch buffer (64 pages per DPU in the
current design) accumulates small write-to-rank requests received
from the SDK. Once the buffer is full or when a non-write-to-rank
request is received, all the buffered write requests are flushed col-
lectively to the backend for processing.

Although this batching mechanism does not reduce the total
data writing time, it minimizes virtualization overhead by merging
multiple requests into a single interrupt. This reduces the number
of frontend-backend interactions, enhancing performance by avoid-
ing frequent VMEXITs.

Memory Overhead. The overhead of the frontend comparing
to the native involves the memory use to serialize the matrix, and
the buffers for prefetched data and batched requests. The maximum
extra memory usage is: (16384× 64)B (physical pages) + (16× 4)KB
(prefetch cache) + (64 × 4)KB (batch buffer) = 1.37MB per DPU.

4.2 Backend
Zero-copy Request Handling. A trap is triggered in the backend
(via KVM) when the frontend sends a request to the event handler in
Firecracker. The handler then parses the request and calls a function
in the vPIM backend module that performs the requested operation
on the rank. First, the backend deserializes the matrix received from
the virtqueue. To avoid data copy and enable direct access to the
pages of the matrix, Guest Physical Addresses (GPAs) in the matrix
are translated into Host Virtual Addresses (HVAs) using several
threads to accelerate the translation and then improve the overall
performance. After the deserialization, the system proceeds with
data operations on the DPUs. vPIM employs 8 threads to execute op-
erations. This choice aligns with the system’s setup, which involves
64 DPUs organized into chips of 8 DPUs. Consequently, operations
are performed on 8 DPUs at a time. We empirically validate that
using more than 8 threads does not provide additional benefits.

vPIM: Processing-in-Memory Virtualization MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Parallel operations handling. In Firecracker’s original imple-
mentation, a single loop handles virtio request events sequentially,
processing each and injecting interrupt requests (IRQs) sequentially.
This design limits parallel handling onmultiple rank. vPIM improves
this by assigning processing operations to dedicated threads. Upon
receiving a request, a thread is spawned, marking the event as com-
plete allowing the event manager to proceed to other tasks. Once
the operation completes, the thread injects the IRQ to notify the
guest driver to resume execution. This optimizes parallel request
processing such that the maximum number of concurrent threads
equals the number of ranks for the virtual machine.

AVX512 and C enhancements in Firecracker. Firecracker is
developed in Rust. While generally does not impact performance.
However, vPIM implementation benefit from rewriting specific code
sections in C. We use a C implementation of AVX instructions and
matrix management in the read-from-rank and write-to-rank
operations. This design choice was influenced by the instability of
the AVX512 support in Rust [4]. We show that implementing these
functions in C results in a performance improvement of up to 343%
(see Section 5).

Manager’s Overhead. At startup, the manager’s activities are
primarily waiting for rank allocation and free requests. When idle
(i.e., no requests received), the manager consumes on average 40% of
a CPU core, mostly due to the observer thread. A dpu_allocation
call from the VM triggers an Firecracker request to the manager,
incurring an average overhead of 36 ms on average when the rank is
in the NAAV state. If the rank transitions from NANA to NAAV, this
overhead is extended by the reset time. In scenarios where all ranks
are in the ALLO state, overhead depends on the VM applications’
execution time.

When a rank is released, the manager performs a reset, moving
the rank to the NANA state, which takes about 597 ms on average.
In the worst-case scenario, resetting all ranks can raise CPU usage
to 92% of a core, mainly due to the memset operation on 8GB of
rank-mapped memory.

5 EXPERIMENTAL EVALUATION
We evaluate vPIM with 16 real-world applications from the PrIM
benchmark suite [27], andmicrobenchmarks from the UPMEM SDK.
We focus on comparing vPIM against UPMEM native execution, as
the comparison with other types of compute (CPU and GPU) has
already been addressed in prior work [27]. We show that:
(1) The overhead of vPIM over native execution is lower than 15%

in the majority of PrIM applications and can be as low as 1%
(Section 5.2).

(2) vPIM scales with the number of ranks, despite the UPMEM lack
of inter-rank communication (Section 5.2).

(3) vPIM incurs minimal overhead over native execution when vary-
ing the data transfer size, number of vCPUs, and the number of
DPUs (Section 5.3).

(4) Each optimization in vPIM makes a meaningful contribution to
the overall system performance (Section 5.4).

5.1 Experimental Environment
Hardware.Weuse an Intel machinewith a 16-core Xeon Silver 4215
CPU at 2.50GHz, with 7 memory modules, including three 64GB
DDR4 memory (192 GB in total) and four UPMEM PIM modules.
The latter includes 8 ranks with 480 functional DPUs ∗ operating
at 350MHz and a total of 30.5GB embedded memory. The machine
runs Ubuntu Linux 20.04. Otherwise indicated, all VMs are config-
ured with 128GB memory and 16 vCPUs.

Applications.Weevaluate vPIM using the PrIM benchmark suite [27]
to show the flexibility of our system on real applications, ranging
from linear algebra to data analytics to image processing. Table 1
shows a full description of the PrIM benchmark. We also use two
microbenchmarks provided by UPMEM. The first application com-
putes the checksum of a given file. We use it as a microbenchmark
to perform a sensitivity analysis of various aspects that can impact
vPIM’s performance, including varying the number of vCPUs, data
transfer size, and degree of parallelism. The second microbench-
mark scans an index database of Wikipedia documents.

Methodology. In all plots, vPIM represents the implementation
of our prototype with all optimizations enabled (C Code Enhance-
ment, Prefetch Cache, Request Batching, and Parallel Handling). In
Section 5.2 and Section 5.3.1, we evaluate the performance of vPIM
compared to native. In Section 5.4, we evaluate the effectiveness of
each optimization. The native is run in performance mode. Each
result is a mean of five runs.

Metrics. The main performance metric is the execution time. Since
vPIM is the first system to enable virtualization for processing-
in-memory devices, we use native execution time as the baseline
and evaluate the virtualization overhead introduced by vPIM. We
also use two sets of breakdowns. The first is application-centric,
breaking the total execution time into data transfer (CPU-DPU,
DPU-CPU, Inter-DPU) and program execution (DPU). The second
is driver-centric, where we draw insights into how the workflow
for different rank operations contributes to the total execution time.

5.2 PrIM Applications
This section presents the performance of PrIM applications when
they run inside a VM using vPIM (with all optimizations enabled).
For context, Firecracker’s overhead for IO read 4KB-operations is
about 26× [12]. We adopt the provided multi-ranks strong scal-
ing configuration [27] with 1 rank (60 DPUs) † and 8 ranks (480
DPUs). In the context of this configuration, the size of the work-
load corresponds to the dataset size that can be accommodated
within one rank, while the number of tasklets is set to the optimal
value identified in the PrIM benchmarks [27]. All applications run
seamlessly in the vPIM system, where the DPU computed results
match accurately with those computed on CPUs. This demonstrates
that vPIM works correctly. Fig. 8 displays the execution times of
PrIM applications. The execution time is segmented based on ap-
plication development aspects. These segments represent different
components of the UPMEM application logic, such as CPU-to-DPU

∗Due to defective DPUs, the total number of DPUs is reduced from the expected 512.
†In our machine, the first UPMEM rank has only 60 functional DPUs.

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Teguia, Chen, Bitchebe, Balmau,

native-CPU-DPU native-DPU native-Inter-DPU native-DPU-CPU
vPIM-CPU-DPU vPIM-DPU vPIM-Inter-DPU vPIM-DPU-CPU

60 480

0.26
0.51
0.77

·104
Ex

ec
tim

e
(m

s)
BS

60 480

0.36
0.72
1.08

·104
TS

60 480

1,180
2,360
3,540

MLP

60 480

260
520
780

VA

60 480

210
420
630

Ex
ec

tim
e
(m

s)

HST-L

60 480

110
220
330

HST-S

60 480

480
960

1,440

GEMV

60 480

610

1,220
1,830

SCAN-RSS

60 480

610

1,220
1,830

Ex
ec

tim
e
(m

s)

SCAN-SSA

60 480

420
840

1,260

RED

60 480

0.41
0.83
1.24

·106
TRNS

60 480

0.47
0.95
1.42

·106
NW

60 480

0.46
0.92
1.38

·104

#DPUs

Ex
ec

tim
e
(m

s)

SEL

60 480

0.47
0.93
1.4

·104

#DPUs

UNI

60 480

0.63
1.26
1.89

·104

#DPUs

SpMV

60 480

500

1,000
1,500

#DPUs

BFS

Figure 8: Execution time of vPIM running PrIM applications with one rank (60 DPUs) and 8 ranks (480 DPUs) using strong-scaling
configuration. The execution time is segmented into four steps: data loading (CPU-DPU), task execution (DPU), synchronization
(Inter-DPU), and result retrieval (DPU-CPU).

Table 1: PrIM Applications [27].

Domain Benchmark Short name
Vector Addition VA

Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Select SEL
Unique UNI

Binary Search BS
Time Series Analysis TS

Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW

Image histogram short HST-S
Image histogram long HST-L

Reduction RED
Prefix Sum: scan-scan-add SCAN-SSA

Prefix Sum: reduce-scan-scan SCAN-RSS
Matrix Transposition TRNS

Dense linear algebra

Databases

Data analytics

Image processing

Parallel primitives

transfer of input data ("CPU-DPU"), DPU execution time ("DPU"),

inter-DPU communication via the host CPU ("Inter-DPU"), and
DPU-to-CPU transfer of final results ("DPU-CPU") [27].

First, comparing the execution time of vPIM to native in the 60
DPUs configuration, the overhead reaches as low as 1.01× (with
BS) and never goes beyond 2.07× (for NW), with an average of
1.24×. Nine of the sixteen applications have an overhead less than
1.15× and fourteen applications remain below the 1.5× overhead. In
the 480 DPUs configuration, the overhead ranges from 1.02× (with
MLP) to 2.89× (with TRNS), with an average overhead of 1.54×. Five
applications show overhead of less than 1.15× and ten applications
maintain overhead under 1.5×.

Note that we observe a trend where the overhead in the vPIM
system increases with the number of utilized DPUs. This is a re-
sult of the workload partition in PrIM benchmarks. Dividing the
workload across multiple DPUs results in smaller portions of data
being transferred to each individual DPU. As will be detailed in

vPIM: Processing-in-Memory Virtualization MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Section 5.3.1, small-size data transfers suffer more from the virtual-
ization overhead. Consequently, this leads to higher overhead in
vPIM when using 480 DPUs compared to 60 DPUs.

Second, we observe the reduction in total execution time for both
native and vPIM systems when the number of DPUs is increased
from 60 to 480 for twelve in sixteen applications (BS, TS, MLP,
VA, HST-S, HST-L, GEMV, SCAN-RSS, SCAN-SSA, RED, TRNS, and
NW). This trend aligns with the expected performance scaling when
increasing the number of DPUs. We note exceptions in the last row
of Fig. 8 for SEL, UNI, SpMV, and BFS for both native and vPIM. This
results from their data transfer implementation by PrIM developers.
The DPU-CPU step of SEL and UNI, and the CPU-DPU step for
SpMV and BFS, are implemented in a serial way, which handles
data one DPU at a time. Therefore, with an increase in the number
of DPUs, there is a corresponding increase in the data transfer time,
leading to extended total execution times in configurations utilizing
480 DPUs. This observation highlights the importance of choosing
data transfer methods to fully leverage the system’s capabilities,
especially in larger-scale DPU configurations.

Third, in the Inter-DPU step of RED, we observe a significant
overhead of 33.3× and 145.5× for the 60 DPUs and the 480 DPUs con-
figurations, respectively. This step of the application only involves
a read-from-rank operation of size 256 bytes. However, in the vPIM
system, it triggers the Prefetch Cache, which proactively fetches
a larger chunk of data. This Prefetch Cache strategy, intended to
enhance efficiency for potential subsequent data transfers, leads to
a more intensive task, resulting in exceptionally high overhead in
the vPIM system. A similar situation is observed in the Inter-DPU
step of SCAN-SSA and SCAN-RSS, and the DPU-CPU step of HST-S
and HST-L. In these steps, one small-size reading operation triggers
the Prefetch Cache Menchanism, resulting in a higher overhead
than expected.

Takeaway 1

vPIM developers should disable the Prefetch Cache when their
code lacks frequent small-size data transfers patterns to pre-
vent unnecessary data fetching.

Fourth, the Inter-DPU step of the BFS algorithm also exhibits con-
siderable overhead. Unlike the previous observation, this overhead
is primarily a result of frequent synchronization handshakes among
the DPUs. In the BFS algorithm, processing each level of the input
graph requires a sequence of read-from-rank and write-to-rank
operations to synchronize the node levels across the DPUs. Conse-
quently, this leads to overheads of 3.0× and 3.2× in the Inter-DPU
step for the 60 and 480 DPUs configurations, respectively.

Fifth, NW and TRNS workloads exhibit a significant overhead.
These two applications are characterized by their extensive use
of small-size data transfers. A data transfer is produced for each
element in the large input matrix in their implementations. For
instance, each data transfer step (DPU-CPU, CPU-DPU, Inter-DPU)
of NW involves more than 650000 operations of 160 Bytes on
average. In the CPU-DPU step of the TRNS, more than 980000
write-to-rank operations are performed in the 480 DPU configu-
ration of 512 bytes on average. This considerable number of data

transfers significantly strains the request handling of the PIM de-
vices, leading to high overheads. Despite the substantial overhead
in these applications shown in Fig. 8, it is important to note that this
represents an already optimized scenario within the vPIM system.
The Prefetch Cache and Request Batching optimizations imple-
mented in the Frontend (Section 4.1) have been fully utilized in
these cases. The analysis of the effectiveness of these optimizations,
detailed in Section 5.4.2, reveals the challenges faced by the vPIM
architecture in managing the high overhead caused by the frequent
and small-scale data transfers in workloads such as NW and TRNS.

Takeaway 2

Applications with frequent small-size data transfers face the
highest overhead in vPIM. To mitigate this, developers should
minimize transfer operations, such as by aggregating data.

5.3 UPMEMMicrobenchmarks
The Index Search and Checksum programs are microbenchmarks
provided by UPMEM. These benchmarks offer essential insights
into the system’s efficiency and overhead for basic data process-
ing operations. They establish a baseline for understanding the
performance dynamics of vPIM.

5.3.1 Checksum. The checksum application features a host appli-
cation that generates a random file of a specified size and transfers
it to each allocated DPU for checksum computation. Each execution
includes one write-to-rank and 60 read-from-rank operations, along
with 8000 to 28000 CI (Control Interface) operations, depending
on the running time. In contrast to the PrIM benchmarks and the
Index Search application, where the workload is partitioned and
executed in parallel across multiple DPUs, in the checksum pro-
gram, all DPUs perform the same task on the same dataset. Note
that Previous work focused on in-DPU performance, without eval-
uating the cost of these individuia operations. As noted in prior
research [24], and demonstrated in our results, these operations
can significantly affect UPMEM’s overall performance.

Fig. 9 shows the total execution time of vPIM (with all optimiza-
tions enabled) for different configurations. The configuration in
Fig. 9.a involves 60 DPUs and a 60MB input file size for each DPU.
We vary the number of vCPUs. In Fig. 9.b, we vary the number
of DPUs while maintaining a constant input file size of 60MB for
each DPU and 16 vCPUs. In Fig. 9.c, we use 60 DPUs and 16 vCPUs
with different input file sizes. Fig. 9.a indicates that the execution
time is independent of the number of vCPUs. In Fig. 9.b, we see
that the execution time increases when the VM uses more DPUs,
owing to the additional data transfer cost, even though all DPUs
are executing in parallel.

Fig. 9.c shows that in vPIM, the overhead decreases as the data
size increases, ranging from 2.33× for 8MB to 1.29× for 60MB. This
trend is attributed to the fixed time spent on message passing be-
tween the VM and Firecracker: as data transfer operations become
lengthier, the proportion of time dedicated to message passing
diminishes, thereby reducing the relative overhead.

5.3.2 Wikipedia Index Search. The UPMEM PIM Index Search ap-
plication [7] is designed to scan an index database of documents to

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Teguia, Chen, Bitchebe, Balmau,

native vPIM

2 4 8 16
0

2

4

(a) #vCPUs

Ex
ec

tim
e
(s
)

1 8 16 60
0

2

4

(b) #DPUs

8 20 40 60
0

2

4

(c) Data size per DPU (MB)

Ex
ec

tim
e
(s
)

Figure 9: Checksum sensitivity analysis varying (a) #vCPUs,
(b) #DPUs, and (c) transfer size. Configurations: 60 DPUs with
60 MB input per DPU and varying #vCPUs, 16 vCPUs with 60
MB input and varying #DPUs, and 16 vCPUs with 60 DPUs
and varying input file size per DPU.

native vPIM

1 8 16 60 128

4
8
12
16
20

#DPUs

Ex
ec

tim
e
(s
)

Figure 10: Execution time of the Index Search application.

find locations of a target sequence of words and return the docu-
ment IDs and the positions.A benchmark configuration is provided,
measuring the execution time of executing 445 index searching re-
quests on 4305 different files from a subset of the English Wikipedia
dataset. The application first builds the index for the corresponding
database and writes it to the DPUs’ MRAM. Requests are sent in
batches of 128 elements. Thus 4 batches of requests are sent to the
DPUs to compute the index search.

Fig. 10 shows the execution time of vPIM and native varying the
number of utilized DPUs. The data size is 63MB. For both native
and vPIM the execution time increases with the number of DPUs, as
the data transfer time increases. The overhead, on the other hand,
decreases with the number of DPUs, going from 2.1x for 1 DPU, to
1.3x for 128 DPUs.

5.4 Optimizations Evaluation
This section evaluates the effectiveness of each vPIM optimization
we presented in Section 4. Table 2 shows the features that were
enabled and disabled for different versions of vPIM, to better isolate
the effect of each optimization.

5.4.1 C Enhancement. To justify our C enhancement optimiza-
tion within Firecracker, two versions of vPIM are implemented: (1)

Table 2: Optimization strategies enabled for different ver-
sions of vPIM used in this section to evaluate the effectiveness
of each optimization.

C Code
Enhancement

Prefetch
Cache

Request
Batching

Parallel
Handling

vPIM-rust ✗ ✗ ✗ ✗
vPIM-C ✓ ✗ ✗ ✗
vPIM+P ✓ ✓ ✗ ✗
vPIM+B ✓ ✗ ✓ ✗
vPIM+PB ✓ ✓ ✓ ✗
vPIM-Seq ✓ ✓ ✓ ✗
vPIM ✓ ✓ ✓ ✓

vPIM-rust consists solely of Rust code and uses AVX2 for byte-
interleaving, and (2) vPIM-C implements the C optimizations. We
use the checksum program mentioned above for evaluation.

native vPIM-rust vPIM-C

1 16 60
0
5
10
15
20

(a) #DPUs
Ex

ec
tim

e
(s
)

8 40 60
0
5
10
15
20

(b) Data size per DPU (MB)

Figure 11: Execution time of checksum comparing native and
vPIM implementations, using a 60MB input file per DPUwith
varying #DPUs and 60 DPUs with varying input file sizes.

Fig. 11 shows the total execution time of each vPIM implementa-
tion across various configurations. In Fig. 11.a, we vary the number
of DPUs while maintaining a constant input file size of 60MB for
each DPU. In Fig. 11.b, we use 60 DPUs with different input file
sizes. We observe that in both plots, vPIM-rust demonstrates con-
siderably slower execution times with 5.2× overhead on average
compared to native. Conversely, the execution time of vPIM-C is
closer to the baseline with an average overhead of 1.4×.

We further analyze the effectiveness of the optimization by con-
ducting a driver-centric breakdown, showing how three types of
operation (write-to-rank, read-from-rank, and CI) contribute
to the total execution time. We use 60 DPUs and 8MB input file size.
This breakdown identifies latency sources and assesses vPIM ’s effi-
ciency in handling each operation type. The results are presented
in Fig. 12, which includes execution times within the guest driver
(frontend) and Firecracker (backend), and does not incorporate the
execution time in the SDK. Unlike write-to-rank, the execution
times of read-from-rank and CI exhibit a similar trend across
both implementations. Therefore, the main factor influencing the
overall execution time is the write-to-rank operation. Fig. 13)
further breaks down write-to-rank into the following steps: page
management (the frontend reallocates user space pages to kernel
space pointers), matrix serialization (the frontend serializes the
transfer matrix), virtio interrupt handling, matrix deserialization
(the backend reassembles the transfer matrix), and data transfer to
UPMEM.

Fig. 13.a reveals that the data transfer is the dominate step, rep-
resenting 98.3% and 69.3% of the write-to-rank execution for

vPIM: Processing-in-Memory Virtualization MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

vPIM-rust and vPIM. The zoomed-in view of Fig. 13.b shows that
the execution time of other steps remains relatively constant across
implementations, which aligns with expectations, as the primary
differences lie in the implementation of low-level operations.

vPIM-rust vPIM
0
1
2

Ex
ec

tim
e
(s
)

CI R-rank W-rank

Figure 12: Breakdown of execution time for control interface
(CI) operations, read-from-rank (R-rank), and write-to-rank
(W-rank) operations, using 60 DPUs, 16 vCPUs, and an 8 MB
file size. Only the execution time within the guest driver and
Firecracker is shown.

Page Deser Int Ser T-data

vPIM-rust vPIM-C
0

1
1.5

(a) zoom out

Ex
ec

tim
e
(s
)

vPIM-rust vPIM-C

10
20
30

(b) zoom in

Ex
ec

tim
e
(m

s)

Figure 13: Breakdown of write-to-rank (W-rank) of Fig. 12
(checksum program, 60 DPUs and 8MB input). The second
graph is a zoom-in of the first graph.

5.4.2 Prefetch Cache and Request Batching. In our initial evalua-
tion of the vPIM prototype, before integrating Prefetch Cache and
Request Batching optimizations, we observed significant overhead
in certain scenarios. As shown in Section 5.3.1, smaller-size data
transfer operations suffers higher virtualization overhead. In this
early version of vPIM, each operation requires a message exchange
between the guest and the VMM (Firecracker). Consequently, such
workloads resulted in a substantial high virtualization overhead. An
illustrative example is the strong-scaling single-rank configuration
of the NW application from the PrIM benchmarks, which entails
over 15000 small-size data transfer operations, each averaging ap-
proximately 109 Bytes per DPU.

Fig. 14 shows the execution time of NW after the implementa-
tion of Prefetch Cache & Request Batching optimizations in vPIM.
These include the control version (vPIM-C), the Prefetch Cache
only implementation (vPIM-P), the Request Batching only imple-
mentation (vPIM-B), and vPIM with both optimizations (vPIM-PB).
The first two bars in Fig. 14 highlight the impact of the Prefetch
Cache. We note a 89.3% reduction in read time (DPU-CPU), result-
ing in an overall improvement of 1.4×. This improvement is due
to the order-of-magnitude reduction in the number of message
exchanges between the VM and Firecracker, from 5000 to 125. The
third bar shows the effectiveness of Request Batching. By batch-
ing write-to-rank operations, the frequency of context switches
between the guest and Firecracker was reduced by two orders of
magnitude, from 10000 to just 402. This optimization cut down the

execution times for CPU-DPU and inter-DPU transfers by 95.8%
and 95.3%, respectively.

The combined version of Prefetch Cache and Request Batching
yielded an overall performance boost of 10.8×. This result verifies
the performance benefits of these optimization strategies imple-
mented in the vPIM system.

CPU-DPU DPU Inter-DPU DPU-CPU Perf Inc

vPIM-C vPIM+P vPIM+B vPIM+PB
0

2

4

·104

Implementations

Ex
ec

Ti
m
e
(m

s)

0

5

10

Pe
rf
or
m
an
ce

In
c

Figure 14: Execution time (left axis) and performance im-
provement (right axis) of the NW application with different
vPIM optimizations. The unoptimized version (vPIM-C) shows
a 53× overhead compared to native execution.

Takeaway 3

Prefetch Cache and Request Batching effectively reduce over-
head from frequent data transfers by combining multiple op-
erations. Developers can further minimize overhead by aggre-
gating data transfers within their applications.

5.4.3 Parallel Operation Handling on Multi-Rank. This optimiza-
tion addresses Firecracker’s default sequential handling of virtio
requests, enabling parallel execution in vPIM. We evaluated this
optimization using the checksum program. Fig. 15 shows the results,
where vPIM-Seq refers to the system without the optimization and
vPIM includes the optimization. Experiments varys the number of
ranks used by the VM.

Fig. 15.a displays the total execution time of the application,
showing that the optimization achieves a 1.13× speedup on average,
which increases with the number of ranks. Fig. 15.b showcases the
effect of parallelization on the write-to-rank operation, depicting
an average 1.4× speedup by parallelization.

To further understand the results, Fig. 16 shows the virtio request
execution time for each rank involved in a single write operation.
In the Sequential version, write requests is handled one after the
other, resulting in increasing execution times for subsequent ranks.
In contrast, the multithreaded version achieves nearly uniform
execution times across all ranks, with the total time determined by
the longest individual rank’s operation.

6 RELATEDWORK
Unlike PIM hardware devices, hardware accelerators such as GPUs
(Graphic Processing Units) and FPGAs (Field Programmable Gate
Arrays) are already heavily used in cloud production systems [51]
thanks to a long history of academia and commercial solutions[1,
10, 15, 20, 22, 26, 28, 30, 33, 38, 40, 43, 44, 47, 49, 50, 52, 53, 56] to

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Teguia, Chen, Bitchebe, Balmau,

vPIM-Seq vPIM

2 4 8
0
5
10
15

#Ranks
(a) Whole application

Ex
ec

tim
e
(s
)

2 4 8
0
2
4
6
8
10

#Ranks
(b) write-to-rank operation

Figure 15: Execution time of checksum with Parallel Oper-
ation Handling on Multi-rank enabled. (a) shows the total
application execution time, while (b) displays the write oper-
ation execution time.

vPIM-Seq vPIM

0 1 2 3 4 5 6 7
0
2
4
6
8

10

Rank id

E
x
ec

ti
m

e
(s

)

1

Total execution time
Total execution time

Figure 16: Execution time of virtio requests for a write-to-
rank operation across 8 ranks. In the non-parallel version
(red), requests are processed sequentially in the backend,
while in the multithreaded version (blue), they are handled
in parallel.

virtualize them. More recent solutions [2, 55] are converging to
generic platforms able to integrate all types of existing accelerators.

AVA [55] is a framework that exposes well-known prior accelera-
tors to VMs. Unlike most other solutions that work on virtualizing a
single type of accelerator, AVA can virtualize multiple accelerators,
including GPUs, TPUs, and FPGAs. However, the AVA framework
is not a generic virtualization support and cannot include any new
hardware accelerator (e.g., UPMEM ranks). In addition, the AVA
design targets compute offload accelerators APIs. It does not pro-
vide guest VMs with a virtual representation of the accelerator but
with an endpoint that routes communication through the hypervi-
sor. vPIM, on the other hand, aims to fully virtualize the UPMEM
ranks while allowing concurrent utilization by host applications.
Moreover, AVA requires developer effort to integrate AVA’s API
components with the guest driver, while vPIM necessitates no work
from users.

vAccel [2] is a library framework allowing serverless functions,
containers, and VMs to access accelerators on cloud platforms.
vAccel is close to AVA in that it provides virtualization support
for many hardware accelerators, including GPUs, TPUs, and FP-
GAs. When using vAccel, users call a function from the vAccel
API, and vAccel uses plugins to map this function call to an exist-
ing hardware-specific implementation. The vAccel API proposes
functions for predefined and given types of operations, including
image classification, object detection, matrix-to-matrix multiplica-
tion, Tensorflow operations, etc. vAccel virtualizes the accelerator

at the granularity of accelerate-able functions, while vPIM exposes
the entire DPU to the guest. vPIM can be considered an upstream
work that can further be integrated into vAccel or AVA to extend
the number of accelerators they support.

Although vPIM is, to the best of our knowledge, the first work
to virtualize real PIM hardware, recent work is looking into the
advantage of PIM architectures for cloud environments. In this
vein, PIMCloud [17] explores how datacenters can make latency-
critical applications benefit from PIM architectures. Datacenters
services continuously impose microsecond-level tail latency quality
of service constraints due to the increasing prevalence of server-
less applications in the cloud. Nonetheless, PIM architectures, like
prior accelerators (e.g., GPUs), have been studied and exploited
for memory-intensive workloads. PIMCloud then changes the tone
and investigates the impact of PIM architectures on latency critical
and best-effort jobs, proposing a scheduling and data placement
algorithm to manage PIM resources to maximize their benefit for this
emerging type of cloud services. However, PIMCloud is evaluated
in simulation and does not provide a virtualization solution. The
focus of this work is showing the interest of PIM resources for the
cloud, which emphasizes vPIM’s importance. PIMCloud results can
further be applied to vPIM in a cloud environment.

7 CONCLUSION
We presented vPIM, the first PIM virtualizing solution. This work
constitutes the first foundational step in virtualizing PIM devices.
vPIM follows a virtio-based para-virtualization approach to facili-
tate its quick adoption by cloud users and providers. vPIM includes
a set of optimizations to minimize virtualization overhead. We eval-
uated vPIM using unmodified applications provided by PrIM [31]
and UPMEM. The results showed that some applications generate
many guest-hypervisor-VMM transitions, drastically increasing
virtualization overhead. For future work, we plan to investigate
the vhost_vsock approach [8] to reduce the cost of performing
guest-hypervisor-VMM transitions and enhance PIM device shar-
ing across workloads. Although the current hardware limitations
of UPMEM prevent vPIM from sharing devices at the DPU granu-
larity, efficient pause-resume and checkpoint-restore mechanisms
could enable dynamic workload consolidation without hardware
changes. Additionally, a VMM module similar to the UPMEM sim-
ulator could support oversubscription by running applications at
reduced performance.

8 ACKNOWLEDGEMENTS
This work would not have been possible without the substantial
contributions of all the authors. We gratefully acknowledge UP-
MEM for providing the hardware that we used in the context of
this research. This work was supported by the PAI2021 project
"Fault Tolerance for Disaggregated Rack-Scale Computing" from
La Région Auvergne-Rhône-Alpes and the Natural Sciences and En-
gineering Research Council of Canada, whose funding was critical
to the successful completion of this study.

REFERENCES
[1] [n. d.]. GVTg Setup Guide. https://github.com/intel/gvt-linux/wiki/

GVTg_Setup_Guide.
[2] [n. d.]. Hardware Acceleration for Serverless Computing. https://vaccel.org/.

https://github.com/intel/gvt-linux/wiki/GVTg_Setup_Guide
https://github.com/intel/gvt-linux/wiki/GVTg_Setup_Guide
https://vaccel.org/

vPIM: Processing-in-Memory Virtualization MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

[3] [n. d.]. SK hynix Develops PIM, Next-Generation AI Accelerator. https:
//news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/.

[4] [n. d.]. Status of AVX512. https://github.com/rust-lang/portable-simd/issues/28.
[5] [n. d.]. UPMEM. https://www.upmem.com/.
[6] [n. d.]. UPMEM Checksum. https://github.com/upmem/dpu_demo.
[7] [n. d.]. UPMEM PIM Index Search. https://github.com/upmem/usecase_UPIS.
[8] [n. d.]. Virtio and Vhost Architecture - Part 2. https://insujang.github.io/2021-03-

15/virtio-and-vhost-architecture-part-2/.
[9] [n. d.]. Worldwide IDC Global DataSphere Forecast, 2023-2027: It’s a Distributed,

Diverse, and Dynamic (3D) DataSphere. https://www.marketresearch.com/IDC-
v2477/Worldwide-IDC-Global-DataSphere-Forecast-33986214/.

[10] 2023. Using Remote GPU Virtualization Techniques to Enhance Edge Computing
Devices. Future Generation Computer Systems 142 (2023).

[11] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architec-
ture. In Proceedings of ISCA.

[12] Alexandru Agache and Marc Brooker and Alexandra Iordache and Anthony
Liguori and Rolf Neugebauer and Phil Piwonka and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In Proceedings
of NSDI.

[13] George Amvrosiadis, Ali R Butt, Vasily Tarasov, Erez Zadok, Ming Zhao, Irfan
Ahmad, Remzi H Arpaci-Dusseau, Feng Chen, Yiran Chen, Yong Chen, et al.
[n. d.]. Data Storage Research Vision 2025: Report on NSF Visioning. https:
//par.nsf .gov/servlets/purl/10086429.

[14] Aurelia Augusta and Stratos Idreos. 2015. JAFAR: Near-Data Processing for
Databases. In Proceedings of SIGMOD.

[15] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon-Garcia, and Paul
Chow. 2014. Fpgas in the Cloud: Booting Virtualized Hardware Accelerators
with Openstack. In A Case Study of FCCM.

[16] Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, Yuxin Guo, and Onur Mutlu. 2023.
SimplePIM: A Software Framework for Productive and Efficient Processing-in-
Memory. arXiv:2310.01893 [cs.AR]

[17] Shuang Chen, Yi Jiang, Christina Delimitrou, and José F. Martínez. 2022. PIM-
Cloud: QoS-Aware Resource Management of Latency-Critical Applications in
Clouds with Processing-in-Memory. In Proceedings of HPCA.

[18] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory. In Proceedings
of ISCA.

[19] Pietro Cicotti, Sarp Oral, Gokcen Kestor, Roberto Gioiosa, Shawn Strande, Michela
Taufer, James H. Rogers, Hasan Abbasi, Jason Hill, and Laura Carrington. 2016.
Data Movement in Data-Intensive High Performance Computing. Springer Interna-
tional Publishing, Cham, 31–59. https://doi.org/10.1007/978-3-319-33742-5_3

[20] Micah Dowty and Jeremy Sugerman. 2009. GPU Virtualization on VMware’s
Hosted I/O Architecture. ACM SIGOPS Operating Systems Review 43, 3 (2009).

[21] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, Ihn Kim, and
Gokhan Daglikoca. 2002. The Architecture of the DIVA Processing-in-Memory
Chip. In Proceedings of SC.

[22] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Virtualized
FPGA Accelerators for Efficient Cloud Computing. In A Case Study of CloudCom.

[23] Fernandez, Ivan and Quislant, Ricardo and Gutiérrez, Eladio and Plata, Oscar
and Giannoula, Christina and Alser, Mohammed and Gómez-Luna, Juan and
Mutlu, Onur. 2020. NATSA: A Near-Data Processing Accelerator for Time Series
Analysis. In Proceedings of ICCD.

[24] Friesel, Birte and Lütke Dreimann,Marcel and Spinczyk, Olaf. 2023. A Full-System
Perspective on UPMEM Performance. In Proceedings of DIMES.

[25] Ghose, S. and Boroumand, A. and Kim, J. S. and Gómez-Luna, J. and Mutlu, O.
2019. Processing-in-Memory: A Workload-Driven Perspective. IBM Journal of
Research and Development 63, 6 (2019).

[26] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and Giuseppe Coviello. 2010.
A GPGPU Transparent Virtualization Component for High Performance Com-
puting Clouds. In Proceedings of Euro-Par Conference.

[27] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F
Oliveira, and Onur Mutlu. 2022. Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System. IEEE
Access 10 (2022).

[28] Nelson Mimura Gonzalez and Tonia Elengikal. 2021. Transparent I/O-Aware
GPU Virtualization for Efficient Resource Consolidation. In Proceedings of IPDPS.

[29] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. 2016. Biscuit: A Framework for Near-Data Process-
ing of Big Data Workloads. In Proceedings of ISCA.

[30] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan Kharche,
Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan. 2009. GViM: GPU-
Accelerated Virtual Machines. In Proceedings of HPCVirt.

[31] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F.
Oliveira, and Onur Mutlu. 2021. Benchmarking Memory-centric Computing

Systems: Analysis of Real Processing-in-Memory Hardware. In Proceedings of
IGSC.

[32] B. Hyun, T. Kim, D. Lee, and M. Rhu. 2024. Pathfinding Future PIM Archi-
tectures by Demystifying a Commercial PIM Technology. In 2024 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE
Computer Society, Los Alamitos, CA, USA, 263–279. https://doi.org/10.1109/
HPCA57654.2024.00029

[33] Jason Kennedy, Vishal Sharma, Blesson Varghese, and Carlos Reaño. 2023. Multi-
Tier GPU Virtualization for Deep Learning in Cloud-Edge Systems. IEEE Trans-
actions on Parallel and Distributed Systems 34, 7 (2023).

[34] Gokcen Kestor, Roberto Gioiosa, Darren J. Kerbyson, and Adolfy Hoisie. 2013.
Quantifying the energy cost of data movement in scientific applications. In
2013 IEEE International Symposium on Workload Characterization (IISWC). 56–65.
https://doi.org/10.1109/IISWC.2013.6704670

[35] Kim, Jin Hyun and Kang, Shin-haeng and Lee, Sukhan and Kim, Hyeonsu and
Song, Woongjae and Ro, Yuhwan and Lee, Seungwon and Wang, David and Shin,
Hyunsung and Phuah, Bengseng and Choi, Jihyun and So, Jinin and Cho, YeonGon
and Song, JoonHo and Choi, Jangseok and Cho, Jeonghyeon and Sohn, Kyomin
and Sohn, Youngsoo and Park, Kwangil and Kim, Nam Sung. 2021. Aquabolt-
XL: Samsung HBM2-PIM with in-Memory Processing for ML Accelerators and
Beyond. In A Case Study of HCS.

[36] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM:
The Linux Virtual Machine Monitor. In Proceedings of the Linux Symposium,
Vol. 1.

[37] Mai, Ken and Paaske, Tim and Jayasena, Nuwan and Ho, Ron and Dally, William
J and Horowitz, Mark. 2000. Smart Memories: A Modular Reconfigurable Archi-
tecture. In Proceedings of ISCA.

[38] Joel Mandebi Mbongue, Festus Hategekimana, Danielle Tchuinkou Kwadjo, and
Christophe Bobda. 2018. Fpga Virtualization in Cloud-Based Infrastructures Over
virtio. In A Case Study of ICCD.

[39] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun.
2019. Processing Data where it Makes Sense: Enabling In-Memory Computation.
Microprocessors and Microsystems 67 (2019).

[40] Diana M. Naranjo Delgado, Manuel Contreras, Germán Moltó, Sebastián Risco,
Ignacio Blanquer, Javier Prades, and Federico Silla. 2023. On the Acceleration of
FaaS Using Remote GPU Virtualization. In Proceedings of ICPE.

[41] Joel Nider, Craig Mustard, Andrada Zoltan, John Ramsden, Larry Liu, Jacob
Grossbard, Mohammad Dashti, Romaric Jodin, Alexandre Ghiti, Jordi Chauzi,
and Alexandra Fedorova. 2021. A Case Study of Processing-in-Memory in off-
the-Shelf Systems. In Proceedings of USENIX ATC.

[42] Onur Mutlu and Saugata Ghose and Juan G’omez-Luna and Rachata Ausavarung-
nirun. 2020. A Modern Primer on Processing in Memory. ArXiv abs/2012.03112
(2020).

[43] Anna Panagopoulou, Michele Paolino, and Daniel Raho. 2023. Virtio-FPGA: A
Virtualization Solution for SoC-Attached FPGAs. In A Case Study of ESARS-ITEC.

[44] Michele Paolino, Sébastien Pinneterre, and Daniel Raho. 2017. FPGA Virtualiza-
tion with Accelerators Overcommitment for Network Function Virtualization. In
A Case Study of ReConFig.

[45] Rusty Russell. 2008. virtio: Towards a De-facto Standard for Virtual I/O Devices.
ACM SIGOPS Operating Systems Review 42, 5 (2008).

[46] Yasas Seneviratne, Korakit Seemakhupt, Sihang Liu, and Samira Khan. 2023.
NearPM: A Near-Data Processing System for Storage-Class Applications. In
Proceedings of EuroSys.

[47] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. 2011. vCUDA: GPU-Accelerated
High-Performance Computing in Virtual Machines. IEEE Trans. Comput. 61, 6
(2011).

[48] Stone, Harold S. 1970. A Logic-in-Memory Computer. IEEE Trans. Comput. 100,
1 (1970).

[49] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2015. Gpuvm:
Gpu Virtualization at the Hypervisor. IEEE Trans. Comput. 65, 9 (2015).

[50] Kun Tian, Yaozu Dong, and David Cowperthwaite. 2014. A Full GPU Virtualiza-
tion Solution with Mediated Pass-through. In Proceedings of ATC.

[51] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. 2018. A survey on FPGA
Virtualization. In Proceedings of FPL.

[52] Lan Vu, Hari Sivaraman, and Rishi Bidarkar. 2014. GPU Virtualization for High
Performance General Purpose Computing on the ESX Hypervisor. In Proceedings
of HPC.

[53] Wei Wang, Miodrag Bolic, and Jonathan Parri. 2013. pvFPGA: Accessing an
FPGA-based Hardware Accelerator in a Paravirtualized Environment. In A Case
Study of CODES+ISSS.

[54] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: Near Data Processing for Solid
State Drive Based Recommendation Inference. In Proceedings of ASPLOS.

[55] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J
Rossbach. 2020. Ava: Accelerated Virtualization of Accelerators. In Proceedings
of ASPLOS.

https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/
https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/
https://github.com/rust-lang/portable-simd/issues/28
https://www.upmem.com/
https://github.com/upmem/dpu_demo
https://github.com/upmem/usecase_UPIS
https://www.marketresearch.com/IDC-v2477/Worldwide-IDC-Global-DataSphere-Forecast-33986214/
https://www.marketresearch.com/IDC-v2477/Worldwide-IDC-Global-DataSphere-Forecast-33986214/
https://par.nsf.gov/servlets/purl/10086429
https://par.nsf.gov/servlets/purl/10086429
https://arxiv.org/abs/2310.01893
https://doi.org/10.1007/978-3-319-33742-5_3
https://doi.org/10.1109/HPCA57654.2024.00029
https://doi.org/10.1109/HPCA57654.2024.00029
https://doi.org/10.1109/IISWC.2013.6704670

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Teguia, Chen, Bitchebe, Balmau,

[56] Deze Zeng, Andong Zhu, Lin Gu, Peng Li, Quan Chen, and Minyi Guo. 2023.
Enabling Efficient Spatio-Temporal GPU Sharing for Network Function Virtual-
ization. IEEE Trans. Comput. (2023).

[57] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L. Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: Throughput-Oriented Pro-
grammable Processing in Memory. In Proceedings of HPDC.

vPIM: Processing-in-Memory Virtualization MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

A APPENDIX
A.1 Virtio PIM Specification
We define the first specification for PIM devices following the
virtio guidelines [45]. We intend to work with the VIRTIO tech-
nical committee to include our specification in a future VIRTIO
specification release.
Device ID. The virtio PIM device is assigned a free ID (at this
time). the virtio device ID 42.
Virtqueues. The virtio PIM device consists of two queues: trans-
ferq and controlq. Transferq is used to transfer data and commands
to and from the PIM device. Whenever vPIM can transfer commands
directly through this queue, transferring data should be done by
avoiding copies. The data transfer must include the Guest Physical
Addresses (GPAs) of the pages that contain data and their respective
metadata. This queue has 512 slots. Controlq handles the synchro-
nization with the manager. A boolean is sufficient to communicate
this notification.
Feature bits. No feature bits are needed in this implementation
of vPIM. This is because at this time, there are no specific features
related to this devices that should be mentioned to the guest. More-
over, there are no other PIM devices that need to be specifically
handled.

Device configuration layout. The PIM device requires the driver
to be aware of the following configurations and hardware char-
acteristics, including clock division, memory region size, number
of control interfaces, processing units frequency, and power man-
agement information. These configurations are presented to the
userspace by the native PIM device driver in the host environment.
Device initialization. Virtual PIM initialization consists of the
following steps: instantiating the device structure, gathering PIM
configuration details, creating a link between the real PIM device
and the virtio PIM device through mmap operations, and establish-
ing the two virtqueues. The driver must wait until the completion
of device initialization before sending any requests. Additionally,
the virtio PIM device must ensure that the underlying device is
not being utilized by another application during initialization.
Device operations. The virtio PIM device supports five opera-
tions: requesting configuration, sending commands, reading com-
mands, writing to the PIM device, and reading from the PIM device.
It is crucial for the driver to refrain from sending any requests when
the virtio PIM device is not linked to a physical PIM device. This
is because the request will not be handled by any rank beneath and
will be lost. Simultaneously, the device itself must ensure that it
is consistently linked to a PIM device. If linking is not feasible at
a given time, the device should attempt to establish a connection
after a designated countdown period.

	Abstract
	1 Introduction
	2 Background on UPMEM PIM
	3 vPIM Design
	3.1 Overview
	3.2 vUPMEM Bootstraping
	3.3 vUPMEM Booking
	3.4 vUPMEM Usage
	3.5 vUPMEM Sharing

	4 Implementation
	4.1 Frontend
	4.2 Backend

	5 Experimental Evaluation
	5.1 Experimental Environment
	5.2 PrIM Applications
	5.3 UPMEM Microbenchmarks
	5.4 Optimizations Evaluation

	6 Related work
	7 Conclusion
	8 Acknowledgements
	References
	A Appendix
	A.1 Virtio PIM Specification

