
HAL Id: hal-04737657
https://hal.science/hal-04737657v1

Submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Latent-Energy-Based NNs: An interpretable Neural
Network architecture for model-order reduction of

nonlinear statics in solid mechanics
Louen Pottier, Anders Thorin, Francisco Chinesta

To cite this version:
Louen Pottier, Anders Thorin, Francisco Chinesta. Latent-Energy-Based NNs: An interpretable
Neural Network architecture for model-order reduction of nonlinear statics in solid mechanics. Journal
of the Mechanics and Physics of Solids, 2024, pp.105953. �10.1016/j.jmps.2024.105953�. �hal-04737657�

https://hal.science/hal-04737657v1
https://hal.archives-ouvertes.fr

Latent-Energy-Based NNs: An interpretable Neural Network architecture for
model-order reduction of nonlinear statics in solid mechanics

Louen POTTIER1,2,Anders THORIN1, Francisco CHINESTA
1 Université Paris-Saclay, CEA List, Palaiseau, France

2 PIMM Laboratory, Arts et Metiers Institude of Technology, CNRS, Cnma, HESAM Université, Paris, France

ABSTRACT Nonlinear mechanical systems can exhibit non-uniqueness of the displacement field in response to a force field,
which is related to the non-convexity of strain energy. This work proposes a Neural Network-based surrogate
model capable of capturing this phenomenon while introducing an energy in a latent space of small dimension,
that preserves the topology of the strain energy; this feature is a novelty with respect to the state of the art. It is
exemplified on two mechanical systems of simple geometry, but challenging strong nonlinearities. The proposed
architecture offers an additional advantage over existing ones: it can be used to infer both displacements from forces,
or forces from displacements, without being trained in both ways.

KEYWORDS Nonlinear mechanics; hyperelasticity; finite strain; surrogate models; neural networks; model reduction

Highlights
• A neural network capable of reducing nonlinear statics models in solid mechanics in finite strain

theory.
• Invertible neural network: can be used in forward or reverse mode (force prediction from displace-

ment field, or vice versa).
• Capable of dealing with multiple equilibria, corresponding to non-convex strain energy.
• Equilibrium stability is preserved in the low-dimensional latent space.

1 Introduction 1
2 Proposed architecture 4
2.1 Double autoencoder structure . 4
2.2 Energy-based latent model . 5
3 Experiments 5
3.1 Compared latent models . 5
3.2 Test cases . 6
3.3 Methodology . 7
3.4 DtF validation metrics . 7
3.5 FtD validation metrics . 8
4 Results 8
4.1 Comparisons of latent model structures . 8
4.2 Interpretability of LEBNN . 8
4.3 Chosen hyperparameters . 10
4.4 Influence of the latent space dimension . 10
4.5 Influence of database size . 11
4.6 Comments on computation times . 12
5 Conclusion 12
6 References 13

1. Introduction Because they are soft, elastomers or biological tissues often undergo large strains and
are typically modeled with hyperelastic constitutive laws. They are a source of nonlinearity and lead to
mechanical simulations that can be numerically costly.

Model reduction techniques have been developed for decades in order to reduce the computational
cost: Principal Component Analysis (PCA), Proper Orthogonal Decomposition (POD) or more recently
the Proper Generalized Decomposition (PGD) [6]. In this paper, we refer to such techniques as classical
model reduction methods.

On the one hand, classical model reduction methods emanate from centuries of knowledge and offer
physical interpretability. On the other hand, a more recent research topic is very promising: the use of
Neural Networks (NNs) to speed up simulations, through dimensionality reduction. However, NNs often
suffer from a lack of interpretability and are seen as "black boxes" compared to classical model reduction
methods.

This work proposes a NN architecture that provides both efficiency and interpretability, in the
framework of hyperelasticity. Of particular interest is the capability of the NN to deal with multiple
solutions, which is related to the energy non-convexity.

1

Enforcing physical properties in NN architectures One common approach to address the lack of
interpretability is to inject physical knowledge into neural networks, through penalty methods. For
instance, Physics Informed Neural Networks [34] consist in adding terms to the loss function to encourage
the respect of governing equations. Another approach is to directly integrate physical properties into the
neural network architecture. In a structural dynamics context, several methods have been proposed for
this purpose. Lagrangian Neural Networks (LNN) [7, 25] are used to learn a Lagrangian operator which
is then used to compute the time evolution of the structure’s displacement by using the Euler–Lagrange
equations. A variant of this idea has been proposed with Hamiltonian Neural Networks (HNN) [9, 12,
35]. Instead of a Lagrangian, a Hamiltonian is learned which allows to enforce the absence of dissipation.
Another approach consists in learning jointly a dynamical system and a Lyapunov function with two
neural networks and then using the Lyapunov function to restrict the learned dynamics which guarantees
non-negative dissipation [19, 26]. Such approaches address dynamics, which is not of direct interest in
the present work.

In this paper, we target applications for hyperelastic structural mechanical systems in statics. Our
approach can be seen as a special case of Lagrangian NN with no dynamic terms in the Lagrangian and
with some subtleties and contributions: learning physics in a low-dimensional latent space, using an
energy structure for the static terms of the Lagrangian, and using a neural network inversion method to
predict both displacement from force and force from displacement.

Large strain hyperelasticity framework The present work targets deformable bodies (beams, shells or
volumes) undergoing material nonlinearity (ie. constitutive law is nonlinear) and geometric nonlinearity
(large deformation), in a static framework. The deformable body is assumed to be discretized in space so
that it has a finite number of degrees-of-freedom (dofs) n ∈ N∗. Let u ∈ Rn denote the displacement field
within a structure composed of a hyperelastic material, ie. whose constitutive equation derives from a
polyconvex potential [3, 4]. Let U denote the potential energy of the structure that depends only on u. Let
f ∈ Rn denote the external forces andW(u, f) := u⊤f the corresponding work. Provided f is expressed
in a fixed frame (independent of u), the following governing equation holds:

∂U
∂u

= f.

The physical interpretation is that the internal elastic forces are balanced with the external forces f .
The corresponding problem can be seen as a direct or an inverse problem, whether the displacement

or the force is chosen as a (known) input.

Displacement u System Force f?DtF:

Force f System Displacement u?FtD:

Displacement to force (DtF) Finding the external force given the corresponding displacement field
is direct and easy, it only requires computing the gradient of the strain energy. This external force is
obviously unique.

Force to displacement (FtD): On the contrary, finding a displacement field corresponding to a given
external force is not direct and the solution is in general not unique.

If the strain energy U is convex, the solution of the FtD problem is unique for all given f . Otherwise,
for some f , u := U(u)−W(u, f) can have multiple equilibrium points that can be stable, unstable or
saddle points. In practice, uniqueness holds locally and the solution can be retrieved from some initial
guess u0 using a root-finding algorithm (such as Newton–Raphson).

Neural Networks for hyperelasticity In the context of hyperelasticity, polyconvexity of the strain
potential has already been structurally imposed in NN architectures [18, 21, 38]. Though the idea in these
articles is well-suited to learn constitutive laws or for homogenization, they are not designed to capture
the non-convexity induced by geometric nonlinearities [3]. Such approaches can therefore not be applied
to learn the mechanical problem in the general framework of geometric nonlinearities.

Several approaches have been applied to train NN to learn the response of hyperelastic structures.
Originally, Physics-Informed NNs (PINNs) correspond to learning u(x, y) = NN(x, y) for some pre-
scribed f that is used in the learning metric, in such a way that the static equilibrium is satisfied for all
(x, y). This approach, exemplified in [1], requires training the NN every time f changes. It is therefore
not suited for the general model reduction approach where the u↔ f relationship is sought.

2

f

u

U

stable stable

unstable

Figure 1: Example of a multistable static system: a prestressed clamped–clamped beam (left) and its
strain energy (right). For f = 0, multiple FtD solutions coexist (two stable and one unstable): this
illustrates the possible non-uniqueness of the FtD problem.

DtF predictions for hyperelastic systems have been carried out with U-nets [8] or FCNNs [36].
However, the use of model-order reduction is especially relevant for FtD problem, because it is more
computationally expensive. Conversely, FtD predictions for hyperelastic systems have also been carried
out with U-nets [27] or FCNNs [29], which are limited by construction to infer a unique solution, which
restricts their applications to convex strain energy.

Addressing the non-uniqueness of the FtD problem In general, the FtD problem can have multiple
solutions, see Fig. 1. A simple u = NN(f) structure can at best learn one FtD solution among the multiple
ones, at worst learn a nonphysical weighting of multiple solutions (their average, for instance). For
instance, in [1, 29], elongated structures with geometric non-linearities are involved leading to multiple
solutions of the FtD problem. This non-uniqueness cannot be addressed with the approach therein. Instead,
the following three approaches are able to address the non-uniqueness of the FtD problem:

1. retrieving the uniqueness in the neighborhood of a configuration u0 by learning u = NN(f, u0);
2. learning the DtF problem ie. f = NN(u) and using a root-finding algorithm initialized with u0 to

solve for u.
3. learning the set of FtD solutions ie.

⋃
i{ui} = NN(f).

Ideas one and two address the non-uniqueness of the problem by specifying the initial displacement u0
from which we search a static solution u. The third idea provides the whole set of solutions.

Training the first family of architectures requires to have access to a (u, u0, f) database. Depending
on how the data was generated, we may only have access to a (u, f) database with no way to access to
corresponding u0. On the contrary, training the second family of architectures does not require u0 because
training is done in DtF mode for which the solution is unique, u0 is only required in inference. Solutions
of the FtD inference can then be obtained by reversing the trained NN, searching for some u such as
f = NN(u) starting from u0.

Some existing methods provide a closed-form reversibility of NNs [2, 11]. They rely on the bijectivity
of the NN, which is restrictive in the present work because of the possibly multiple FtD solutions (cf.
Fig. 1). In a more general framework, the NN can be reversed using a root-finding algorithm [16, 23] such
as the Newton–Raphson procedure. The choice of the initialization u0 of the root-finding algorithm will
lead to different FtD solutions, which assert the non-uniqueness problem.

In [13, 41], an idea similar to the third family of architecture is proposed to solve inverse problems
in the case of PDEs with several solutions. Their PINN was trained on a database of (x, u(x)) where
u(x) is the value in x of one or other solution of a parameterized PDE. They could retrieve the unknown
parameter of the PDE (ie the equivalent of a single unknown value of f) and could train a PINN to predict
every PDE solution simultaneously. Adapting one of such methods in the case of multiple values of f ,
using the PINN formalism or not, seems possible but non-trivial because the number of FtD solutions
depends on f . Nevertheless, these examples show that it may also be possible to train the third family
of architectures only having access to a (u, f) database even if the different solutions are not numbered.
However, in inference, the third architecture does not easily allow to select the solution that would have
been predicted by a physical solver starting from a given u0. This can be restrictive in some applications.

Autoencoder structure Using an autoencoder structure to learn the underlying physics in a small
dimensional so-called latent space has been proposed multiple times, see e.g. [14, 30]. Different encoder
and decoder architectures can be used depending on the size of the mechanical fields to be learned and
their discretization: fully-connected multilayer neural networks, convolutional NNs in the case of regular
grid discretizations [15, 20, 27, 40], graph NNs for discretization on arbitrary meshes [22, 24, 28, 31], or
even more classical reduction techniques such as POD [5, 37]. One originality of the present work is

3

displacement
autoencoder

force
 autoencoder

physical space low dimensional
latent space

DtF
inference

FtD
inference

Figure 2: Architecture with double autoencoder, to learn highly nonlinear static equilibra. Of particular
interest is the appropriate choice of the learnable relationship Fθ(ũ) = f̃ in the latent space.

that both known and unknown fields (displacement and force fields) are compressed using two different
autoencoders.

The proposed architecture is exposed in more detail in Sec. 2. The test cases used to assess and
compare the proposed NN are described in Sec. 3. Results are provided in the next section, Sec. 4.

2. Proposed architecture

2.1. Double autoencoder structure Using the autoencoder-based neural network architecture depicted
in Fig. 2 as a substitution model, we replace the search for the roots of ∂uU − f with the search for the
roots of a learnable latent model Fθ(ũ)− f̃ of much smaller dimensions; θ denotes the parameters of the
model, for instance weights in a NN.

It can be used in both FtD and DtF modes, using a root-finding algorithm during FtD evaluation (see
Sec. 1). The double autoencoder structure allows to reduce the size of the space in which this root-finding
is performed, reducing the numerical cost and the risk of not converging.

DtF inference consists of the direct evaluation of decf (Fθ(encu(u)) whereas the FtD inference
consists in Algo. 1.

Algorithm 1 FtD inference using Newton’s method
Input: f, u0

f̃ = encf (f)
ũ = encu(u0)
while ∥Fθ(ũ)− f̃∥ > ε do

ũ← ũ− ∂Fθ(ũ)

∂ũ

−1

(Fθ(ũ)− f̃)

end while
u = decu(ũ)
Output : u

The choice of a suitable encoder and decoder architecture is problem-dependent and is a research
topic in itself. Instead, this work focuses in transcribing the physical governing equations into a latent
space. For that purpose, we have chosen encoders and decoders as simple fully-connected NNs for all the
test cases and the architectures of the present contribution with no effort in optimizing their architectures.

4

This approach is conservative in the sense that results may only be better by improving the encoders and
decoders.

2.2. Energy-based latent model The learnable latent model structure can be chosen as general as
represented in Fig. 2, ie. using an arbitrary NN to learn the relation between ũ and f̃ . One of the
originality of our contribution is to propose the use of an energy structure in latent space inspired by the
physical constitutive equation. Instead of choosing Fθ as a NN, leading to a general NN(ũ) = f̃ latent
model, we choose Fθ of the form Fθ(ũ) = ∂ũŨ(ũ) with Ũ a learnable energy function of ũ, so that the
governing equation in the latent space ∂ũŨ = f̃ mimics the governing equation of the original problem
∂uU = f . For the roots to always exist, Ũ should be radially unbounded, which can be enforced by
choosing Ũ(ũ) = 1

2 ũ
⊤ũ+NN(ũ).

Computing the gradient of the latent energy with respect to ũ is required in both DtF and FtD inference.
Choosing the learnable energy Ũ(ũ) as a Radial Basis Neural Network [10] plus a quadratic term to ensure
that the energy is radially unbounded, makes its gradient with respect to ũ, ie. Fθ, simple enough to be
computed analytically which allows a time-efficient implementation. Additionally, radial basis functions
are more interpretable than LEBFC, whose weights are impossible to apprehend, contrary to radial basis
functions.

Employing a latent energy structure allows us to solve the FtD problem by minimizing Ũ(ũ)− ũ⊤f̃
wrt. ũ, which always converges to a local minimum. By contrast, Newton’s algorithm can converge to a
saddle point, see Fig. 6. In this case, the FtD inference is given by the Algorithm 2.

Algorithm 2 FtD inference using latent energy minimization
Input: f, u0 (and learning rate α)
f̃ = encf (f)
ũ = encu(u0)

while ∥∂Ũ∂ũ (ũ)− f̃∥ > ε do

ũ← ũ− α
∂

∂ũ
(Ũ(ũ)− ũ⊤f̃)

end while
u = decu(ũ)
Output : u

3. Experiments To validate the proposed approach, four different architectures are trained on several test
cases described below. All the architectures have the same double autoencoder structure; they differ only
by the learnable latent models, ie. by the choice of Fθ in Fig. 2.

3.1. Compared latent models The four different latent models compared are detailed below.

1. LFC-f ũ = FCNN(f̃). This Latent Fully Connected (LFC) is direct in FtD mode, which erroneously
prevents the existence of multiple FtD solutions. This architecture should therefore not be able to learn test
cases with nonconvex potential energy. Besides, it requires a root-finding algorithm in DtF mode, leading
to potential non-unique DtF solution, which is physically absurd. The advantage of this architecture is
its very low FtD inference time, explained by the fact that it is not iterative contrary to the three other
architectures below. It is analogous to the direct FtD NN architectures of [27, 29] (see Introduction).

2. LFC-u f̃ = FCNN(ũ). This latent model is direct in DtF mode and indirect in FtD mode, but has no
energy structure. It should be able to learn test cases with nonconvex potential energy. It is analogous
to the direct DtF NN architectures used in [8, 36] (see Introduction). FtD inference is achieved by a
Newton–Raphson procedure in the latent space as described in algorithm 1.

3. LEBFC f̃ = ∂
∂ũ

(
1
2 ũ

⊤ũ+FCNN(ũ)
)
. This Latent Energy-Based (LEB) Fully Connected (FC) model,

which is an original contribution of this work, is direct in DtF mode and is derived from a learnable latent
energy, which is a quadratic function plus a fully-connected NN, as described in subsection 2.2. FtD
inference uses latent energy minimization.

4. LEBRB f̃ = ∂
∂ũ

(
1
2 ũ

⊤ũ+RBNN(ũ)
)
. The only difference between LEBRB and LEBFC is the use

of Radial Basis NN to learn the latent energy instead of FCNN. The terminology LEBNN encompasses

5

both. LEBRB is less general but allows time-efficient inference (see 2.2).
In the next subsections, we describe the test cases used in the comparison.

3.2. Test cases This may be misleading but despite their geometric simplicity, the chosen examples are
challenging due to their strong non-convex nonlinearities. On the contrary, learning a hyperelastic behavior
on a complex geometry (in terms of number of degrees of freedom or curvature) may be very simple if the
nonlinearity is small or large but convex. For instance, the easiest test case to learn in [39] is the one with
the largest number of dofs, because it has the weakest nonlinearity.

3.2.1. Two-spring examples The first test case is a 2-degree-of-freedom (dof) system: a mass connected to
two springs, see Fig. 3. Although the springs’ behavior laws are linear, the fact that the springs can rotate

kx

ky

m
uy

ux fxe⃗x + fy e⃗y

Figure 3: Two springs test case used to assess and compare the proposed architecture. Springs are
linear, but the geometry is nonlinear (large displacements).

around their attachment points by large angles gives rise to geometric non-linearity. The strain energy of
the structure can be shown to be:

U(ux, uy) =
1

2
kx(

√
uy2 + (1 + ux)2 − 1)2

+
1

2
ky(

√
ux2 + (1 + uy)2 − 1)2. (3.1)

Figure 4: Strain energy for each spring test case. Local minimum: . Local maximum: . Saddle point:
. The envelope of the displacements of each dataset is depicted by the black curves/rectangles.

The convex properties of U depend on the values of kx and ky. To illustrate the capability of the NN
architectures to learn various behaviors, we define the following subcases by varying the values for kx, ky
and the range of ux, uy or fx, fy.

LinSpr11DtF dataset kx = ky = 1. ∇U is linearized, leading to a quadratic strain energy:

U(ux, uy) =
1

2
kxu

2
x +

1

2
kyu

2
y. (3.2)

ux and uy are sampled within [−2, 2]. The inverse problem (FtD) has a unique solution.

ConvSpr11DtF dataset kx = ky = 1. ∇U is not linearized and are sampled from a subset (ux, uy ∈
[−0.2, 1.8]) on which the strain energy is convex. On this subset, the inverse problem (FtD) has a unique
solution.

Spr11DtF dataset kx = ky = 1. ∇U is not linearized and are sampled from a subset (ux, uy ∈ [−2, 2])
on which the strain energy is non-convex. On this larger subset, there are multiple FtD solutions. Up to 2
stable equilibria, 2 unstable equilibria and 3 saddle points coexist.

6

Spr11FtD dataset kx = ky = 1. ∇U is not linearized and the force is sampled in a subset (fx, fy ∈
[−2, 2]) leading to displacements for which the strain energy is non-convex. There are multiple FtD
solutions, but the dataset contains only stable equilibria because of FtD data generation. Up to 2 stable
equilibria coexist.

Spr10DtF dataset kx = 1, ky = 0. ∇U is not linearized, one of the springs has zero stiffness. The
displacement is sampled from a subset (ux, uy ∈ [−2, 2]) on which the strain energy is non-convex. There
are multiple FtD solutions, one stable equilibrium and one unstable equilibrium for a nonzero force, and a
continuous circle of stable equilibria for f = 0, because the mass can rotate freely around the fixation
point of the remaining spring.

For these test cases, data generation has been done either in DtF (sampling 1000 random u and
computing f = ∂U

∂u) or in FtD (sampling 1000 random f and computing u with a root-finding algorithm).
The FtD data generation leads to a dataset containing only stable equilibria whereas the DtF dataset also
contain unstable equilibria (if they exist), see Fig. 4.

3.2.2. Hyperelastic beam The second mechanical system is a hyperelastic fixed–free beam undergoing in the
large transformation framework. The constitutive law is a St-Venant–Kirchhoff (stresses are proportional
to strains); the non-linearity comes from the Green–Lagrange strain tensor. The beam was discretized in
space with 10 elements in a 2-dimensional space, with a a clamped node, corresponding to 18 degrees of
freedom. The discretized strain energy is a function of these 18 dofs and thus can not be visualized easily.

The beam parameters are the following: 10 nodes of which 1 is clamped, in a 2D plane (18 dofs),
length 1m, width and thickness 0.01m, density 7.8 , Young modulus 210GPa.

Since multiple static equilibra can coexist for one force f , data could not be generated with a direct
static solver. Instead, we used an in-house finite-element dynamic solver and applied a random oscillating
force history at the free end of the beam, and then maintained it constant as f . With little damping
(ξ = 2%), the oscillations would stop and we would obtain a stable pair (f, u) solution of the static
equilibrium equation. Using a dynamic solver was a way to perform FtD data generation, by approaching
different stable solutions dynamically, hence overcoming the non-uniqueness of the solutions.As for
the previous spring system, the maximum loading amplitude (25 kN) has been adjusted so that the non-
linearity induced by the large displacement is sufficient to obtain non-unique FtD solution, see Fig. 5.
The force f is chosen randomly within this range. The database includes 3778 (f, u) solutions. The
corresponding (f, u) database is available in [32].

beam at rest

F

F

Figure 5: Test case of a clamped–free hyperelastic beam loaded at its tip. Two stable equilibria for the
same given force are depicted.

3.3. Methodology For all architectures, the training is performed in the direct mode, ie. without root-finding
algorithm: in DtF mode, except for the LFC-f (in FtD mode). Latent models and autoencoders are trained
simultaneously by minimizing the sum of the prediction error and the two reconstruction errors. Each error
is weighted such that they have an equal contribution at the beginning of the training, and not adjusted
during training.

For each test case, the dataset was randomly divided into 80% for the training set and 20% for the
validation set. For each architecture and each test case, 10 trainings were done. The Adam optimizer [17]
with default parameters and a learning rate chosen using a LRFinder algorithm [33].

3.4. DtF validation metrics Given a displacement u (either for the spring-mass system or the beam), the
corresponding reference force fobj is compared with the NNs DtF predictions. Mean Absolute Error is
computed between the predictions and the objective for every (u, fobj) of the validation dataset.

7

The LFC-f architecture is not direct in DtF mode; the inverse problem is solved with a Newton
method using a zero initial force f0.

3.5. FtD validation metrics Because the FtD solution is non-unique, an initial displacement u0 has to
be selected to compare the objective and the predictions. For the spring test cases, we built a (f, u0, u)
dataset by selecting random f and u0 and computing the corresponding FtD solution from the governing
equation. For the beam test case, u0 was chosen using the (f, u) validation dataset as u0 = u/2, which
ensures that u and u0 are in the same convex subset of the potential energy. Mean Absolute Error between
predicted and objective displacements is then computed from these given f and u0.

For the nonconvex cases, models can predict accurate stable equilibria that do not correspond to the
given u0: the root-finding algorithm may converge to a local minimum that is not the one reached by the
mechanical system. This phenomenon is evaluated by computing the ratio of the number of predicted
displacements in the right convex subset with the total number of cases: the metric is referred to as
"success percentage" in Tab. 1.

4. Results

4.1. Comparisons of latent model structures For the convex potential energies (test cases LinSpr11
and ConvSpr11), all four models learnt easily the system behavior with very high accuracy, see Tab. 1.
In the case of convex potential energy, ie. always unique FtD solutions, there is little point in using an
architecture requiring a root-finding algorithm in FtD inference. Direct FtD NN architecture such as
LFC-f or architectures of [27, 29] are sufficient to reduce FtD inference in such simple cases.

On Spr11DtF and Spr10DtF ie. the two non-convex test cases with a DtF data generation, latent
energy-based architectures outperform the two other architectures in terms of FtD evaluation metric,
see Tab. 1. For such test cases, there are unstable equilibria and saddle points inside the dataset. FtD
inference with LEBNN by energy minimization has a high success rate, better than LFC-u, in particular
because Newton’s method can converge to saddle points, see Fig. 6.

Error histograms in Fig. 11 show that the vast majority of samples lead to low errors (MAE < 0.05 for
u ∈ [−2, 2]) but few samples have an error of the same error of magnitude as u. Such errors correspond
to a FtD prediction being in the neighborhood of the wrong local minima, or close to a saddle point for
LFC-u. Histograms show that this phenomenon is rare with LEB architectures.

LFC-u is not as inaccurate for the Spr11FtD and the beam. Indeed, such cases were generated by
solving FtD problems, so that there are no unstable equilibria and saddle points in the training set to
deteriorate the convergence of FtD inference with Newton. LFC-f is unable to learn multiple stable
equilibria, leading to low accuracy.

Differences between LEBFC and LEBRB are insignificant, despite the lower inference time of LEBRB.

Initial position
Exact ≈ LEBRB

FC-DtF

Figure 6: From an initial position (in black) in the vicinity of a saddle point of the potential energy of
the system: FC-DtF converges to the (unstable) saddle point, while the LEBRB converges to the closest
stable equilibrium by minimizing the latent energy.

4.2. Interpretability of LEBNN The great advantage of LEBNN architectures is that they offer the pos-
sibility to visualize the latent energy, learnt only from a (u, f) database, ie. with no supervision of the
energy. Fig. 8 proves that the latter embeds the complexity of the energy of the initial problem.

The latent energy has the right numbers of minima, maxima and saddle points in the zone covered
by the training dataset, see Fig 9. The physical potential energy can be accurately reconstructed with
LEBNN from the latent energy using encu. For the spring test case, this assertion can be directly verified,

8

Figure 7: Contour plot of the strain energy for the Spr10 test case. Reference U(ux, uy) (left).
Unsupervised prediction Ũ(encu(ux, uy)) with LEBFC (center) and LEBRB (right). While being
trained only on (u, f) pairs, both LEBNN architectures reconstruct the appropriate energy using only
(u, f) pairs. Local minima: . Local maximum: . The envelope of the displacements of Spr10 dataset
is depicted by the black rectangles.

Figure 8: Contour plot of the strain energy for the Spr11 test case. Reference U(ux, uy) (left).
Unsupervised prediction Ũ(h1, h2) with LEBRB (right). Energy in the physical and latent spaces have
the same topology. In particular, they have the same equilibria.

Figure 9: Contour plot of the strain energy learnt with the LEBRB for each dataset of Spr11, to be
compared with levelsets in Fig. 8 (left). The energy in the physical space and in the latent space have
the same topology. In particular, they have the same equilibria. Local minimum: . Local maximum: .
Saddle point: .

Figure 10: Contour plot of the strain energy in the latent space, for LEBFC (left) and LEBRB (right).
Both have a single local minimum corresponding to the non-deformed beam and crescent-shaped level
curves: for some f̃ , there are 3 static equilibrium ũ (two stable and one unstable), see e.g. Fig. 5.

9

see Fig. 7. For the beam, u ∈ R18 so that U(u) cannot be plotted. However, LEBNN allows plotting of its
latent energy, which helps understand the system behavior: all the features of the system can be retrieved
from the latent energy: single local minimum, crescent-shaped level sets, see Fig. 10.

The following provides an insight on the reason why LEBNNs work in FtD mode while trained only in
DtF. The static problems FtD and DtF are both determined by the potential U . Compressing this potential
while preserving an energy structure in the latent space provides the ability to infer both displacements
from forces and forces from displacements without being trained in both ways. This illustrates the sound
architecture (latent energy) and an appropriate choice of latent space dimension: had it been chosen too
large, the NN would have not been invertible. Chosen too small, the inversion would be inaccurate. The
influence of the dimension of the latent space is discussed in Subsec. 4.4.

LFC-f

0 0.5 1
100

101

102

0

Mean Absolute Error

LFC-u

0 0.5 1

Mean Absolute Error
LEBFC

0 0.5 1

Mean Absolute Error

LEBRB

0 0.5 1

Mean Absolute Error

Figure 11: Error histograms for the four architectures in semi-log scale (Spr11DtF).

LFC-f LFC-u LEBFC LEBRB
LinSpr11
- DtF MAE 3.1± 1.1 1.9± 0.4 1.0± 0.3 0.9± 0.2
- FtD MAE 3.2± 0.7 1.6± 0.5 1.4± 0.3 1.1± 0.3
- % success 100± 0 100± 0 100± 0 100± 0
ConvSpr11
- DtF MAE 4.7± 1.7 2.5± 0.5 1.5± 0.2 1.6± 0.6
- FtD MAE 3.2± 0.6 1.7± 0.4 2.2± 0.5 2.6± 1.3
- % success 100± 0 100± 0 100± 0 100± 0
Spr11DtF
- DtF MAE 56.± 21. 5.1± 0.4 2.4± 0.3 1.3± 0.3
- FtD MAE 39.± 3. 15.± 5. 5.7± 1.1 3.0± 1.5
- % success 83.7± 2.0 93.9± 1.3 98.6± 0.5 98.8± 0.6
Spr11FtD
- DtF MAE 14.9± 1.2 13.8± 0.6 15.0± 1.6 10.3± 0.4
- FtD MAE 4.5± 0.7 4.6± 0.4 3.5± 1.0 3.7± 0.7
- % success 98.6± 0.2 99.1± 0.2 99.3± 0.4 99.1± 0.2
Spr10DtF
- DtF MAE 13.7± 1.7 3.9± 0.3 2.5± 0.5 1.5± 0.2
- FtD MAE 26.1± 0.7 18.3± 2.6 5.3± 1.3 1.9± 0.6
- % success 90.8± 0.3 94.8± 0.7 99.4± 0.3 99.9± 0.1
Beam
- DtF MAE 62.± 14. 7.9± 0.3 7.4± 0.7 5.5± 0.5
- FtD MAE 70.8± 0.2 17.9± 3.1 17.9± 1.9 14.9± 1.2
- % success 86.9± 0.1 97.8± 0.7 97.6± 0.4 97.9± 0.3

Table 1: Errors metrics evaluated for each dataset and architecture. Metrics were averaged on 10
trainings. Uncertainty is estimated by standard deviation. All MAEs were multiplied by 100. Metrics
are defined in Sec. 3.

4.3. Chosen hyperparameters The following tables provide the NNs’ architectures used for the above
results (cf Tab. 2 and 3). The hyperparameters of the two autoencoders (number of layers, hidden layer
size, activation functions) are the same for all four architectures and were not tuned. Using identity
functions for encf and decf makes it possible to directly superimpose the levelsets of U and Ũ in Figs. 7
and 9, but it is not compulsory, see for instance next paragraph. Corresponding codes are provided
online [32].

10

encu Lin(64,2) o ELU o Lin(64,64) o ELU o Lin(2,64)
decu Lin(64,2) o ELU o Lin(64,64) o ELU o Lin(2,64)
encf id
decf id

case 1 (LFC-f) u = RN(f) with RN=Lin(64,2) o ELU o Lin(64,64) o ELU o Lin(2,64)
case 2 (LFC-u) f = RN(u) with RN=Lin(64,2) o ELU o Lin(64,64) o ELU o Lin(2,64)
case 3 (LEBFC) f = d

du (1/2u
⊤u+RN(u))

with RN = ELU o Lin(64,1) o ELU o Lin(64,64) o ELU o Lin(2,64)
case 4 (LEBRB) f = d

du (1/2u
⊤u+RN(u)) with RN = ELU o Lin(64,1) o RBF(2,64)

Table 2: Springs test case: architectures used to generate the results. RBF (2, 64) denotes the radial

basis functions defined as: RBF (2, 64)(ũ) =
∑64

i=1

√
1 + (||ũ−ci||

si
)2.

encu Lin(64,2) o ELU o Lin(64,64) o ELU o Lin(18,64)
decu Lin(64,18) o ELU o Lin(64,64) o ELU o Lin(2,64)
encf R18 ∋ f 7−→ f̃ = [f17, f18] ∈ R2

decf R2 ∋ f̃ 7−→ f = [0, . . . , 0, f̃1, f̃2] ∈ R18

case 1 (LFC-f) same as in Tab. 2
case 2 (LFC-u) same as in Tab. 2
case 3 (LEBFC) same as in Tab. 2
case 4 (LEBRB) same as in Tab. 2

Table 3: Beam test case: architectures used to generate the results.

4.4. Influence of the latent space dimension Fig. 12 depicts the FtD error as a function of DtF error
for each architecture and different latent dimensions: 1, 2 and 3. Note that in this part, encf and decf
were adapted from Tabs. 2 and 3 with an additional linear layer to match the latent space dimension. This
linear layer was also added in latent dimension 2 for a fair comparison with latent dimensions 1 and 3.
The errors are averaged on ten simulations for the springs test case and four simulations for the beam. The
errors are much lower for the latent space of dimension 2 and the Latent-Energy Based architectures. For
the beam case, despite displacement fields of dimension 18, they belong by construction to a 2D manifold:
the FtD generation was carried out by varying the two components of an external force. Therefore, the
resulting displacement fields can in theory be encoded in a 2-dimensional latent space.

A too small latent space dimension induces a loss of information and therefore large errors in DtF and
FtD. That can be seen in Fig. 12, blue points. A too large latent space dimension does not induce any
error in the direct sense, but its inversion with Newton’s method leads to absurd results because it goes
outside the manifold. This can be seen in Fig. 12: the architectures are much more accurate in the mode
they have been trained. This gives a practical method to set the dimension of the latent space: it should
match the number of parameters used to generate the database.

4.5. Influence of database size To get an insight on the influence of the dataset size, the four architectures
were trained with a small dataset of only 40 points randomly chosen, and 10 additional points for the
validation set. The batch size for the training is 8. Figure 13 shows that despite the small size of the
dataset, LEBRB is able to learn the energy with a reasonable accuracy. Tab. 4 compares the FtD and DtF
for the different architectures and assess them on an additional 1000 points (test set). It shows that the
LEBNN architectures are much more accurate, illustrating the relevance of introducing a latent energy.

LFC-f LFC-u LEBFC LEBRB
Spr11DtF
Training set (40 samples)
- DtF MAE 212.6± 155.7 2.3± 0.5 4.8± 0.77 0.61± 0.31
- FtD MAE 35.8± 2.5 40.0± 18.8 12.4± 0.22 9.5± 2.7
- % success 87.5± 2.5 87.5± 2.5 97.5± 2.5 97.5± 2.5
Test set (1000 samples)
- DtF MAE 163± 40.7 33± 1.8 16.7± 0.53 18.2± 0.02
- FtD MAE 83± 4.45 180± 121 18.2± 2.3 22.5± 1.01
- % success 76.7± 1.5 76.9± 5.05 96.4± 1.2 95.7± 0.25

Table 4: Errors metrics evaluated for each architecture on test case Spr11. Metrics were averaged on
10 trainings. All MAEs were multiplied by 100. Metrics are defined in Sec. 3.

11

100 101 102

101

102

DtF error

Ft
D

er
ro

r

Springs test case

100 101 102 103

101

102

DtF error

Beam test case

Figure 12: Errors in both modes (FtD and DtF) for the four architectures (LFC-f , LFC-u,
LEBRB, × LEBFC) and different latent space dimensions: dimension 1, dimension 2, dimension 3.

Displacement ux Displacement ux

D
is

pl
ac

em
en

tu
y

Figure 13: Reference energy (left) and predicted energy with LEBRB trained with only 40 samples
(depicted in blue).

4.6. Comments on computation times Fair cost comparison between finite elements and neural networks
is difficult, because each of the methods depends on a lot of parameters: GPU/CPU, number of degrees of
freedom, implementation, etc. Moreover, overhead costs are possibly significant for datasets as small as
those considered here.

Algorithmic complexity is also case-dependent because of the structure of the involved matrices,
the numbering of the nodes, etc. However, for finite elements, it is between at best O(n) for beams
(band-diagonal structure independent of n) and at most O(n3) (cost of a LU decomposition), with typical
values between O(n2.3) and O(n3). The complexity of the NN inference is also subtle, depending on
whether the dimension of the latent space is fixed or not. For a given problem, the dimension of the latent
space is expected to be insensitive to mesh refinement: it depends on the physical phenomenon rather
than on the mesh refinement. Hence the inference of LEBNN in DtF mode scales as O(n), without the
training phase. Another obstacle to fair comparison is the number of iterations in the Newton–Raphson’s
algorithm, which may depend on n and the proximity with an unstable equilibrium.

With all these limitations in mind, as an indication for the reader, computing a static equilibrium of a
cantilever beam with 18 dofs using an optimized Finite Element dynamic code runs in about 5 s while the
NN runs in FtD in about 5ms, with no effort in optimizing either simulation method.

5. Conclusion Two NNs representative of already existing architectures (LFC-f and LFC-u) and two
flavors of Latent-Energy Based NNs (LEBNN) have been compared on several test cases exhibiting
various equilibrium typologies in the context of large strain hyperelasticity.

The different test cases include typologies where multiple solutions u to PDEs depending on a

12

parameter f can coexist and for which no existing architecture and training methods are suitable. In
particular, a standard PINN architecture is incompatible with the multiplicity of FtD solutions and not
suitable for model reduction with varying boundary condition f .

Two modes were considered: predicting forces in response to imposed displacements on a mechanical
system, and predicting displacements in response to forces.

LEBNN is the only architecture leading to accurate results in both modes (despite being trained only
in DtF mode). This result is even more significative when the size of the dataset is small, which is of
practical interest (generating database can be costly). Additionally, LEBNN allows the visualization of the
underlying energy of the system in a low-dimensional latent space, providing an intuitive understanding
of its mechanical behavior and indicating that it has actually compressed sound physical information.

This work illustrates that including physical information within the NN architecture itself can be a
fruitful approach. The counterpart of the non-uniqueness in the "force to displacement mode" is that
LEBNN requires a Newton’s method. As for any NN, it also requires a choice of hyperparameters. In
particular, the dimension of the latent space must correspond to the physical intrinsic dimension for
LEBNN to be relevant. For simple convex problems, there is no interest in using LEBNN: training two
NNs LFC-f and LFC-u is sufficient to learn both FtD and DtF and there is no need for a Newton’s method.

The end objective is to extend the idea of a latent-energy based NNs to dynamical systems in solid
mechanics: for strongly nonlinear dynamical systems, T and U in the Lagrangian L = T − U play a very
different role: the kinetic energy T may depend on u but is always convex (quadratic) in u̇, while U often
encompasses most of the nonlinearities. The present work, which precisely consists in learning U , can
therefore be seen as a possibly fruitful approach to learning the behavior of nonlinear dynamical systems,
for instance with Lagrangian NNs, Hamiltonian NNs or NeuralODE.

6. References
[1] ABUEIDDA, Diab W., KORIC, Seid, GULERYUZ, Erman, SOBH, Nahil A. Enhanced physics-informed neural networks for

hyperelasticity. International Journal for Numerical Methods in Engineering 124(7):1585–1601, 2022. [10.1002/nme.
7176].

[2] ARDIZZONE, Lynton et al. Analyzing inverse problems with invertible neural networks. 2019. arXiv: 1808.04730 [cs.LG].
[3] BALL, John M. Convexity conditions and existence theorems in nonlinear elasticity. English. Archive for Rational

Mechanics and Analysis 63(4):337–403, 1976. [10.1007/BF00279992].
[4] BONET, Javier, GIL, Antonio J., ORTIGOSA, Rogelio. A computational framework for polyconvex large strain elasticity,

2015. [10.1016/j.cma.2014.10.002].
[5] BUKKA, Sandeep, GUPTA, Rachit, MAGEE, Allan, JAIMAN, Rajeev. Assessment of unsteady flow predictions using hybrid

deep learning based reduced order models. 2020.
[6] CHINESTA, Francisco, LADEVEZE, Pierre, CUETO, Elias. A short review on model order reduction based on proper

generalized decomposition. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING 18:395–404, 2011.
[10.1007/s11831-011-9064-7].

[7] CRANMER, Miles, GREYDANUS, Sam, HOYER, Stephan, BATTAGLIA, Peter, SPERGEL, David, HO, Shirley. Lagrangian
neural networks. 2020. arXiv: 2003.04630 [cs.LG].

[8] DE BARRIE, Daniel, PANDYA, Manjari, PANDYA, Harit, HANHEIDE, Marc, ELGENEIDY, Khaled. A deep learning method
for vision based force prediction of a soft fin ray gripper using simulation data. Frontiers in Robotics and AI 8, 2021.
[10.3389/frobt.2021.631371].

[9] FENG, Yuan, WANG, Hexiang, YANG, Han, WANG, Fangbo. Time-continuous energy-conservation neural network for
structural dynamics analysis. 2020. [10.48550/ARXIV.2012.14334].

[10] GHOSH, J., NAG, A. “An overview of radial basis function networks.” Radial Basis Function Networks 2: New Advances
in Design. Edited by Robert J. Howlett, Lakhmi C. Jain. Heidelberg: Physica-Verlag HD, 2001: 1–36. [ISBN: 978-3-
7908-1826-0]. [10.1007/978-3-7908-1826-0_1].

[11] GOMEZ, Aidan N., REN, Mengye, URTASUN, Raquel, GROSSE, Roger B. The reversible residual network: backpropagation
without storing activations. 2017. arXiv: 1707.04585 [cs.CV].

[12] GREYDANUS, Sam, DZAMBA, Misko, YOSINSKI, Jason. Hamiltonian neural networks. 2019. arXiv: 1906.01563 [cs.NE].
[13] GU, Yiqi, WANG, Chunmei, YANG, Haizhao. Structure probing neural network deflation. Journal of Computational Physics

434:110231, 2021. [10.1016/j.jcp.2021.110231].
[14] KIM, Byungsoo, AZEVEDO, Vinicius C., THUEREY, Nils, KIM, Theodore, GROSS, Markus, SOLENTHALER, Barbara.

Deep fluids: a generative network for parameterized fluid simulations. Computer Graphics Forum 38(2):59–70, 2019.
[10.1111/cgf.13619].

[15] KIM, Byungsoo, AZEVEDO, Vinicius C., THUEREY, Nils, KIM, Theodore, GROSS, Markus, SOLENTHALER, Barbara.
Deep Fluids: A Generative Network for Parameterized Fluid Simulations. Computer Graphics Forum 38(2):59–70,
2019. arXiv: 1806.02071.

[16] KINDERMANN, J, LINDEN, A. Inversion of neural networks by gradient descent. Parallel Computing 14(3):277–286, 1990.
[https://doi.org/10.1016/0167-8191(90)90081-J].

[17] KINGMA, Diederik P., BA, Jimmy. Adam: a method for stochastic optimization. 2017. arXiv: 1412.6980 [cs.LG].

13

http://dx.doi.org/10.1002/nme.7176
http://dx.doi.org/10.1002/nme.7176
https://arxiv.org/abs/1808.04730
http://dx.doi.org/10.1007/BF00279992
http://dx.doi.org/10.1016/j.cma.2014.10.002
http://dx.doi.org/10.1007/s11831-011-9064-7
https://arxiv.org/abs/2003.04630
http://dx.doi.org/10.3389/frobt.2021.631371
http://dx.doi.org/10.48550/ARXIV.2012.14334
http://dx.doi.org/10.1007/978-3-7908-1826-0_1
https://arxiv.org/abs/1707.04585
https://arxiv.org/abs/1906.01563
http://dx.doi.org/10.1016/j.jcp.2021.110231
http://dx.doi.org/10.1111/cgf.13619
https://arxiv.org/abs/1806.02071
http://dx.doi.org/https://doi.org/10.1016/0167-8191(90)90081-J
https://arxiv.org/abs/1412.6980

[18] KLEIN, Dominik K., FERNÁNDEZ, Mauricio, MARTIN, Robert J., NEFF, Patrizio, WEEGER, Oliver. Polyconvex anisotropic
hyperelasticity with neural networks. Journal of the Mechanics and Physics of Solids 159:104703, 2022. [10.1016/j.
jmps.2021.104703].

[19] LAWRENCE, Nathan P., LOEWEN, Philip D., FORBES, Michael G., BACKSTRÖM, Johan U., GOPALUNI, R. Bhushan.
Almost surely stable deep dynamics, 2021. [10.48550/ARXIV.2103.14722].

[20] LEE, Kookjin, CARLBERG, Kevin T. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional
autoencoders. Journal of Computational Physics 404:108973, 2020. arXiv: 1812.08373.

[21] LINDEN, Lennart, KLEIN, Dominik K., KALINA, Karl A., BRUMMUND, Jörg, WEEGER, Oliver, KÄSTNER, Markus.
Neural networks meet hyperelasticity: a guide to enforcing physics. Journal of the Mechanics and Physics of Solids
179:105363, 2023. [10.1016/j.jmps.2023.105363].

[22] LINO, Mario, CANTWELL, Chris D., BHARATH, Anil A., FOTIADIS, Stathi. Simulating continuum mechanics with
multi-scale graph neural networks. CoRR abs/2106.04900, 2021. arXiv: 2106.04900.

[23] LIU, Ruoshi, MAO, Chengzhi, TENDULKAR, Purva, WANG, Hao, VONDRICK, Carl. Landscape learning for neural network
inversion. 2022. arXiv: 2206.09027 [cs.CV].

[24] LIU, Wenzhuo, YAGOUBI, Mouadh, SCHOENAUER, Marc. “Multi-resolution Graph Neural Networks for PDE Approxima-
tion.” Artificial Neural Networks and Machine Learning – ICANN 2021. Volume 12893. Lecture Notes in Computer
Science. Springer International Publishing, 2021:151–163. [10.1007/978-3-030-86365-4_13].

[25] LUTTER, Michael, RITTER, Christian, PETERS, Jan. Deep lagrangian networks: using physics as model prior for deep
learning. 2019. arXiv: 1907.04490 [cs.LG].

[26] MANEK, Gaurav, KOLTER, J. Zico. Learning stable deep dynamics models. 2020. [10.48550/ARXIV.2001.06116].
[27] MENDIZABAL, Andrea, MÁRQUEZ-NEILA, Pablo, COTIN, Stéphane. Simulation of hyperelastic materials in real-time

using deep learning. Medical Image Analysis 59:101569, 2019. [10.1016/j.media.2019.101569].
[28] MEYER, Lucas, POTTIER, Louen, RIBES, Alejandro, RAFFIN, Bruno. Deep surrogate for direct time fluid dynamics, 2021.

[10.48550/ARXIV.2112.10296].
[29] ODOT, Alban, HAFERSSAS, Ryadh, COTIN, Stéphane. Deepphysics: a physics aware deep learning framework for real-time

simulation. CoRR abs/2109.09491, 2021. arXiv: 2109.09491.
[30] PALIARD, Chloe, THUEREY, Nils, UM, Kiwon. Exploring physical latent spaces for deep learning. 2022. arXiv: 2211.11298

[cs.LG].
[31] PFAFF, Tobias, FORTUNATO, Meire, SANCHEZ-GONZALEZ, Alvaro, BATTAGLIA, Peter W. Learning mesh-based simula-

tion with graph networks. 2021. arXiv: 2010.03409 [cs.LG].
[32] POTTIER, Louen, THORIN, Anders, CHINESTA, Francisco. Database of force–displacement pairs with multiple static

equilibria. https://hal.science/hal-04737657. 2024.
[33] Pytorch learning rate finder. https://github.com/davidtvs/pytorch-lr-finder?tab=readme-ov-file. 2020.
[34] RAISSI, M., PERDIKARIS, P., KARNIADAKIS, G. E. Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational
Physics 378:686–707, 2019. [10.1016/j.jcp.2018.10.045].

[35] SOSANYA, Andrew, GREYDANUS, Sam. Dissipative hamiltonian neural networks: learning dissipative and conservative
dynamics separately. 2022. [10.48550/ARXIV.2201.10085].

[36] SUTO, K., SAKAI, Yusuke, TANIMICHI, K., OHSHIMA, T. “Surrogate model of elastic large-deformation behaviors of
compliant mechanism using co-rotational beam element.” 2022. [10.23967/wccm-apcom.2022.109].

[37] SWISCHUK, Renee, MAININI, Laura, PEHERSTORFER, Benjamin, WILLCOX, Karen. Projection-based model reduction:
formulations for physics-based machine learning. Computers & Fluids 179:704–717, 2019. [https://doi.org/10.1016/j.
compfluid.2018.07.021].

[38] TAC, Vahidullah, COSTABAL, Francisco, BUGANZA TEPOLE, Adrian. Automatically polyconvex strain energy functions
using neural ordinary differential equations. 2021.

[39] THANGAMUTHU, Abishek, KUMAR, Gunjan, BISHNOI, Suresh, BHATTOO, Ravinder, KRISHNAN, N M Anoop, RANU,
Sayan. Unravelling the performance of physics-informed graph neural networks for dynamical systems. 2023. arXiv:
2211.05520 [cs.LG].

[40] THUEREY, Nils, WEISSENOW, Konstantin, PRANTL, Lukas, HU, Xiangyu. Deep learning methods for reynolds-averaged
navier–stokes simulations of airfoil flows. AIAA Journal 58(1):25–36, 2020. [10.2514/1.j058291].

[41] ZHENG, Haoyang, HUANG, Yao, HUANG, Ziyang, HAO, Wenrui, LIN, Guang. Hompinns: homotopy physics-informed
neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. Journal of
Computational Physics 500:112751, 2024. [10.1016/j.jcp.2023.112751].

14

http://dx.doi.org/10.1016/j.jmps.2021.104703
http://dx.doi.org/10.1016/j.jmps.2021.104703
http://dx.doi.org/10.48550/ARXIV.2103.14722
https://arxiv.org/abs/1812.08373
http://dx.doi.org/10.1016/j.jmps.2023.105363
https://arxiv.org/abs/2106.04900
https://arxiv.org/abs/2206.09027
http://dx.doi.org/10.1007/978-3-030-86365-4_13
https://arxiv.org/abs/1907.04490
http://dx.doi.org/10.48550/ARXIV.2001.06116
http://dx.doi.org/10.1016/j.media.2019.101569
http://dx.doi.org/10.48550/ARXIV.2112.10296
https://arxiv.org/abs/2109.09491
https://arxiv.org/abs/2211.11298
https://arxiv.org/abs/2211.11298
https://arxiv.org/abs/2010.03409
https://hal.science/hal-04737657
https://github.com/davidtvs/pytorch-lr-finder?tab=readme-ov-file
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.48550/ARXIV.2201.10085
http://dx.doi.org/10.23967/wccm-apcom.2022.109
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.07.021
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.07.021
https://arxiv.org/abs/2211.05520
http://dx.doi.org/10.2514/1.j058291
http://dx.doi.org/10.1016/j.jcp.2023.112751

	1 Introduction
	2 Proposed architecture
	2.1 Double autoencoder structure
	2.2 Energy-based latent model

	3 Experiments
	3.1 Compared latent models
	3.2 Test cases
	3.3 Methodology
	3.4 DtF validation metrics
	3.5 FtD validation metrics

	4 Results
	4.1 Comparisons of latent model structures
	4.2 Interpretability of LEBNN
	4.3 Chosen hyperparameters
	4.4 Influence of the latent space dimension
	4.5 Influence of database size
	4.6 Comments on computation times

	5 Conclusion
	6 References

