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Abstract: A bubble collapsing near an interface may result in
the formation of a liquid jet protruding from the distal bubble
side, through the bubble, towards the interface. Ultrasound as-
sisted jetting has been observed when subjecting, by approx-
imation, infinite fluids to acoustic amplitudes above the iner-
tial cavitation threshold, limiting the possibility of ultrasound-
guided, bubble-assisted drug or gene delivery. However, the
vascular system can be regarded as a finite fluid. The pur-
pose of this study was to investigate the feasibility of low-
amplitude jetting for fluid containing biocompatible cavitation
nuclei, by placing the region of interest in a confined space to
ensure a standing wave field. Droplets of QuantisonTM ultra-
sound contrast agent were pipetted into a Perspex cylindrical
compartment of 8-mm diameter and 2-mm height, which was
part of an imaging system. The contrast agent was subjected
to 3-cycle ultrasound pulses with a centre frequency of 1 MHz
whilst being observed at a frame rate of ten million frames
per second. Jetting was observed to occur with microbubbles
nucleated from the contrast agent in an acoustic regime whose
free-field mechanical index was 0.6. Empirical curve match-
ing showed a pulse amplification by a factor of six owing to
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the chosen geometry. Visible jet lengths of twice the bubble
radius on the verge of collapse were measured. Owing to the
confined space, the local acoustic amplitude was amplified to
surpass the cavitation threshold. This finding is of interest for
medical ultrasonic applications where the local environment
comprises reflectors.

Keywords: Liquid jets, high-speed photography, ultrasound
contrast agent, Quantison™, standing field.

1 Introduction
A bubble collapsing near an interface may result in the form-
ation of a liquid jet protruding form the distal bubble side,
through the bubble, towards the interface.The formation of li-
quid jets has been studied to understand erosion processes [1,
2]. Microscopic jetting phenomena have been under investig-
ation for their potential medical applications as microscopic
injection needles facilitation ultrasound-guided drug deliv-
ery [3, 4]. The production of shock waves associated with jet-
ting [2, 5] has applications in lithotripsy [6]. However, jetting
with the aid of ultrasound has only been observed at acoustic
pressure amplitudes allowing for inertial cavitation to occur
but that are considered unsafe in humans [7], because of free
radical and heat production [8]. Yet, the presence of cavitation
nuclei has been known to alter and typically slightly lower the
inertial cavitation threshold [9]. In addition, the presence of
other cavities has been demonstrated to facilitate jet formation
between bubble pairs [10]. According to theory and numer-
ical simulations, placing bubbles in a semiconfined or confined
space, such as vasculature, drastically increases the occurrence
of jetting [11]. Therefore, ultrasound-guided bubble-assisted
drug or gene delivery might be feasible at acoustic amplitudes
below the inertial cavitation threshold.

The purpose of this study was to investigate the feasib-
ility of generating jetting in a fluid under acoustic conditions
considered safe for diagnosis, by introducing an agent that has
been observed to release gas contents [12] in a confined space.

Let us assume a microscopic spherical gas bubble in an
infinite fluid. If the bubble is subjected to an ultrasound pulse,
its radial response can be expressed by a Rayleigh-Plesset
equation. A simplified equation for ultrasound-driven micro-
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bubble pulsation has been derived in a prior publication [9].
Incorporating viscous, reradiation, and thermal damping terms
yields [13]:
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where p(t) is the time-dependent driving function, p0 is the
ambient pressure, pv is the vapour pressure, R is the instantan-
eous bubble radius, R0 is the initial bubble radius, γ is the ratio
of specific heats, δ is the total damping coefficient, ρ is the
liquid density, σ is the surface tension, and ω is the angular
driving frequency. For a bubble without a shell, the damping
coefficient consists of three components [14, 15],

δ = δv +δr +δθ , (2)

where
δv =
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is the viscous damping [14], in which η is the dynamic viscos-
ity of the surrounding medium,
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is the damping owing to reradiation [14], in which c is the
speed of sound, and
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is the thermal damping, in which in which X = R0
lD

> 1 and ω r

is the angular resonance frequency of the bubble. Here,
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√
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2ω ρg Cp
, (6)

where Cp is the specific heat of the gas, Kg is the thermal con-
ductivity of the gas, lD is the thermal layer boundary thick-
ness, and ρg is the density of the gas [16]. The ratio of angular
frequencies in (5) is often squared or ignored [13–16]. The
asymmetric collapse of a bubble may lead to the formation of
a liquid jet [7, 10].

2 Materials and methods

Solutions of (1) were computed using the ode45 differ-
ential equation solver of MATLAB® (The MathWorks,
Inc., Natick, MA, USA), assuming the following para-
meters constant: c = 1480 m s−1, Cp = 1000 J kg−1 K−1,
Kg = 0.025 W m−1 K−1, p0=101 kPa, pv=2.33 kPa, γ=1.4,

η = 1.00 mPa, ρ = 998 kg m−3, ρg = 1.00 kg m−3, σ =

0.072 N m−1, and ω = 2π×1.0×106 s−1.
The initial radius was chosen on the interval R0 ∈ [0.1 ,

10] µm. The linear bubble resonance frequency was computed
using [17]
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Free-field hydrophone data were used as an input driving func-
tion. To account for the presence of the compartment, p(t) was
amplified by an empiric step function to match the simulated
radial excursions to those observed.

A quantity of 5 mg freeze-dried Quantison™ ultrasound
contrast agent (Upperton Limited, Nottingham, UK), compris-
ing albumin-encapsulated air bubbles, was stirred through 5 ml
of degassed distilled water (FUJIFILM Wako Pure Chemical
Corporation, Chuo-ku, Osaka, Japan). The median bubble dia-
meter was measured from optical microscopy to be 5.2±
0.9 µm [12]. For each experiment, a 200-µl droplet of this re-
constituted ultrasound contrast agent was pipetted into a cyl-
indrical compartment of 8-mm diameter and 2-mm height be-
fore being closed with an 18×18-mm Thickness No. 1 Mi-
cro Cover Glass (Matsunami Glass Ind.,Ltd., Kishiwada-shi,
Osaka, Japan) and sealed with No.600M cloth tape (Sekisui
Chemical Co., Ltd., Kita-ku, Osaka, Japan) [18]. The com-
partment was part of a 244×145×76-mm3 Perspex container
that was filled with degassed water and placed on top of an
Eclipse Ti inverted microscope (Nikon Corporation, Minato-
ku, Tokyo, Japan) with an S Plan Fluor ELWD 40×/0.60 ob-
jective lens (Nikon). The microscope was coupled to an HPV-
X2 high-speed camera (Shimadzu, Nakagyo-ku, Kyoto, Japan)
that was set to record at a frame rate of ten million frames
per second [19]. The optical field of view coincided with the
acoustic focus of a custom-built 1-MHz single element trans-
ducer mounted in the water container [19]. The transducer was
driven by 3-cycle pulses with a centre frequency of 1 MHz and
signal amplitudes between 0.50 V and 5.0 V. The signal was
generated by an AFG320 arbitrary function generator (Sony-
Tektronix, Shinagawa-ku, Tokyo, Japan) and amplified by a
UOD-WB-1000 broadband power amplifier (TOKIN Corpor-
ation, Shiroishi, Miyagi, Japan).

In total, 54 high-speed experiments were performed. Each
video recorded comprised 256 frames. The video frames were
imported into the MATLAB® (The MathWorks, Inc., Natick,
MA, USA) programming environment for further processing.

3 Results and discussion

The jetting phenomenon was observed in all experiments
where gas release was occurring. The signal amplitude for gas
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Fig. 1: Selected high-speed video frames, showing nucle-
ation from Quantison™ (27), expansion to maximum (30), col-
lapse (31) into a jet (32, —), explosive growth of coalescing frag-
ments (35–37) to a maximum (40), collapse (43) generating a
shock-wave (44) whose front (←) and wake (→) are indicated, col-
lapse into a jet (45, —), expansion showing a needle jet (49–55, -
- -), and surface harmonic oscillation (67). Frame numbers have
been added to the lower right corners. Each frame corresponds to
an area of 72×48 µm2 and an exposure of 0.1 µs.

release was equal to or greater than 3 V for these events, which
corresponded to a free-field mechanical index of 0.6.

In Figure 1, selected high-speed video frames are shown
of Quantison™ microbubbles under sonication. A cavity was
observed to have nucleated from a Quantison™ contrast mi-
crobubble in frame 27. This cavity was then seen to have ex-
panded to a maximum size of R = 11 µm in frame 30. Follow-
ing collapse in frame 31, it was observed to undergo jetting
in frame 32 over a distance of 17 µm. The resulting fragments
were seen to have reappeared in frame 35. Coalescence was
observed in subsequent frames until maximum expansion to
R = 21 µm of the remaining bubble in frame 40. The collapse
of the bubble in frame 44 was interpreted to generate a shock-
wave given the visible shock front and wake. This bubble
collapse visibly resulted into a jet with a length of 26 µm in
frame 45. During the subsequent expansion, a needle jet was
visible in frame 55. The remaining bubble was observed to
be non-spherical. It showed surface harmonic oscillations in
frame 67.

Another example is shown in Figure 2. Here, a cavity was
observed to have nucleated from a Quantison™ contrast mi-
crobubble in frame 27. This cavity was seen to have under-
gone expansion to a maximum of R = 11 µm in frame 29,
followed by collapse and translation. During the subsequent
pulsation cycle, explosive growth was observed to a maximum
expansion of R = 16 µm in frame 39. The collapse of the
bubble in frame 42 was interpreted to generate a shock-wave.
This bubble collapse resulted into a jet as spanning a distance
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Fig. 2: Selected high-speed video frames, showing nucleation
from Quantison™ (27), expansion to maximum (29), collapse and
translation (30–35), explosive growth to a maximum (39), col-
lapse (41) generating a shock-wave (42) whose front (←) and
wake (→) are indicated, resulting into a jet (43, —), expansion
showing a needle jet (46, - - -), formation of a reentrant jet (58,◦),
asymmetric collapse (113), jetting (116, —), and radial pulsa-
tion (120–149). Frame numbers have been added to the lower
right corners. Each frame corresponds to an area of 72× 48 µm2

and an exposure and interval of 0.1 µs.

of 27 µm. During the subsequent expansion, a needle jet was
visible in frame 46. This needle jet was seen to break and res-
ult in a reentrant jet in the opposite direction of the original
jetting direction in frame 58. Following asymmetric collapse
in frame 112, a displacement was measured in frame 118, cor-
responding to a jet length of 26 µm. Its final equilibrium radius
was measured to be R = 1.4 µm in frame 149.

The jet lengths measured had been estimated from vis-
ible gas displacement between the bubble radius on the verge
of collapse and the first visible appearance after jetting. Here,
the verge of collapse was defined as first signs of asymmetry.
It should be noted that the actual liquid jet displacement is
approximately three times the bubble radius on the verge col-
lapse [7], but that the visible displacement of the gas was con-
sistently twice the radius upon collapse throughout our exper-
iments.

Figure 3 shows two simulated R(t) curves of a micro-
bubble subjected to a 3-V pulse, one for which the presence
of a confining space has been accounted for in the amplifica-
tion function by multiplying the free-field pulse amplitude by a
factor of six, and the other for which the presence of a confine-
ment has been ignored. The measured excursions from two dif-
ferent events appear to match the former curve closer than the
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Fig. 3: Simulated R(t) curves of a microbubble subjected to a 3-
V pulse, accounting for the presence of a confining space (bold)
and ignoring the presence of a confinement (thin), overlain by
measured excursions from two different events (◦,+).

latter. Despite the highly nonlinear and asymmetric behaviour
of bubbles in a confined space, the Rayleigh-Plesset bubble
model with additional damping terms and modified driving
function well represented the spherically symmetric pulsation
excursions experimentally observed.

4 Conclusions

In conclusion, jetting was observed to occur with micro-
bubbles nucleated from ultrasound contrast agent micro-
bubbles. Visible jet lengths of twice the bubble radius on the
verge of collapse were measured. Owing to the confined space,
the local acoustic amplitude was amplified to surpass the cavit-
ation threshold. This finding is of interest for medical ultra-
sonic applications where the local environment comprises re-
flectors.
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