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Abstract—This study investigates the muscular synergies of the
lower limb during human walking, estimated using a constrained
canonical polyadic decomposition of muscle lever arms. The
results confirm the existence of synergies complementary to syn-
ergies previously derived from non-negative matrix factorization
of computed muscle activations or measured electromyographic
signals. Furthermore, we present a method for computing muscu-
lotendon forces based on the use of ’synergistic forces’, computed
using lever arm synergies. This method is evaluated through the
estimation of knee contact forces for one subject equipped with
an instrumented knee prosthesis.

I. INTRODUCTION

Rigid multi-body modeling in biomechanics is a valuable
tool for understanding the functioning and loading of the
musculoskeletal system. However, a significant issue is mus-
cular redundancy, namely for state-of-the-art musculoskele-
tal models there are infinitely many valid musculotendon
forces that produce the same motion. Estimation of individual
musculotendon forces during human locomotion can be of
great help in diagnosing, planning treatment and monitoring
patients suffering from joint pathologies such as osteoarthritis.
To address this problem, a common approach is to solve a
regularized linear system . This involves selecting the variables
to be estimated, typically musculotendon forces or muscle
activations [1], and choosing an objective function that has
a significant impact on the outcome, typically ridge or sparse
regression [2], [3].

While regularized least squares allows to take into account
the system’s dynamics and physiological limits and to reduce
the solution space, their output is difficult to interpret as the
priors are ill-fitted. A possible approach is to first reduce
the problem’s dimension by considering muscle synergies.
Synergies are groupings of muscles often identified from
experimentally measured electromyography (EMG) signals
[4], [5] or previously computed muscle activations [6], [7],
with typically four to six synergies identified in the lower
limb for activities like walking. Muscle synergies are usually
computed using non-negative matrix factorisation or principal
component analysis [8].

Muscle synergies can represent neural coordination but can
also reflect biomechanical affordances (i.e. musculosketelal
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structure) as well as biomechanical constraints (i.e. task re-
quirements) [9]. Therefore, there are likely other synergies at
the level of musculoskeletal mechanics, in addition to those
related to neuromuscular control. Moreover, these synergies
also have the potential to reduce problem complexity when
computing the musculotendon forces.

The objective of this work is twofold. Firstly, it aims to
infer synergies by factorizing the muscle lever arms tensor
with a low-rank constrained Canonical Polyadic (CP) decom-
position. Secondly, it aims at computing musculotendon forces
and joint contact forces by considering these synergies for
dimensionality reduction. This concept will be validated using
the experimental walking data of a subject from the Grand
Challenge Competition to predict in vivo knee loads [10],
thereby demonstrating the relevance and applicability of this
approach in the field of biomechanics.

II. METHODS
A. Musculoskeletal model

The 3D lower limb musculoskeletal used in this study is
described in [11], [12]. The musculoskeletal geometry used in
this model is based on the work of Delp [13] and is composed
of five segments (pelvis, femur, patella, fibula, foot), six joint
degrees-of-freedom (DoFs: hip modeled as spherical, knee
modelled as hinge with coupled 2-D translations, and ankle
modeled as universal joint) and forty-three muscular lines of
action representing thirty-three muscles. The joint kinematics
is predicted through a multibody kinematics optimization [14]
that minimizes, under rigid body and kinematic constraints,
the distances between measured and model-determined skin
marker positions. This model is scaled to the length of the
participant segments.

Using this model, musculotendon and joint contact forces
can, in principle, be estimated simultaneously through a time-
dependent linear system inversion. The dynamic equilibrium
equation can be written as a linear system at a given time step:

GQ+K'A=R+P+Lf (1)

where G is the generalized mass matrix, Q is the vector
of generalized accelerations, K is the Jacobian matrix of



constraints, A is the vector of Lagrange multipliers, R is the
generalized vector of ground reactions, P is the generalized
vector of weights, L is the matrix of generalized lever arms
and f is the vector of musculotendon forces.

To reframe this system in a more conventional form, we
project the solution on the kernel of the Jacobian constraint
matrix KT as described in [15]. The problem can be rewritten
as

Af = b, 2)

with A = ZgrL and b = Zgr (GQ — R — P) and Zgr the
projector on the Jacobian kernel. At each time step of the gait
cycle, A is the n x m matrix of muscle lever arms for all m
muscle lines of action across the n degrees of freedom, b is
the vector of joint torques for each degree of freedom, and f
is the unknown vector of musculotendon forces.

Typical dimensions for n and m would be respectively six
and forty-three, and generally, n is much smaller than m. Note
that A, f, and b depend on time, which means that we in fact
aim at solving a tensorial linear system

Ax2F=B 3)

with A the tensor of size n x m x t of muscle lever arms
stacking matrices A at ¢ time steps (conveniently ¢ = 100)
along a third mode, B is the matrix of joint torques along
time, and F' is the unknown matrix of musculotendon forces
along time. The product Xxs is a contraction of the second
mode of a tensor with a matrix [16]. Note that the duration
of the gait cycle was normalized to a percentage in order
to more easily compare gait trials. Finally, to take muscle
contraction dynamics into account and make A and F more
readily interpretable, we scale the muscle lever arms tensor
by the corresponding maximal active force of each muscle.
This force corresponds to the force produced by the muscle
when fully activated and depends on the current length and
contraction velocity of the muscle [1], [13].

B. Dimensionality reduction through tensor decomposition

The dimensions of the linear system (3) make it clear
that the problem of estimating F is underdetermined. Our
proposed approach is to perform dimensionality reduction to
group entries of columns of F together based on biologically
baked-in synergies in the musculotendon forces. We will
look for these synergies in the muscle lever arms tensor 4.
Canonical Polyadic/PARAFAC decomposition [16] is there-
fore performed on tensors A (there is one A for each recorded
gait trial of the patient in the dataset).

The level arms tensor A is decomposed through a rank 7 third-
order CP decomposition that separates the muscle lever arms
tensor into three factors,

A ~ ZMI[:7q] © M2[:7Q] o M3[:7q]7
q=1
where M; € R"*" My € R™*" and Mg € R*X".

Each rank-one component in the CP decomposition models
a group of muscles working together to produce a part of the

movement, and there should be few such groups, typically
no more than seven for lower limb movements [4], [5], [9].
Factor M; is the degrees of freedom weightings, factor My
is the muscle weightings (which are the synergies we are
looking for) and factor M3 is the temporal modules. To ensure
physiological coherence, we enforced an empirical sparsity
constraint on each column of Mj, stipulating that only a
limited number of muscles should be grouped within each
synergy; specifically, the constraint mandates that no more
than 55% of the muscles are utilized in each synergy. This
is the typical sparsity percentage of the lever arms tensor A
as numerous muscles only span one joint.

Futher, factors M and My are normalized so that their
maximum in each synergy is equal to 1. We set the Mg factor
to be positive for each synergy to enforce interpretability. We
report the normalization factors in Mg and the sign corrections
in Mg.

The constrained decomposition problem may be formalized
as follows:

.
argmin  [|A = Ml q o Ma[:,¢] o M3, q] |7 (4)
M, ER™XT —1
M2€R777r><7" q

IMaflo< 3520
MSGR:—XT

The chosen initialization method for decomposition is the
High-Order Single Value Decomposition (HOSVD) [17]. The
algorithm used to solve problem (4) is a combination of
Alternating Optimization (AO) and the Alternating Direction
Method of Multipliers (ADMM), referred to as AO-ADMM,
as developed in [18] and available in the Tensorly toolbox [19].
Tensor A is a difficult tensor to decompose because it features
highly correlated rows, columns and fibers while being sparse
(about half of the entries are zeros because numerous muscles
only span one joint). Therefore the constraints we use are
critical in obtaining a reasonable decomposition in terms of
residual loss and interpretability. The HOSVD initialization
is also important, random initialization would often lead to
unsatisfactory results.

C. Computation of muscle forces

The numerical optimization used to compute muscle forces
studied in this paper is based on the change of variable
F = M3 S. The M matrix is of size m x 27 and is computed
from the Mo factor extracted from the decomposition of A.
In matrix M; the positive and negative entries are split into
separate columns to form 2r synergies with only positive
coefficients. We thus obtain 2r synergies associated with mus-
cular coefficients that are all positive. The S matrix therefore
represents the unknown, collecting the 27 ’synergistic forces’
associated with each synergy across time. The least squares
problem may still be ill-posed but the number of unknowns
has been reduced as long as 2r < m. Moreover, muscle
contributions in the synergies are scaled, allowing to use a
simple ridge penalization for controlling the musculotendon



forces. We obtain the following quadratic program that can be
solved efficiently with interior point methods:

M3S >0

min ||[MZS|Z so that
H 2 ||F AXQM;S:B

SeR27r Xt

(&)

Constraints represent respectively the positivity of musculo-
tendon forces and conformity to dynamic equilibrium. Once
the musculotendon forces are computed, the knee medial and
lateral contact forces can be obtained as components of the the
vector of Lagrange multipliers A by inverting the transpose
of the Jacobian matrix in equation (1), typically using the
Moore—Penrose pseudo-inverse.

III. EXPERIMENTAL RESULTS
A. Dataset

The experimental walking data used in this study is taken
from the First Grand Challenge Competition to Predict in
vivo Knee Loads [10]. The subject (PS, male, left total knee
arthroplasty with neutral leg alignment, age 86, mass 75 kg,
height 1.80 m) is implanted with a force-measuring tibial
prosthesis. We used data from four gait cycles carried out
under similar conditions. In practice we perform four tensor
decompositions with [n,m,t,r] = [6,43,100,6]. The exper-
imental walking data set include the trajectories of markers
placed on the skin, ground reaction forces and contact forces
in both compartments of the knee.

B. Synergy analysis

The results of the four rank-six constrained tensor decompo-
sitions of the muscle lever arms tensor are very similar for all
gait cycles of the subject, as highlighted in Fig.1. The average
reconstruction error is 10.7 %. We observe four synergies
(synergies 1, 4 and 6) associated with the three hip degrees
of freedom (DoFs 4-5-6), one synergy (synergy 3) associated
almost exclusively with the knee degree of freedom (DoF 3)
and two synergies (synergies 2 and 5) corresponding to the
ankle degrees of freedom (DoFs 1-2). Some temporal modules
also reflect the hip, knee, and ankle joint kinematics. Synergies
1, 2, and 3 match typical flexion-extension curves during gait.

C. Musculotendon and joint contact forces

Consideration of musculoskeletal mechanics, namely the
synergic evolution of muscle lever arms, has an impact on
the distribution of musculotendon forces while emphasizing
muscles with larger lever arms and strength. For example,
in the triceps surae, taking into account the ’synegic forces’
modifies the distribution between soleus (m = 34, ankle
mono-articular muscle) and gastrocnemii (m = 32,33, knee
and ankle bi-articular muscles), thus reducing the estimated
contact force on the knee (Fig. 2a).

Similar conclusions can be drawn from the muscular forces
of the thigh muscles (Fig. 2b): the forces developed by the 3
vastii muscles (only the vastus medialis, m = 29, is shown
in the figure, but the results are identical with the vastus
intermedialis and the vastus lateralis, m = 30,31) and the
tensor fasciae latae (/m = 21, 3 mono-articular knee muscles
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Fig. 1: Tensor decomposition result of order 3 and rank 6. Each
color represents the results of one of the subject’s four gait
cycles. The first column represents the My factor, associated
with the degrees of freedom, the second column represents the
M, factor, associated with the muscular contribution and the
third column is the M3 factor of the temporal modules. Each
line therefore corresponds to one of the six synergies.

and one bi-articular hip and knee muscle, respectively) are
weaker with the change of variable, and part of their force is
taken up by the rectus femoris (m = 28, bi-articular muscle
acting on both the knee and and the hip).

The impact of this altered distribution of musculotendon
forces is shown on the estimated knee medial and lateral
contact forces (Fig.3). By taking into account muscle lever
arms synergies, we therefore can reduce the difference be-
tween measured and estimated forces in the second peak (at
55 % of gait cycle) and especially for the lateral compartment
of the knee. Medial contact force remains overestimated.

IV. DISCUSSION

The initial hypothesis has been confirmed: there are indeed
synergies at the level of lever arms, specifically six synergies
corresponding to combinations of the six degrees of freedom
of the lower limb during human walking. However, these
synergies can be positive or negative and do not show any
possible connection between the hip and the ankle. Indeed bi-
articular muscles exist but they do not span simultaneously
these two joints. These synergies are thus different in nature
from those already analyzed in the literature, typically from
experimentally measured EMG [4], [5], [7], [20]. Lever arms
provide additional information that had never been studied
before. They directly reflect some of the biomechanical af-
fordances (muscle lines of action, forces at maximal muscle
activations) and constraints (joint kinematics during gait).
Tensor decomposition is a suitable tool for extracting syn-
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Fig. 2: Muscles forces of the subject for different muscle
groups, estimated with the change of variable (green) and
without the change of variable (red). The solid lines represent
the mean values over the 4 gait cycles of the subject, with the
standard deviation shown in light color around the mean.
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Fig. 3: Contact forces in the knee of the subject, measured
by the prothestis (blue), estimated with the change of variable
(green) and without the change of variable (red). The solid
lines represent the mean values over the 4 gait cycles of
the subject, with the standard deviation shown in light color
around the mean.

ergies, although it is rarely used in biomechanics and used for
the other variables than lever arms [21], [22]. This method
is promising but requires specific algorithms with proper
initialization and well-chosen constraints. For experimentally
measured EMG signals, which are rectified and normalized,
non-negativity is a classical constraint used to directly compute
muscle contributions between 0 and 1 [8]. Here, choices were
made on the values and signs of the three the factors to obtain
similar results. The tensor was also scaled by the maximal
active forces. Moreover, the sparsity and sign alternation of
the muscle lever arms tensor was translated into the muscle
contributions. The rationale to decompose the lever arms

tensor through a rank number of 6 was to match the number
of joint degrees of freedom (r = n). However, synergies 4
and 6 show similarities which suggests a lower rank r = 5
could eventually be considered. However when testing r < 6,
residual errors rise very quickly (18,5% for » = 5 and
28.1% for r = 4) and synergies become more complicated
to interpret. In addition, associated musculo-tendinous forces
and knee contact forces are less relevant.

Nevertheless, the sign of the lever arm of a muscle on a
particular degree of freedom is determined by the combination
of the sign of the coefficient associated with that degree of
freedom and the one associated with the muscle’s contribution.
However, it’s worth noting that most of the glutei muscles
(m =1 to 9) are represented as extensors, abductors in syn-
ergy 1 (DoFs 4-5) and simulaneously as extensors, adductors,
and external rotators of the hip in synergies 4 and 6 (DoFs
4-5-6).

This contradiction arises because the value of the lever
arm of a muscle on a degree of freedom is the result of
combining all the synergies with a nonzero coefficient for that
muscle and degree of freedom. Synergy 6 then appears as a
kind of correction to Synergy 4, allowing the CP model to
reduce the reconstruction error of the tensor across all hip
muscles. Increasing the value of rank r allow to add other
“correction synergies” but does not reduce the residual error
enough to be taken into account (9% for » = 7 and 7.7%
for »r = 8) . To overcome this problem, an unusual sign
sharing constraint would need to be implemented in the CP
decomposition algorithm. Implementing this constraint is not
straightforward and will likely be the subject of future work.

The second hypothesis of this project is also confirmed:
dimensionality reduction can be beneficial and can lead to
reliable results in terms of musculotendon and joint contact
forces. The errors between the estimated and the measured
knee contact forces are reduced in the second peak. In the
literature, these errors have been reported to range between
0.17 and 1.39 body weights for the medial contact force, and
between 0.18 and 0.81 body weights for the lateral contact
force [23]. The contact forces estimated with the change of
variable method show errors which are in the high and the low
range for the medial and lateral compartments, respectively.

The change of variable method is not just a transformation
of the solution space to solutions that align with the muscle
synergies obtained from tensor decomposition; it also signif-
icantly restricts this space. Without the change of variable,
the optimization algorithm acts on forty-three variables (the
forty-three musculotendon forces), whereas it can only act on
the twelve ’synergistic forces” S when using the change of
variable F = M S.

Therefore, the method may not yield coherent results for
some subjects if the solution space becomes too restricted for
the algorithm to find a physiologically satisfactory solution.
This can be the case typically when using a generic and scaled
model, as we process in this study, because the lever arms and
maximal active force then depend only on joint kinematics
obtained from a multibody kinematics optimization tracking



trajectories of markers placed on the skin [14].

It should be noted that the quality of the kinematics data in
the dataset, related to the placement and tracking of marker
trajectories on the subject’s skin, is therefore crucial for
achieving a meaningful substitution.

To overcome this limitation, constraints can be converted
into penalties. Another approach is to compute synergies
within the optimization problem itself, as done in the SynO
approach [20] or similar methods, e.g. [24] .

V. CONCLUSION

In summary, a new method for extracting muscle synergies
has been developed using a low-rank constrained Canonical
Polyadic decomposition on the lever arms tensor. This method
highlights the muscles synergies associated within the muscle
lines of action and maximal active forces, and the use of
these synergies in the computation of musculotendon forces
is showing promising results.
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