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Abstract. Understanding how infants perceive speech sounds and lan-
guage structures is still an open problem. Previous research in artificial
neural networks has mainly focused on large dataset-dependent gener-
ative models, aiming to replicate language-related phenomena such as
“perceptual narrowing”. In this paper, we propose a novel approach using
a small-sized generative neural network equipped with a continual learn-
ing mechanism based on predictive coding for mono- and bilingual speech
sound learning (referred to as language sound acquisition during “criti-
cal period”) and a compositional optimization mechanism for generation
where no learning is involved (later infancy sound imitation). Our model
prioritizes interpretability and demonstrates the advantages of online
learning: Unlike deep networks requiring substantial offline training, our
model continuously updates with new data, making it adaptable and
responsive to changing inputs. Through experiments, we demonstrate
that if second language acquisition occurs during later infancy, the chal-
lenges associated with learning a foreign language after the critical period
amplify, replicating the perceptual narrowing effect.

Keywords: Speech sound learning · Continual learning ·
Compositional optimization

1 Introduction

The discourse surrounding the origin of human speech spans across an exten-
sive historical timeline. [28] suggests that the mimetic capacity inherent in brain
areas like F5 and Broca’s area played a crucial role in the transition from ges-
tural communication to speech [30]. As such, vocalization became more than
just emotional reinforcement for facial expressions [1]. Instead, sounds acquired
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a descriptive value and needed to remain consistent in identical situations. This
required not only the ability to produce specific sounds but also the ability to
imitate sounds emitted by others, which likely contributed to the emergence of
human Broca’s area from a precursor with mirror properties. This area, asso-
ciated with speech production and language processing, became crucial for the
control and coordination of vocalization, especially in terms of imitation and
precise execution of sounds [28].

On the other hand, studies [5] suggest that listeners can quickly mimic speech,
demonstrating faster reactions to syllables or gestures that align with those of
the speaker. This tendency to imitate may originate from early infancy, where
it likely serves a crucial developmental role. Infants must decipher the phonetic
nuances of speech signals from adults to learn how to map their own motor com-
mands for speech reproduction. In humans, vocal imitation is a pivotal behav-
ior that lays the foundation for language development. Studies have noted the
mimicry of sounds emerge as early as 2months of age [24]. This early vocal
imitation has been found to contribute to later lexical development, and more
importantly, to the acquisition of second language (L2), reflecting on the later
ability for reproduction of foreign speech sounds [27]. As such, these speech sound
imitation variations among individuals can lead to noticeable foreign accent dis-
parities among late L2 learners [23].

However, individual variances of capacity in L1 learning is not the only influ-
ence on L2 learning. A phenomenon called perceptual narrowing witnessed across
various domains within the first year of age may account for that. The term per-
ceptual narrowing [32] initially served as a descriptive phrase highlighting find-
ings that infants exhibit greater sensitivity to various social signals early in life,
including non-native speech sounds, and this sensitivity decreases over time as
they become more attuned to their surrounding environments [13]. Though lost
discrimination can be regained outside the critical period with extensive and sub-
stantial training, indicating perceptual narrowing involves attenuation or reorga-
nization rather than complete loss, some phonetic distinctions continue to be chal-
lenging compared to face discrimination even with significant training [22].

Such a phenomena is closely related to two key factors. The first one is
that “minimal input”[22], namely early foreign-language exposure[20] is needed
to maintain these initial sensitivities. A famous example is Japanese children’s
deficit in distinguishing difference between English -r and -l as the absence to
the sounds during their early infancy due to the linguistic environment of their
parents [19]. The second one is ’critical period’, a distinct subset within the con-
cept of ’sensitive periods’ [13] that refers to a specific time window during which
experience is essential for learning to take place, and the knowledge acquired
during this period leads to lasting effects that are difficult to reverse [17]. After
this period, the system will not be open to, or at least will be more resistant to,
reorganization or retuning at a older age. [31] shows that adults’ perception of
speech sounds becomes constrained compared to that of newborns, as influenced
by the phonetic patterns of their native language, which appears by the end of
the first year after birth.
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As a result, we formulate the hypothesis that early infancy imitation lays
foundation for later development not only of words or language but also of L2
acquisition. Based on that, we propose a simple neural network consisting of
a categorization encoder and a generation decoder that learns to mimic input
sounds. Nevertheless, instead of exploring the causality that better capacity of
L1 learning leads to the better L2 learning, we proposed two modes of gener-
ation that corresponds to early and later infancy imitation. The first mode is
predictive coding based on continual learning (CL). Predictive coding is based
on maximizing prediction similarity through recurrent interactions[12]. Discrep-
ancies between predicted and actual sensory input (prediction error) is used to
adjust the model or prediction [6]. There are feedback loops where prediction
errors are propagated through the system to refine predictions [7]. Continual
learning is a fundamental aspect of predictive coding, allowing the system to
adapt and improve its predictions over time based on new sensory input [3]. The
second mode is compositional optimization (CO), where we propose a hypothesis
that the later childhood sound imitation depends greatly on their early infancy
’minimal input’ and that the generation of later-heard sound comes from the
compositionality of the sound learned during ’critical’ time window. We are able
to show through experiment that if the second language acquisition happens
during later childhood or adulthood, the difficulty of learning foreign language
after the ‘critical’ period appears, similar to perceptual narrowing.

2 Related Works

2.1 Perception and Production Reinforce Imitation

In Kuhl et al. [18], the role of imitation in vocal learning is emphasized as crucial
for establishing the early connection between perception and production. In line
with this, studies have shown that motor and sensorimotor systems can impact
speech perception, even in infants who are too young to produce speech-like
vocalizations [2]. [11] examine studies revealing that sensorimotor information
regarding speech emerges prior to the developmental onset of speech-like vocal-
izations, as inferior frontal cortex (IFC) including Broca’s area, exhibits activa-
tion during auditory-only speech perception even in very young infants who have
not yet initiated speech-like vocalizations. Concurrently, Zhao et al. in [33] illus-
trate that activation patterns of the IFC exhibit correlations with speech sound
perception in infancy: similar activation patterns are observed when neonates
and early infants perceive both native and non-native speech sounds, with a
decrease in activation and perception of non-native speech sounds occurring by
the end of infancy.

2.2 Speech Sound Learning Neural Networks

In the following part, we discuss some neural networks for speech sound learning.
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Perceptual Narrowing. Schatz et al. [29] came up with a Gaussian mixture-
based model that is able to reproduce perceptual narrowing. They demonstrated
that merely 1 h of input is sufficient for the emergence of distinct characteristics
between Japanese and English models, with this gap amplifying with exposure
to the native language. While the observation of intensified cross-linguistic con-
trast with increased data aligns with empirical findings in infants, it remains
challenging to determine whether this correlation is attributable to dataset aug-
mentation leading to overfitting or enhanced learning of linguistic features, as
they did not involve L2 learning for further comparison and analysis based on
the L1 learning model.

Sensori-Motor Learning. Georges et al. [8] introduced a computational model
of speech production featuring forward and inverse models that can be jointly
trained. It encompasses several components, such as a pre-trained neural articu-
latory synthesizer responsible for converting articulatory parameters into speech
stimuli, a DNN-based internal forward model for predicting sensory outcomes,
and an internal recurrent neural network designed to recover articulatory com-
mands from acoustic speech input. While this model has shown the capability
of reproducing speech sounds trained in a self-supervised manner using raw
acoustic-only speech data, limited exploration has been conducted on linguistic-
related features.

Other Sound Learning Models. The Zero Resource Challenge (ZRC) [4]
introduced the concept of replacing textual language databases with raw audio
databases, drawing inspiration from the fact that infants acquire speech skills
long before they can read or write. One of the four tasks proposed in the chal-
lenge, closely related to this paper, is acoustic unit discovery. Similarly, they
argue that the units discovered should serve a fundamental linguistic function:
distinguishing linguistic contrasts. However, most neural networks in this task
employ large-scale architectures, with few exploring bilingualism.

3 Methods

In this section, we will introduce the encoder-decoder architecture of our gener-
ative network along with the schema of the proposed models.

3.1 Network Architecture

The network architecture, depicted in Fig. 1, comprises an encoder and a decoder.
The input to the neural network is a 20-dimensional MFCC (Mel-frequency
cepstral coefficients) vector, corresponding to a 23ms sound segment. Layer Y is
a one-dimensional self-organizing map (SOM) [14] consisting of a fixed number
of 2000 neurons. The weight update rule is described in Eq. 1 and the output of
SOM layer Y in Eq. 2, both adhere to the standard SOM formulation [16]. Please



20 X. Chen et al.

Fig. 1. Our proposed encoder-decoder network architecture. The yellow arrow denotes
unsupervised learning whereas the red one represents predictive coding [6] (Color figure
online)[26].

note that in all equations in the following sections, lowercase letters correspond
to vectors, and uppercase letters correspond to matrices.

wij
1 (t+ 1) = wij

1 (t) + θ(i0, i, t) · α(t) · (xj − wij
1 (t)) (1)

where i and j denote the index of the neuron in Y and the index of the input,
respectively. The smallest of the Euclidean distances ∥xj − wij

1 ∥22 can be per-
formed to define the best-matching unit (BMU), signified by the subscript i0.
The neighborhood kernel θ(i0, i, t) known as “Mexican hat function” [10] or
Gaussian function [16], involves excitatory and inhibitory lateral feedback con-
nections, where the width of the kernel decreases over time. Similarly, the learn-
ing rate function α(t) is also a temporal function that decreases along training
iterations [16]. These temporal functions guarantee smoothly transition from a
broad neighborhood influence at the beginning of the training to a narrower
influence as training progresses. This gradual reduction helps the map adapt
quickly in the initial stages and fine-tune itself in the later stages, leading to a
more accurate and stable representation [15].

Y =
1

1 + ∥X − W1∥22
(2)

In contrast to layer Y, the size of layer Z is dynamic and increases when the
variance of neuron activity in layer Y falls below a certain threshold value. The
layer and the number of neurons required or activated in each layer is specified in
Table 1. The network’s structure with three layers and moderate neuron counts
fits well within the typical bounds for small-sized neural networks. Further details
regarding the remaining components of the neural network will be provided in
subsequent sections.
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Table 1. Layers and Number of Neurons Required for the Neural Network.

Layer Type Train Test Periods/Languages

English French Chinese

X MFCC input number
∼41000
(∼16min)

∼20000
(∼8min)

∼20000
(∼8min)

∼20000
(∼8min)

Y SOM winner neuron number 1603 1349 901 691

Z Neuron number 1815 1733 946 836

3.2 Proposed Reconstruction Modes

According to the suggested hypothesis, the ability of children to imitate sounds
later in childhood is significantly influenced by the minimal auditory input they
receive during early infancy. Here, we propose a predictive coding based contin-
ual learning (CL) mode shown on the right side of Fig. 2 that captures this kind
of learning. Additionally, we assume that the sounds they later reproduce are
constructed based on the composite elements of sounds (constituents) learned
during a critical developmental window in early infancy. We term this “no learn-
ing” sound imitation or generation “compositionality optimization” (CO) and
we propose the compositional optimization model shown on the right side of
Fig. 2 to demonstrate it.

Continual Learning Mode. The process of predictive coding based contin-
ual learning occurs subsequently to the training of layer Y . Predictive coding
involves a hierarchical structure, where higher levels generate predictions for
lower levels, and prediction similarities are propagated back up the hierarchy to
refine those predictions. Here, the self-organised map becomes a static mapper or
a priori structure as top layer, used to transform causes (input) to some internal
representation [7].

Consequently, the weights W2 between layers Y and Z represent the pattern
(internal representation) transformed from the heard sound (cause) as shown in
Eq. 3, modulating the activities of Y , which in turn represents the pattern of the
produced sound (predictions about the states of lower layers), as shown in Eq. 4.

W2 = Y (3)

Y =
1

1 + ∥X ′ − W1∥22
(4)

The similarity maximization in predictive coding is realised through multi-
plication as shown in Eq. 5, where only the winning neuron in Z becomes acti-
vated, facilitating the continual generation of new sounds to approximate the
heard sound.

Z = W2 · Y (5)
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Fig. 2. Schema of the proposed modes. Left: Continual learning (CL) mode that sim-
ulates early infancy sound imitation, where the model generates sounds heard in a
reinforced way. The SOM layer Y serves as a predictor and the reconstructed output is
adjusted based on sensory input. Continual learning is implemented by updating the
SOM’s internal representation (Eq. 4) based on new input data X ′ over time, allow-
ing the system to adapt its predictions to changes in the environment and improve
prediction accuracy through continual learning. Such mode exhibits a simplified hier-
archical structure within predictive coding, where Z adapts similarity (Eq. 5) to refine
predictions. Right: proposed compositional optimization (CO) mode simulating later
infancy sound generation, modelizing our hypothesis that the ability to imitate sounds
in later childhood is mainly influenced by the minimal input received during early
infancy. Later-learned sounds are generated based on the compositional nature of
sounds acquired during critical developmental periods.

The equation governing the update rule for the weights W3 connecting layer
Z to the output layer is detailed in Eq. 6. Here, i0 indicates that only the weight
associated with the winning neuron in layer Z and the output layer is rein-
forced. This reinforcement is realized in the form of adding a randomly generated
Gaussian-type input to itself if this Gaussian-type input amplifies the activity
of the winning neuron within layer Z, minimizing prediction error.

wi0
3 (t+ 1) = wi0

3 (t) + IG where IG ∼ N (0, 0.01) (6)

As a result, X ′ represents the newly generated input for the next iteration,
namely the reconstructed output of the current iteration, which is adjusted based
on the input. In the hierarchical predictive coding structure, X ′ is considered as
the lower layer, which is then looped back to Layer Y , serving as a prediction
that is updated to minimize the discrepancy with the actual input.

X ′ = δi0(Z) ·W3 where δi0(Z) =

{
1, if i = i0
0, otherwise

(7)

In this setup, the SOM layer Y functions as a predictor, utilizing its learned
mapping to generate predictions. Meanwhile, the reconstructed outputX ′ under-
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goes adjustments contingent upon sensory input. This process mirrors the prin-
ciples of predictive coding, where continual learning is facilitated by iteratively
updating the SOM’s internal representation with fresh input data X ′. This
adaptability empowers the system to evolve its predictions in response to envi-
ronmental changes, thus enhancing prediction accuracy over time. Through this
continual learning mechanism, the model exhibits a simplified hierarchical struc-
ture within the predictive coding framework. By leveraging similarity to fine-tune
predictions, it refines its predictive capabilities and adapts to dynamic environ-
mental cues.

Compositional Optimization Mode. The CO mode shown on the right side
of Fig. 2 utilizes the combination coefficient W4, which is optimized through
backpropagation as described in Eq. 8, without involving any learning.

w(xi)
4 (t+ 1) = w(xi)

4 (t) − η∥x − x′′∥22 (8)

As previously discussed, the replication of later-acquired sounds relies on the
accumulation of various sound elements obtained during a crucial developmental
period in early life, achieved through the incorporation of multiple acquired
sounds, which we term “constituents”. In the subsequent experiment, we set
the number of constituents N to 10. It’s noteworthy that performance tends to
enhance with a greater number of constituents (N ≤ |Z|).

X ′ = δin(Z) ·W3

where δin(Z) =

{
1, for the indices of N highest values in Z
0, otherwise

(9)

X ′′ = W4 ·X ′ (10)

4 Experiments

In this section, we will detail the learning process of the models, along with the
design and results of experiments.

4.1 Datasets

As previously mentioned, our objective is to investigate the impact of the sound
learning timing on second language sound acquisition. Accordingly, we utilize
three distinct language datasets: English (sourced from [25]), French (recorded
by French speakers, encompassing both male and female voices), and Chinese
(sourced from [21]). Here, English serves primarily as the training dataset, thus
regarded as L1, while the other two languages serve as L2.
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4.2 Training Details

The English training dataset is a 16min’ 16kHz multi-person read English speech
sounds, randomly chosen among the original 1000 h corpus of read English speech
[25]. They are transformed into more than 41000 20-dimensional MFCC using
Librosa Python library by setting hop length = 512 (number of samples between
successive frames), and n fft = 1024 (length of the FFT window). These
MFCCs are then fed into layer Y (SOM). We trained the layer Y for 100000
iterations. It is noticeable that the radius of the neighborhood of BMU changed
along time. Specifically, here we apply Mexican hat function as the neighborhood
function.

As for the generative model, we initially configure the size of layer Z to be
5000, while setting the threshold value at 0.00002 for adapting to an empty state
or adding a new neuron, which is subsequently identified as the winner neuron
i0. This mechanism is based on the hypothesis that the variability of activ-
ity within a Self-Organizing Map (SOM) can serve as an indicator to discern
whether the observed sound is novel or previously learned. In this hypothesis,
when encountering a new sound, the activity pattern within the SOM would dif-
fer significantly, potentially necessitating the involvement of different neurons in
its reconstruction compared to a familiar sound. Essentially, the SOM’s ability
to adapt its neural activations in response to new stimuli allows it to distinguish
between learned and novel sounds based on the variance of this activity. It is cru-
cial to acknowledge that increasing the threshold value enhances the dynamism
of layer Z, but simultaneously, it exacerbates the problem of poor generalization.

4.3 Results

In this section, we will represent and analyse experimental results obtained from
the training and the designed experiments talked previously.

Self-organised Map. A fundamental characteristic of SOM is that neurons
with geographic proximity encode similar inputs. As such, in Fig. 3a, high-
dimensional neurons are projected into a 2-dimensional space using PCA (Princi-
pal Components Analysis) for visualization, with each dot representing a neuron.
It’s noteworthy that only neurons coding for at least one input X are depicted
(1603 out of 2000). Dots are displayed in various colors, and colors that are closely
aligned according to the colorbar next to the figure signify geographic proximity.
Similarly, Fig. 3b encodes inputs into a 2-dimensional space using PCA. How-
ever this time, each dot represents one input MFCC data (totaling more than
41000), with the color of each dot corresponding to the color of the winning
neuron. Thus, inputs sharing the same neuron are depicted in the same color.
Additionally, inputs whose winner neurons are neighbors, though not shared,
should exhibit similar colors based on the colorbar next to the figure. The anal-
ysis of Fig. 3 yields two notable observations. Firstly, in Fig. 3a, closely located
dots exhibit similar colors as indicated by the colorbar, suggesting that neighbor-
ing neurons are indeed close to each other in the original 20-dimensional space.
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Fig. 3. Self-organised map training results

Additionally, the color variations of the dots align with those of the colorbar,
reinforcing the proximity of neighboring neurons. Secondly, in Fig. 3b, inputs
belonging to the same clustering are encoded by the same neuron or neighboring
neurons, evident from the shared or similar colors among the dots. This cor-
respondence between input clusters and neuron encoding further validates the
effectiveness of the SOM learning process. Therefore, we can confidently conclude
that the SOM has learned effectively to discriminate the input MFCC.

Pattern Similarity and Sound Reconstruction. In the CL mode depicted
in Fig. 2, symbolizing the speech sound learning of newborns during early infancy,
it is imperative to evaluate its ability to reproduce input sounds. Therefore, it
is essential to assess the efficiency and effectiveness of the model in reproducing
MFCC inputs. Figure 4a illustrates the trend of error between the input MFCC
in the training dataset and the reconstructed MFCC. Here, we observe a decrease
in error over time, with the mean error among 41000 inputs approaching 0. A
similar trend is evident in the test dataset, as depicted in Fig. 4b. Additionally, as
mentioned earlier, a randomly generated Gaussian-type input is added to itself
if this input amplifies the activity of the winner neuron, as described in Eq. 6.
This mechanism aims at approximating the pattern of the reproduced sound to
that of the heard sound. Consequently, if the error of reproduction decreases, so
should the error between these two patterns. This error is visualized in Fig. 4c,
indicating a decrease over time, eventually approximating 0 by the end of 1000
iterations.

Mono/bilinguality and Reconstruction Mode Comparison. In addition
to its ability to imitate sounds regardless of language, the model should excel at
capturing the inherent differences between languages. This capability is crucial
for exploring L1 or L2 language learning during different age of development.
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Fig. 4. The trend of error between input MFCC and reconstructed MFCC for both
training and test datasets (Fig. 4a and Fig. 4b respectively). The model employs a
mechanism to adjust randomly generated Gaussian-type inputs to approximate the
pattern of the reproduced sound to that of the heard sound, resulting in decreased
error over time, as illustrated in Fig. 4c.

In these experiments, we investigate the differences between models that learn
solely one language and those that learn two languages.

As mentioned earlier, we propose two modes, CO and CL, representing sound
imitation during different developmental stages: early infancy (before one year
of age) versus later infancy or adulthood. Consequently, we have designed four
conditions to independently investigate the effects of minimal input and critical
period. Specifically, for the minimal input experiment, we compare the ability
to imitate L2 sounds between models trained on both L1 and L2 and models
trained solely on L1. For the critical time experiment, we further compare the
imitation capability of L2 sounds separately under the CO and CL modes, which
correspond to later infancy and early infancy respectively.

In the following experiment, we test the mode of reconstruction with models
that learn English as L1 and French or Chinese as L2. As we can see in Fig. 5,
there are 2 modes of reconstruction, and on the left side of each mode is the model
that has learned only English whereas on the right side has learned 8min L2
French or Chinese in addition to the 16min English. The blue boxes reconstruct
MFCC outputs based on compositional optimization (constituents number N =
10) whereas the orange ones based on continual learning. Please note that the
test input language in this experiment is L2.

Focusing on the left bars within each group in Fig. 5b and Fig. 5a, which
corresponds to the model that learned English solely, we observe the following
performance trend across modes of reconstruction: CL > CO. This can be inter-
preted as follows: when the acquisition of L2 occurs after the critical period (CO
mode), it is more challenging to achieve performance comparable to learning
during this period (CL mode). This result aligns with the perceptual narrowing
phenomenon mentioned earlier.

If we compare the results within the group of blue boxes, we notice that
errors of reconstruction decrease when L2 is learned, while errors in CL groups
remain the same, as L2 has already been learned in both cases in the orange box
group (L2 continual learning on L1 learned model (left orange box) is the same
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Fig. 5. Critical period: Analysis of performance trends within the left bars of Fig. 5b
and Fig. 5a, corresponding to models solely learning English, reveals that CL outper-
forms CO. This suggests that learning L2 after the critical period presents greater
challenges in achieving comparable performance to learning during this critical period,
aligning with the hypothesis of perceptual narrowing. Minimal input: Comparing
results within the blue boxes, it’s evident that errors decrease when L2 is learned,
indicating that learning L2 further optimizes the model. A control group using L1
English as L2 was introduced (left box in each group with the horizontal axis labeled
’en+en’), where reconstruction error under CO mode disparities among L2 languages
(Chinese ≈ French >> English) indicate that the reduction in error is more likely due
to dataset quality rather than quantity.

as L1+L2 learned model (right orange box)). It is worth noting that even after
learning L2 in the CO mode, the error is still higher than in the CL mode (cn:
0.38 > 0.21; en: 0.47 > 0.22). This is due to the number of constituents not being
optimized. However, the main focus here is on the decrease between the two blue
boxes, where the minimal input of them is L1 only (left blue box) versus L1+L2
(right blue box), thus further supporting the perceptual narrowing hypothesis.

One may question whether the reduction in error within the CO group in
Fig. 5b and Fig. 5a is attributed to the increased size of the learning dataset
rather than linguistic features alone. To address this, we introduced a control
group by considering L1 English as the L2, as depicted on the left of each group
with the horizontal axis labeled ’en+en’. The disparities in reconstruction error
under CO mode among the L2 languages are as follows: Chinese ≈ French >>
English. This observation suggests that the reduction in error is more likely due
to the quality rather than the quantity of the dataset.

Consistently, in Fig. 6, we depict the trend of errors between CO and CL
modes while reconstructing L2 language input sound. As observed, both modes
of reconstruction exhibit a significant decline over time. However, by the end of
1000 iterations, the error of the CL mode becomes much smaller than that of
the CO mode. This result is consistent with the findings we presented earlier.
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Fig. 6. Model Reconstruction Comparison: CO vs CL. Both models start from a base-
line model that learned the same 16-minute training English Dataset. By the end of
1000 iterations, the reconstruction error of CL approximates to 0, which is significantly
lower than the CO mode that underwent no learning.

Catastrophic Forgetting. Catastrophic forgetting poses a significant chal-
lenge in neural networks and algorithms [9]. It refers to the phenomenon where
a model tends to erase previously acquired knowledge when learning new infor-
mation. In this experiment, we aim to determine if our proposed neural network
is susceptible to this issue. We compare the L1 reconstruction capacity between
models trained solely on L1 (with X axis value ’En’) and those trained on first
L1 and then on L2 (with X axis value ’En+Fr’ or ’En+Cn’), irrespective of
reconstruction mode. Theoretically, if the proposed neural networks suffer from
catastrophic forgetting, L1 reconstruction errors of models that learned L1 for
16min should be much lower than those of models that first learned L1 for
16min and then 8min of L2, regardless of the mode group. However, as depicted
in Fig. 7, only subtle differences are observed across all reconstruction modes,
suggesting that our model may not suffer from catastrophic forgetting.

One potential explanation for the resilience of our neural network against
catastrophic forgetting could be attributed to the mechanism where empty (or
new) neurons are activated (or added) based on the variance of neuron activity
in the self-organizing map.
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Fig. 7. We conducted a catastrophic forgetting test on three different models, each
tested under different conditions: monolingual (L1: English learned only) or bilingual
(L1: English; L2: French or Chinese). The test dataset is in L1. Subtle differences were
observed within each color group across all reconstruction modes, suggesting that our
model may not be prone to catastrophic forgetting.

5 Discussion

In this paper, we introduced a simple neural network trained on a limited dataset
comprising 16min of L1 data and 8min of L2 data. Our primary objective was
to investigate two hypotheses. Firstly, we sought to determine whether early
infancy imitation of speech sounds contributes to later foreign language devel-
opment. To explore this, we designed an encoder-decoder neural network capa-
ble of reconstructing speech sound inputs represented as MFCC. In addition to
being able to reconstruct sound fed from input, to avoid the possibility that
such performance was due to overfitting, we introduced a mono-bilingual model
and compared its performance. Our results showed that, on one hand, models
that learned L2 additionally based on the L1 baseline model outperformed L1
models in L2 performance. We introduced a control group where L1 played the
L2 role to eliminate the possibility that such better performance was due to
the increased size of the learning dataset. On the other hand, we also showed
through experiments that having learned L2 did not lead to catastrophic forget-
ting in L1. These results indicate that our neural networks excel at capturing
the inherent differences between languages to perform imitation. Secondly, we
investigated whether the concepts of minimal input and critical period, closely
associated with the perceptual narrowing phenomenon, influence infancy sound
imitation. We designed two modes of reconstruction to simulate learning in dif-
ferent periods: Continual learning mode for language sound acquisition during
the critical time window versus compositional optimization mode for language
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sound acquisition after the critical period. Our experiments were able to reveal
that if second language acquisition occurs during later childhood or adulthood,
learning foreign languages becomes more challenging.

As discussed previously, the neural networks we proposed are small-sized
neural networks, where both the number of neurons and layers are much smaller
than deep neural networks, which typically require substantial offline training
periods. Differently, our proposed predictive coding-based continuous learning
mode is a form of online learning, and its ability to incorporate new information
in real-time without necessitating a complete retraining of the model ensures that
online learning systems remain relevant and accurate even as the data evolves,
which can be challenging for pre-trained deep networks to handle effectively.

Indeed, one may notice that we did not compare the imitation performance
between deep networks and our proposed neural networks. However, the objec-
tive of our study is to develop a simple, explanatory model rather than to achieve
the highest performance metrics. Our focus is on creating a model that is suffi-
ciently straightforward to elucidate the underlying infant sound learning mech-
anism. Unlike complex deep learning models that prioritize performance at the
expense of transparency, our approach aims to strike a balance between sim-
plicity and functionality. By doing so, we enable a clearer understanding of how
the model processes and interprets data, which is crucial for applications where
interpretability and insight into the learning process are as important as the out-
comes themselves. This emphasis on simplicity and explanatory power ensures
that the model is not only effective but also accessible and informative.

In the future, we intend to further develop this neural network for language
sound sequence (phonotactic patterns) learning, focusing on addressing the vary-
ing phoneme-sets between L1 and L2 languages, as well as the complexity intro-
duced by tonal variations, especially in languages like Chinese.
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