
HAL Id: hal-04737094
https://hal.science/hal-04737094v1

Preprint submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Few and Fewer: Learning better from few examples
using fewer base classes

Raphael Lafargue, Yassir Bendou, Bastien Pasdeloup, Jean-Philippe Diguet,
Ian Reid, Vincent Gripon, Jack Valmadre

To cite this version:
Raphael Lafargue, Yassir Bendou, Bastien Pasdeloup, Jean-Philippe Diguet, Ian Reid, et al.. Few and
Fewer: Learning better from few examples using fewer base classes. 2024. �hal-04737094�

https://hal.science/hal-04737094v1
https://hal.archives-ouvertes.fr

FEW AND FEWER: LEARNING BETTER FROM
FEW EXAMPLES USING FEWER BASE CLASSES ∗

Raphael Lafargue1,2,3, Yassir Bendou1, Bastien Pasdeloup1,
Jean-Philippe Diguet3, Ian Reid2,3, Vincent Gripon1, and Jack Valmadre2,3

1IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, France
2Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia

3CNRS, IRL CROSSING, Adelaide, Australia

ABSTRACT

When training data is scarce, it is common to make use of a feature extractor that has been pre-trained
on a large “base” dataset, either by fine-tuning its parameters on the “target” dataset or by directly
adopting its representation as features for a simple classifier. Fine-tuning is ineffective for few-shot
learning, since the target dataset contains only a handful of examples. However, directly adopting
the features without fine-tuning relies on the base and target distributions being similar enough that
these features achieve separability and generalization. This paper investigates whether better features
for the target dataset can be obtained by training on fewer base classes, seeking to identify a more
useful base dataset for a given task. We consider cross-domain few-shot image classification in eight
different domains from Meta-Dataset and entertain multiple real-world settings (domain-informed,
task-informed and uninformed) where progressively less detail is known about the target task. To our
knowledge, this is the first demonstration that fine-tuning on a subset of carefully selected base classes
can significantly improve few-shot learning. Our contributions are simple and intuitive methods that
can be implemented in any few-shot solution. We also give insights into the conditions in which these
solutions are likely to provide a boost in accuracy. We release the code to reproduce all experiments
from this paper on GitHub. https://github.com/RafLaf/Few-and-Fewer.git

1 Introduction

Few-shot learning considers problems where training data is severely limited. It represents a challenge for deep learning,
which typically requires large datasets of training examples (Wang et al., 2020b). The standard technique to leverage
deep learning within few-shot tasks is to adopt some form of transfer learning, using a large distinct “base dataset” to
train a model, which then serves as a feature extractor to integrate additional knowledge within the “target dataset”, on
which the task has to be solved. One of the most straightforward transfer strategies is thus to embed the target data into
an appropriate feature space, and then to learn a simple classifier with minimal parameters in order to avoid overfitting
to the few labeled examples (Wang et al., 2019).

However, the effectiveness of the transfer depends on the similarity of the base and target domains, and recent research
in transfer learning (Oh et al., 2022) suggests that it may even have a deleterious effect if the domain gap is too
large (Guo et al., 2020). This paper therefore considers the question: can one reduce the domain gap by fine-tuning on
the base classes that are the most similar to the target distribution?. This approach aims to minimize the domain gap by
concentrating the model’s learning on a narrower, more relevant subset of the base classes closely aligned with the
target distribution.

This questions the existence of universal feature extractors that would lead to systematically high performance on any
few-shot task, a common trend in the field (Kirillov et al., 2023). Indeed, the growing body of literature on foundational
models suggests that the optimal strategy for a new problem with limited data is to build on a foundational model which

∗This work was performed using HPC resources from GENCI–IDRIS (Grant 202123656B).

ar
X

iv
:2

40
1.

15
83

4v
1

 [
cs

.C
V

]
 2

9
Ja

n
20

24

https://github.com/RafLaf/Few-and-Fewer.git

was trained on an Internet-scale dataset. Instead, in our approach, we show that tailored models can outperform generic
ones on specific tasks, embodying the celebrated No Free Lunch theorem (Wolpert & Macready, 1997).

In this paper, we investigate a simple idea: given an off-the-shelf model trained on a base dataset – that we will call
“base model”, or “feature extractor” – we propose to fine-tune it using only the most relevant classes from that same
base dataset. By doing so, we aim to lower the importance of classes that could harm performance on the target task,
while keeping a large enough pool of training data examples to ensure fine-tuning does not overfit.

Given a few-shot task and base dataset, we investigate the challenge of selecting a subset of base classes that, when used
to fine-tune the feature extractor, leads to a feature representation with better inductive bias for the few-shot learning
task. We consider eight target domains of Meta-Dataset (Triantafillou et al., 2019) in the cross-domain setting. We
demonstrate that, for most but not all of the eight target domains, it is possible to obtain better target features for a
Nearest Class Mean (NCM) classifier by fine-tuning the feature extractor with a subset of base classes from ImageNet.
We later evaluate our method in multiple settings: Domain-Informed (DI), Task-Informed (TI) and Uninformed (UI)
where progressively fewer details are known about the target task.

The main contributions of this work are:

• We demonstrate that fine-tuning with a subset of base classes can improve accuracy.

• We present simple methods to select such a subset given varying degrees of information about the few-shot task
(either the few-shot examples themselves or unlabelled examples from the target domain).

• We investigate the feasibility of employing a static library of feature extractors that are fine-tuned for different
class subsets. We compare several methods for deciding these class subsets ahead of time, and several heuristics
for identifying a useful class subset at runtime.

2 Background and related work

Terminology. A few-shot classification task (or episode) comprises a support set for training the classifier and
a query set for testing the classifier. The support set contains a small number of examples for each class. If we
have K classes with N examples for each, then we refer to the problem as “N -shot K-way" classification. When
benchmarking few-shot solutions, accuracy is measured on the query set, and averaged over a large number of different
tasks. Depending on the application case, one may consider inductive few-shot learning, where each query is classified
independently, or transductive few-shot learning, where all queries are processed jointly, meaning that the classifier can
benefit from the added information coming from their joint distribution. In this paper, we focus on inductive few-shot
learning, although the techniques could be extended to the transductive setting.

Few-shot paradigms. To solve a few-shot task, the main idea found in the literature is to rely on a pre-trained feature
extractor, trained on a large generic dataset called the “base dataset”. Several strategies on how to train efficient feature
extractors have been proposed, including meta-learning methods (Finn et al., 2017) or closed-form learners (Snell
et al., 2017; Bertinetto et al., 2018; Yoon et al., 2019), others directly learn a mapping from support examples and a
query input to a prediction (Vinyals et al., 2016; Ravi & Larochelle, 2017; Garcia Satorras & Bruna Estrach, 2018;
Requeima et al., 2019; Hou et al., 2019; Doersch et al., 2020). But simple straightforward classical batch learning of
feature extractors have also shown to achieve State-Of-The-Art performance (Bendou et al., 2022b). This is why we
rely on such simpler feature extractors in our work. Once a feature extractor is chosen, many adaptation strategies
have been proposed (Wang et al., 2019; Triantafillou et al., 2019). Simple classifiers such as Nearest Neighbor or
Nearest Class Mean (NCM) without additional learning (Wang et al., 2019; Bateni et al., 2020; Snell et al., 2017)
have shown competitive performance, hence we adopt this approach for its simplicity and effectiveness. Based on
recent evidence (Luo et al., 2023), we have strong reasons to believe that the proposed methodology could lead to
improvements for any feature extractor training algorithm.

Lightweight adaptation of feature extractors. Several works have previously sought to obtain task-specific feature
extractors for few-shot learning. This is typically achieved by introducing a small number of task-specific parameters
into the model in the form of residual adapters (Rebuffi et al., 2017) or Feature-wise Linear Modulation (FiLM) layers
(Perez et al., 2018). In the multi-domain setting, these parameters can be simply trained for each domain (Dvornik et al.,
2020; Liu et al., 2021a). Otherwise, the task-specific parameters must either be trained on the support set (Li et al.,
2022) or predicted from the support set via meta-learning (Bertinetto et al., 2016; Oreshkin et al., 2018; Requeima et al.,
2019). While feature adaptation has proved effective for multi-domain few-shot learning, it is difficult to apply to the
cross-domain setting due to the need to train on the support set. This paper instead proposes to update all parameters of
the feature extractor by re-visiting the base dataset and fine-tuning only on a subset of relevant classes.

2

Selecting feature extractors or class subsets. In our work, we consider a setting which requires selecting amongst
feature extractors that were each fine-tuned on a subset of base classes. This requires predicting the downstream
performance of a feature extractor, a question that has previously been considered by Garrido et al. (2022). They
proposed the RankMe metric based on a smooth measure of the matrix rank (Roy & Vetterli, 2007). Achille et al. (2019)
considered the problem of measuring task similarity using the Fisher Information Matrix (FIM), and demonstrated the
ability of their proposed metric to select a feature extractor trained on an appropriate subset of classes. The experimental
section will show that straightforward measures such as cross-validation error perform at least as well as these more
involved measures when using a simple classifier in the few-shot setting. Dvornik et al. (2020) used a linear combination
of features from domain-specific feature extractors, with coefficients optimized on the support set. We do not consider
mixtures of features in this paper, as our goal is not to obtain the highest accuracy but rather to investigate whether
accuracy can be improved using fewer base classes.

Re-using the base dataset in transfer learning. The prevention of over-fitting is critical when seeking to train
with small datasets. Whereas several works have considered regularization strategies such as selective parameter
updates (Shen et al., 2021) or auxiliary losses (Su et al., 2020; Majumder et al., 2021; Wang et al., 2020a; Islam et al.,
2021), our strategy is to re-use a subset of the base dataset given knowledge of the downstream task. This high-level
idea is not novel in itself outside the context of few-shot learning, as several works have considered ways to use the
base dataset beyond task-agnostic pre-training. Liu et al. (2021b) showed that transfer learning could be improved
by retaining a subset of classes from the base dataset during fine-tuning, using separate classifiers and losses for the
examples from different datasets. Besides manual selection of classes, they proposed to obtain class subsets by solving
Unbalanced Optimal Transport (UOT) for the distance between class centroids in feature space. Earlier works used
low-level image distance to select a subset of examples (rather than classes) to include in fine-tuning (Ge & Yu, 2017)
or instead selected a subset of classes at the pre-training stage before fine-tuning solely on the target dataset (Cui et al.,
2018). While the works which select class subsets are the most closely related to this paper, all rely on fine-tuning on
the target set and do not consider the few-shot regime, entertaining at minimum about 600 examples (corresponding
to 20% of Caltech 101). In contrast, this work will focus on few-shot learning where it is difficult to fine-tune on the
support set (Luo et al., 2023). We consider subsets of classes rather than examples because it simplifies the problem,
ensures that the dataset remains balanced, and provides an intuitive mechanism to select a feature extractor.

Domain adaptation. We also consider in our work a Domain-Informed (DI) setting, that bears some resemblance
to methods based on domain adaptation (Sahoo et al., 2019; Khandelwal & Yushkevich, 2020) as it makes use of
unsupervised data from the target domain.

3 Feature extractors for fewer base classes

3.1 Formulation

The simple few-shot pipeline that we consider comprises three key stages:
Step 1. Train a feature extractor with parameters θ using a labeled base dataset with classes C;
Step 2. Fine-tune the feature extractor on a subset of base classes C′ ⊂ C to obtain θ′;
Step 3. Extract features for the query and support sets and perform NCM classification.

The feature extractor takes the form of a deep neural network hθ : Rm → Rn. It is trained in combination with an affine
output layer g such that the composition g ◦ hθ minimizes the softmax cross-entropy loss (Bendou et al., 2022b). The
NCM classifier simply computes the centroid of each class in feature space, and then classifies new examples according
to minimum Euclidean distance.

The canonical approach to few-shot learning (Wang et al., 2019) jumps directly from Step 1 to Step 3, effectively
setting θ′ = θ. However, this makes strong demands of the feature extractor: it is expected to be universal in that its
representation must be immediately applicable to any downstream task, even those belonging to different domains.
Whilst many past works in few-shot learning have focused on improvements to Step 3, we consider the hypothesis that
fine-tuning on fewer base classes (and hence a smaller dataset) may in fact improve accuracy in few-shot tasks. A 2D
visualization of the effect on a 3-way task is shown in the Appendix.

We now turn to the problem of identifying a suitable class subset C′. We consider three different settings for class
subset selection, which are defined by different degrees of knowledge of the task, and consider different constraints on
running time. Task Informed (TI) selection considers the scenario where the support set S can itself be used to select
the class subset C′. This represents the ideal scenario, although the computational effort involved in fine-tuning (on a
subset of the base dataset) may be prohibitive if many few-shot problems need to be solved, or if a classifier must be
obtained quickly. Domain Informed (DI) selection considers the scenario where one cannot afford to fine-tune a feature
extractor for each few-shot task, yet a dataset D comprising a superset of classes from the same domain as S is available
for the purpose of class-subset selection (without requiring labels). This could correspond to a realistic scenario where

3

a robot is exploring an environment, generating a large number of unlabeled images from the target domain. As the
number of shots in the support set decreases, DI selection also has the advantage of giving a lower variance estimate
of the class subset than TI, since it uses a larger set of examples. However, this comes at the cost of a higher bias,
since the examples do not correspond exactly to the few-shot task. Finally, Uninformed (UI) selection considers the
problem of defining multiple class subsets C′

1, . . . , C′
L ahead of time without knowledge of the target domain, and

incurs the additional problem of having to select the most suitable class subset (and associated feature extractor) for a
given support set. This setting is particularly interesting for applications where there are strong constraints in terms of
computational effort or latency, seeking a general-purpose set of specialists.

The key baselines to consider will be the canonical approach with an NCM classifier (i.e. excluding Step 2 above), and
fine-tuning on the support set (S). The remainder of this section will address the design of techniques for selecting
class subsets in each setting.

3.2 Choosing class subsets: Informed settings

The informed settings (TI, DI) consider the problem of selecting a subset of base classes C′ ⊂ C given a set of examples
X = {xi}i. In TI selection, X would be the support set, whereas in DI selection, X would be the domain examples D
ignoring the labels. The class subset C′ will then be used to fine-tune the “base” feature extractor, which was trained on
the entire base dataset.

Algorithm 1 Average Activation selection (TI, DI)
Require: Base classes C, examples X = {xi}, pre-trained

model with feature extractor h and classifier g, class subset
size M = 50

1: Compute average scores
p = 1

|X |
∑

xi∈X softmax(g(h(xi))

2: Sort p in descending order
3: return C′ := First M classes of p

To choose a class subset, we need a method by which
to identify the base classes which are most useful for
a given this set of examples X . Fortunately, the base
model already comprises a classifier that assigns a
score to each base class. We therefore propose to sim-
ply compute the average class likelihoods predicted
by the base model on the novel set X , and then select
the M highest-scoring classes. This straightforward
selection strategy will henceforth be referred to as
Average Activations (AA), and is outlined in Algo-
rithm 1. While there is no guarantee that this procedure will select the class subset that yields the optimal representation
for the final task after fine-tuning, it is a cheap and reasonable proxy for that purpose. Note that we use M = 50 in all
experiments to have subset sizes comparable to the UI setting, described in the following section.

As a point of reference, we also consider a more sophisticated selection strategy that requires labels for the set of
examples X that informs selection. We adopt the Unbalanced Optimal Transport (UOT) formulation of Liu et al.
(2021b), which assigns unit mass to the classes in X and C, and uses the distance between class centroids to define the
cost matrix. All regularization parameters are set as in (Liu et al., 2021b), and we similarly take the top M = 50 base
classes according to the resulting (unnormalized) marginals on C.

3.3 Choosing class subsets: Uninformed setting

The uninformed setting considers the case where it is infeasible to fine-tune the model on demand. Our aim is thus,
with off-the self tools, to construct a static library of specialist feature extractors from class subsets that are determined
in an unsupervised manner, such that a suitable class subset can then be chosen in light of the support set. To this end,
we perform agglomerative hierarchical clustering of the base classes using Ward’s method (Ward Jr, 1963), where
each class is represented using either its centroid under the base feature extractor hθ (visual features, V) or a vector
embedding of its name from the text encoder of the publicly available CLIP model (Radford et al., 2021) (semantic
features, Se.). Final clusters were obtained by choosing a threshold on distance that gave a total of eleven relatively
balanced clusters for the 712 classes in the ImageNet training split of Meta-Dataset (Triantafillou et al., 2019). The
same process was performed for the concatenation of visual and semantic features (denoted X), with the two types of
feature vectors being normalized and centered prior to concatenation. To obtain a comparable baseline for the clustering
process, we further construct a random (R) partitioning of the base classes into eleven subsets. Following clustering, a
different feature extractor is independently fine-tuned for each class subset, yielding a static library of class subsets and
model parameters (C′

j , θ
′
j). The base model (C, θ) is also included in the static library.

3.4 Heuristics for selecting a feature extractor

Lastly, we turn to the problem of selecting between specialist feature extractors given the support set for a novel
few-shot task. For this purpose, we consider a collection of heuristics that are expected to correlate with accuracy on

4

the query set. Heuristics can make use of the labeled support set S, the feature extractor hθ′
j

and the class subset C′
j

which was used for fine-tuning.

We briefly describe the heuristics here, please refer to the Appendix for a more complete description. The most obvious
heuristics to include are the accuracy and maximum confidence on the support set (SSA and SSC, respectively) and
the leave-one-out cross-validation accuracy (LOO). We also consider the Signal to Noise Ratio (SNR) defined by the
comparison of within-class and between-class covariances. We incorporate RankMe (RKM), Monte-Carlo Sampling
(MCS) and Fisher Information Matrix (FIM) metrics from past work: RankMe (Garrido et al., 2022) considers the
(smooth) rank of the feature matrix with the motivation that good features should exhibit linear independence, Monte-
Carlo Sampling (Bendou et al., 2022a) obtains virtual examples by sampling from regularized Gaussian distributions
that have been fit to each class in the support set to construct an artificial validation set, and the Fisher Information
Matrix (Achille et al., 2019) provides a measure of task similarity using a probe network. Finally, while Average
Activation (AA) was previously used as a subset selection method, our use of class subsets to define the feature
extractors enables it to be employed as a heuristic. This is achieved by selecting the class subset which has the greatest
cumulative activation in the support set of a task.

With the notable exception of AA and SNR, all heuristics are inapplicable to the one-shot setting, since they require at
least two examples per class to construct a validation set or measure within-class covariance. SNR circumvents this
issue by considering only between-class covariance in the one-shot setting. Further note that, besides AA, all heuristics
involve evaluation of the candidate feature extractor, hence selecting a class subset will involve exhaustive evaluation of
all feature extractors in the library, which is typically only on the order of tens of models.

To validate the effectiveness of our heuristics, we compare them to a random heuristic (RH) which selects a feature
extractor uniformly at random and to an oracle which always selects the feature extractor with the highest accuracy on
the validation set. The latter reveals an upper bound on the best possible performance for a given set of few-shot tasks
and feature extractors. Its performance might not be achievable given the information at hand.

4 Experiments

We report results on the eight datasets within Meta-Dataset excluding ImageNet and QuickDraw. These include
Omniglot (handwritten characters), Aircraft, CUB (birds), DTD (textures), Fungi, VGG Flowers, Traffic Signs and
MSCOCO (common objects) (Lake et al., 2015; Maji et al., 2013; Wah et al., 2011; Cimpoi et al., 2014; Schroeder &
Cui, 2018; Nilsback & Zisserman, 2008; Houben et al., 2013; Lin et al., 2014). Recall that S denotes the approach of
fine-tuning on the support set. We consider three sampling procedures for generating few-shot tasks: 1-shot 5-ways,
5-shots 5-ways, and the task-sampling procedure described by Meta-Dataset (Triantafillou et al., 2019), denoted MD,
whose tasks have a much larger but varying number of shots and ways. We report the baseline accuracy and the change
in performance with respect to the baseline or boost, denoted ∆. A fixed set of 600 few-shot tasks is sampled for each
dataset and sampling procedure, and this is held constant for all methods (S, TI, DI, DI-UOT, TI-UOT). Since accuracy
is measured using the same set of tasks for all methods, the confidence interval of the accuracy boost can be computed
using paired trials. The confidence intervals for the baselines instead represent the distribution of the sample mean
across the 600 different tasks.

4.1 Effect of informed class selection

Our first main experiment investigates the change in accuracy effected by fine-tuning the feature extractors on a subset
of base classes before performing NCM classification, considering the Average Activation selection strategy in both the
Task-Informed and Domain-Informed settings. This is compared to the effect of fine-tuning on the support set, as well
as the UOT selection strategy (Liu et al., 2021b) in DI and TI. Table 8 reports baseline accuracies and relative boosts in
all settings for each dataset and few-shot sampling procedure.

The results reveal that Domain-Informed selection of base classes can significantly improve accuracy. The average
boost across all datasets and samplings using DI selection is +1.62± 0.08 points. Examining individual datasets, we
note the consistent negative change in accuracy on Traffic Signs, with the exception of fine-tuning given a minimum
number of shots. This is likely explained by the absence of similar images in ImageNet. Indeed, whereas the ImageNet
activations for CUB are distributed across roughly 50 bird classes, the most strongly activated class for Traffic Signs
is Nematode, far outside the domain of traffic signs. Poor improvements are observed on Aircraft, since ImageNet
contains only few relevant classes (airliner and military plane) which are likely supersets of the classes in the few-shot
task. These results explain the large variability in boost achieved in the DI setting, and are detailed in the Appendix.

One hypothesis which is not borne out in the experimental results is that class selection can only achieve significant
improvements for tasks which are relatively easy, or where the base feature extractor is already relatively effective.

5

Table 1: Performance change using fine-tuning on the support (S), with a Task-Informed (TI) subset selection, a
Domain-Informed (DI) subset selection, and DI-UOT subset selection. All positive boosts with overlapping confidence
intervals are bolded. Overall DI performs the best followed by TI. S performs the worst. UOT selection strategy is
outperformed by simple AA selection. The complete table with UOT on each dataset is in the appendix.

Dataset Method 1-shot 5-ways 5-shots 5-ways MD

Baseline ∆ Baseline ∆ Baseline ∆

Aircraft
S

39.95 ±0.70
-3.60 ±0.64

63.18 ±0.74
-1.48 ±0.61

65.86 ±0.90
+5.33 ±0.69

TI -0.06 ±0.33 +0.26 ±0.31 +1.33 ±0.25
DI +0.34 ±0.32 +0.54 ±0.31 +1.32 ±0.27

CUB
S

64.34 ±0.90
-19.28 ±0.88

87.78 ±0.59
-18.97 ±0.63

79.29 ±0.90
-14.51 ±0.60

TI +2.64 ±0.44 +2.16 ±0.26 +1.08 ±0.19
DI +3.27 ±0.44 +2.29 ±0.26 +2.20 ±0.20

DTD
S

45.21 ±0.77
+0.66 ±0.77

70.10 ±0.59
-3.12 ±0.59

76.03 ±0.69
-6.67 ±0.69

TI +2.85 ±0.46 +2.77 ±0.33 +2.44 ±0.29
DI +2.90 ±0.48 +2.96 ±0.33 +2.78 ±0.31

Fungi
S

53.01 ±0.92
-6.59 ±0.74

74.87 ±0.80
-8.33 ±0.62

51.57 ±1.16
-15.05 ±0.53

TI +0.92 ±0.39 +1.67 ±0.30 +1.07 ±0.26
DI +1.07 ±0.41 +1.89 ±0.29 +1.38 ±0.25

Omniglot
S

61.80 ±1.03
-3.16 ±1.11

81.53 ±0.76
+3.53 ±0.85

59.51 ±1.31
-4.59 ±1.07

TI +2.65 ±0.38 +2.94 ±0.29 +3.74 ±0.23
DI +3.52 ±1.22 +3.57 ±0.81 +3.93 ±0.61

MSCOCO
S

43.91 ±0.85
-5.44 ±0.66

63.04 ±0.79
-6.20 ±0.63

44.99 ±0.99
-17.00 ±0.72

TI +1.27 ±0.35 +1.87 ±0.29 +1.85 ±0.17
DI +1.62 ±0.34 +2.09 ±0.30 +2.25 ±0.17

Traffic Signs
S

57.35 ±0.85
-4.67 ±0.66

74.11 ±0.78
+6.17 ±0.62

53.77 ±1.05
+0.77 ±1.00

TI -0.84 ±0.32 -1.22 ±0.25 -2.02 ±0.17
DI -0.79 ±0.95 -1.48 ±0.77 -1.82 ±0.44

VGG Flower
S

75.86 ±0.84
+0.19 ±0.79

94.46 ±0.33
-1.45 ±0.37

92.77 ±0.58
-5.18 ±0.51

TI +2.04 ±0.40 +0.64 ±0.18 +1.03 ±0.16
DI +1.88 ±0.41 +0.52 ±0.18 +0.84 ±0.16

Average

S -5.24 ±0.78 -3.73 ±0.61 -7.11 ±0.73
TI +1.43 ±0.38 +1.39 ±0.28 +1.31 ±0.21
DI +1.73 ±0.57 +1.55 ±0.41 +1.61 ±0.30

DI-UOT +0.63 ±0.47 +0.36 ±0.33 +0.32 ±0.28
TI-UOT +1.43 ±0.36 +1.10 ±0.44 +1.21 ±0.32

If anything, the boost tends to be inversely correlated with the accuracy, with larger improvements being achieved
when the accuracy of the baseline is lower (as shown in the Appendix). Another hypothesis which will require further
investigation is that Aircraft and Traffic Signs perform poorly because they require the feature extractor to represent
shape more than color or high-frequency texture, whereas these are useful cues for datasets such as CUB, VGG Flower
and DTD.

From the results, we observe the strategy based on Unbalanced Optimal Transport (Liu et al., 2021b) to achieve
improvements that are only on-par or worse than the naive Average Activation strategy. In particular, we observe a
large drop in performance on Omniglot, whose test split contains the largest number of classes (659), revealing that
the hyperparameters of the algorithm are likely sensitive to the size of the problem. The set of classes selected using
UOT varies significantly from that selected using AA; we observed that the Intersection over Union of these sets ranged
between 22% for MSCOCO and 78% for CUB.

Task-Informed selection is often observed to somewhat under-perform Domain-Informed selection. This is particularly
pronounced in CUB, for which the base dataset contains a large number of relevant classes (birds) which could be
retrieved for the class subset. This observation points to the higher variance of selecting class subsets from fewer
examples (as shown in the Appendix). This suggests that the bias of Domain-Informed selection is preferable to the
variance of Task-Informed selection, which remains true even in higher data regimes.

Fine-tuning on the support set (S) can be rewarding, especially in the higher data regimes of 5-way 5-shot and MD task
sampling, where boosts of up to ∆ = +6.17± 0.62 points are achieved for 5-way 5-shot classification on Traffic Signs.
We note that the accuracy of the baseline is particularly low on Traffic Signs, probably due to the lack of relevant data in
the base dataset. In this case, fine-tuning on the support set is likely to have a large positive effect where other methods
can only amplify or attenuate the influence of relatively unrelated classes in the base dataset. The same phenomenon
may also be at play on a smaller scale for Aircraft. During experimentation, we observed that fine-tuning on the support

6

−1

0

1

2

3

∆
(%

)

Aircraft

OR

OX

R

X

0

1

2

3

∆
(%

)

CUB

0

1

2

3

4

5

∆
(%

)

DTD

−1

0

1

2

3

4

∆
(%

)

Fungi

0

2

4

∆
(%

)

Omniglot

−2

−1

0

1

2

∆
(%

)

MSCOCO

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

∆
(%

)

Traffic Signs

SNR LOO MCS SSA SSC RKM AA FIM RH
−0.5

0.0

0.5

1.0

1.5

2.0

∆
(%

)

VGG Flower

Figure 1: Difference of accuracy with baseline after feature extractor selection using heuristics. Tasks are sampled
following the MD protocol. In R (resp. X) heuristics select a feature extractor amongst the R (resp. X) library of feature
extractors. The oracle OR (resp. OX) selects the best feature extractor for each task in the R (resp. X) library. The
Random Heuristic (RH) picks a random feature extractor. SSA and MCS are the two best performing heuristics. A
meaningful choice of class (X) is desirable in particular on datasets with high boosts.

set is particularly sensitive to the choice of hyperparameters. Amongst all configurations we tested (see Appendix for
details), fine-tuning on the support set typically led to a significant decrease of performance. We advocate that finding
the right hyperparameters for each task without a validation set is the real bottleneck for this method.

When the domain is known, Domain-Informed selection is the most reliable approach to increase few-shot accuracy.
This is especially the case for the low data regime of 1-shot 5-ways, as it greatly benefits from the information contained
in the unlabeled examples. In a mixed sampling where more shots are available, DI still retains its advantage, although
the gap is reduced. When the Domain is unknown, Task-Informed selection remains a safer option than fine-tuning on
the support set, which can have a catastrophic outcome.

Overall, the table clearly shows that training with fewer base classes can indeed lead to significant boosts in accuracy
compared to the feature extractor, supporting the claim that fine-tuning with a subset of base classes can improve
accuracy. What is more, we measured this increased separability using the silhouette score (Rousseeuw, 1987). Across
all datasets, the silhouette score of target features increased by ∆ = +0.0103 with an average silhouette score for the
baseline of -0.001.

4.2 Uninformed setting

Our second main experiment considers the Uninformed (UI) setting. Specifically, we seek to determine whether a
positive boost relative to the baseline can be achieved without knowledge of the task during fine-tuning, and compare
methods for the unsupervised construction of class subsets as well as the selection of feature extractors. The results
are reported in Figure 1, which presents the boost in performance for each domain and selection heuristic using MD
sampling with both the concatenated (X) and random (R) subset constructions.

First, we point out that in most cases we obtained significant boost in accuracy. MCS and SSA consistently led to
a positive impact across all our experiments, when combined with the X design of subsets. We consider this result

7

important as it clearly outlines the ability to deploy such solutions in applications where strong constraints apply in
terms of computations and/or latency. This experiment supports our second claim from the introduction.

It is not a surprise that X generally outperforms R in particular on datasets where improvements are large, showing
that a meaningful design of subsets is preferable. We also note that the X-based oracle oftentimes reaches a much
higher accuracy than its R-based counterparts. However, some heuristics such as like AA and FIM seem particularly
detrimental to X. This does not occur for MSCOCO, a dataset of natural images which is quite close to the ImageNet
distribution. This suggests that it is most important to use a meaningful construction of subsets when the target dataset
is more fine-grained or less similar compared to the base dataset. Results for V, Se. (in the Appendix) and X are on-par
with a slight advantage for V particularly on the Traffic Signs dataset. We nonetheless preferred to present results for X
as it combines two orthogonal cues and is therefore likely to be more robust in novel domains.

Finally, amongst the different heuristics, Support Set Accuracy (SSA) performs the best under MD sampling on average
across datasets and subset constructions, with an average boost of ∆ = +1.13± 0.22 points. For 5-shot 5-way tasks,
Monte-Carlo Sampling (MCS) is the best with a boost of ∆ = +0.78 ± 0.27 points, while in 1-shot 5-way tasks,
the Signal to Noise Ratio (SNR) heuristic yields the best boost with ∆ = +0.74 ± 0.38 points. Thus, interestingly,
even in the adversarial conditions of a single shot per class, it is still possible to expect a significant boost in accuracy
by adopting a feature extractor which is fine-tuned for a pre-determined subset of base classes. The large gap to the
oracle (denoted by O) indicates that the maximum achievable boost is consistently above 2% and can range as high
as 6%. Compared to previous work (FIM (Achille et al., 2019), RKM (Garrido et al., 2022)), our heuristic performs
significantly better. The heuristic based on Average Activation of the base classifier was unfortunately found to be
unreliable across domains when compared to heuristics which directly assess NCM classifier on the support set.

4.3 Implementation details

In TI and S, a fine-tuning is performed for each task. Therefore, we could not afford to explore the hyperparameter
space for each case. In particular, in the TI setting where a complete two steps fine-tuning with 50 classes had to be
performed for each task, each dataset and each sampling setting. Please note that in the DI setting we make use of
the validation split to choose our class subsets so as to make it task independent while remaining domain dependant.
We use an Adam (Kingma & Ba, 2014) optimizer to fit the classifier (first step) and SGD with a Nesterov momentum
of 0.9 (Polyak, 1964) for the complete fine-tuning (second step). We used a learning rate of 0.001 and a cosine
scheduler (Loshchilov & Hutter, 2016) in every setting for comparability. We also limit the dataset size to 10k examples
in order to isolate the effect of the choice of data. We fine-tune on 10 epochs during the first step (frozen feature
extractor) and 20 steps on the second step (unfrozen feature extractor). We use a simple ResNet-12 architecture as
feature extractor. We show in the Appendix that DI can be improved by using heuristics to select between feature
extractors fine-tuned with different learning rate. We use off-the-shelf standard procedures to train fθ, such as the ones
described in Bertinetto et al. (2018); Bendou et al. (2022b). We used 2 clusters with GPUs. Namely, we used Nvidia
A100s and V100s to run our experiments. A machine equipped with an Nvidia 3090 was used to prototype our methods.

4.4 Discussion

We could also show that our results extend to segmentation task as shown in Table 5 in the appendix. Our work touches
on a wide range of questions of which many could not be investigated in this work. In particular we only shallowly
address the geometric and ontological relationships between the source and target classes. These relationships are
probably key to predict the sign and magnitude of accuracy boost. We fixed the number of clusters in the UI setting
and the number of selected classes in the DI and TI setting although we show in the appendix the effect of changing
the number of selected classes. Future work could include an analysis of our methods in the context of a domain shift
between the support and query examples (Bennequin et al., 2021).

Another limitation of our work is the high computational cost of some heuristics (FIM, MCS and LOO) and settings
(TI, TI-UOT and to a lesser extent S). As mentioned earlier, fine-tuning on the support set can be very rewarding but
often comes with difficulties to set good hyperparameters. As such, we think that methods aiming at predicting the
accuracy of a few-shot task could be of tremendous interest to set them appropriately. Furthermore, self-supervised
fine-tuning may prove to be a superior solution in certain circumstances. What is more, we believe that fine-tuning is
not the be-all and end-all solution to adapt embeddings for a task. Carefully crafted, data-dependent, projections might
be fast “on-the-fly” solutions to increase performances.

8

5 Conclusion

In conclusion, in this paper we introduced various ways to identify relevant subset of base classes that can, if fine-tuned
on, significantly improve accuracy when facing a few-shot task. Interestingly, fine-tuning on a subset selected using the
unlabelled target domain seems to be the most reliable way to improve performances. This however does not apply to
all datasets, meaning that a lot of open questions remain. We hope that this inspires the community to investigate this
effect, including the role of dataset scale. We also introduced a simple strategy of building an offline static library of
feature extractors from which can be dynamically selected one when facing a few-shot task. With the rise of interests in
foundational models that are candidates to be universal embedding for downstream tasks, we think our work can be an
interesting opposing view for future research.

References
Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C Fowlkes, Stefano

Soatto, and Pietro Perona. Task2Vec: Task embedding for meta-learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 6430–6439, October 2019.

Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal. Improved few-shot visual classification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14493–14502, 2020.

Yassir Bendou, Vincent Gripon, Bastien Pasdeloup, Lukas Mauch, Stefan Uhlich, Fabien Cardinaux, Ghouthi Boukli
Hacene, and Javier Alonso Garcia. A statistical model for predicting generalization in few-shot classification. arXiv
preprint arXiv:2212.06461, 2022a.

Yassir Bendou, Yuqing Hu, Raphael Lafargue, Giulia Lioi, Bastien Pasdeloup, Stéphane Pateux, and Vincent Gripon.
Easy: Ensemble augmented-shot y-shaped learning: State-of-the-art few-shot classification with simple ingredients.
arXiv preprint arXiv:2201.09699, 2022b.

Etienne Bennequin, Victor Bouvier, Myriam Tami, Antoine Toubhans, and Céline Hudelot. Bridging few-shot learning
and adaptation: new challenges of support-query shift. In Machine Learning and Knowledge Discovery in Databases.
Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,
Part I 21, pp. 554–569. Springer, 2021.

Luca Bertinetto, João F Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi. Learning feed-forward one-shot
learners. Advances in Neural Information Processing Systems, 29, 2016.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differentiable closed-form
solvers. arXiv preprint arXiv:1805.08136, 2018.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3606–3613, 2014.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 3213–3223, 2016.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained categorization and
domain-specific transfer learning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 4109–4118, 2018.

Carl Doersch, Ankush Gupta, and Andrew Zisserman. CrossTransformers: Spatially-aware few-shot transfer. Advances
in Neural Information Processing Systems, 33:21981–21993, 2020.

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Selecting relevant features from a multi-domain representation for
few-shot classification. In Computer Vision–ECCV 2020, pp. 769–786. Springer, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural networks. In International
Conference on Learning Representations, 2018.

Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing the downstream
performance of pretrained self-supervised representations by their rank. arXiv preprint arXiv:2210.02885, 2022.

Weifeng Ge and Yizhou Yu. Borrowing treasures from the wealthy: Deep transfer learning through selective joint
fine-tuning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1086–1095, July 2017.

9

Yunhui Guo, Noel C Codella, Leonid Karlinsky, James V Codella, John R Smith, Kate Saenko, Tajana Rosing, and
Rogerio Feris. A broader study of cross-domain few-shot learning. In European conference on computer vision, pp.
124–141. Springer, 2020.

Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Cross attention network for few-shot
classification. Advances in Neural Information Processing Systems, 32, 2019.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection of traffic signs
in real-world images: The german traffic sign detection benchmark. In The 2013 international joint conference on
neural networks (IJCNN), pp. 1–8. Ieee, 2013.

Ashraful Islam, Chun-Fu Richard Chen, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, and Richard J Radke.
Dynamic distillation network for cross-domain few-shot recognition with unlabeled data. Advances in Neural
Information Processing Systems, 34:3584–3595, 2021.

Pulkit Khandelwal and Paul Yushkevich. Domain generalizer: a few-shot meta learning framework for domain
generalization in medical imaging. In MICCAI Workshop: Domain Adaptation and Representation Transfer, and
Distributed and Collaborative Learning, pp. 73–84. Springer, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, 2015.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Cross-domain few-shot learning with task-specific adapters. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7161–7170, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Lu Liu, William L. Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. A universal representation transformer
layer for few-shot image classification. In International Conference on Learning Representations, 2021a.

Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Xiangyang Ji, Antoni B Chan, and Rong Jin. Improved fine-tuning
by better leveraging pre-training data. In Advances in Neural Information Processing Systems, 2021b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Xu Luo, Hao Wu, Ji Zhang, Lianli Gao, Jing Xu, and Jingkuan Song. A closer look at few-shot classification again.
arXiv preprint arXiv:2301.12246, 2023.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification
of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Orchid Majumder, Avinash Ravichandran, Subhransu Maji, Alessandro Achille, Marzia Polito, and Stefano Soatto.
Supervised momentum contrastive learning for few-shot classification. arXiv preprint arXiv:2101.11058, 2021.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE, 2008.

Jaehoon Oh, Sungnyun Kim, Namgyu Ho, Jin-Hwa Kim, Hwanjun Song, and Se-Young Yun. Understanding cross-
domain few-shot learning based on domain similarity and few-shot difficulty. In Advances in Neural Information
Processing Systems, 2022.

Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. TADAM: Task dependent adaptive metric for improved
few-shot learning. Advances in Neural Information Processing Systems, 31, 2018.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computational mathematics
and mathematical physics, 4(5):1–17, 1964.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, pp. 8748–8763. PMLR, 2021.

10

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International Conference on
Learning Representations, 2017.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with residual adapters.
In Advances in Neural Information Processing Systems, volume 30, 2017.

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast and flexible
multi-task classification using conditional neural adaptive processes. Advances in Neural Information Processing
Systems, 32, 2019.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20:53–65, 1987.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007 15th European
signal processing conference, pp. 606–610. IEEE, 2007.

Doyen Sahoo, Hung Le, Chenghao Liu, and Steven CH Hoi. Meta-learning with domain adaptation for few-shot
learning under domain shift. 2019.

Brigit Schroeder and Yin Cui. Fgvcx fungi classification challenge 2018. Available online: github.
com/visipedia/fgvcx_fungi_comp (accessed on 14 July 2021), 2018.

Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng. Partial is better than all: revisiting fine-
tuning strategy for few-shot learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 9594–9602, 2021.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in Neural
Information Processing Systems, 30, 2017.

Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. When does self-supervision improve few-shot learning? In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII
16, pp. 645–666. Springer, 2020.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles
Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset of datasets for learning to learn
from few examples. arXiv preprint arXiv:1903.03096, 2019.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning.
Advances in Neural Information Processing Systems, 29, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

Kafeng Wang, Xitong Gao, Yiren Zhao, Xingjian Li, Dejing Dou, and Cheng-Zhong Xu. Pay attention to features,
transfer learn faster cnns. In International conference on learning representations, 2020a.

Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten. SimpleShot: Revisiting nearest-neighbor
classification for few-shot learning. arXiv preprint arXiv:1911.04623, 2019.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples: A survey on
few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020b.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical association,
58(301):236–244, 1963.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE transactions on evolutionary
computation, 1(1):67–82, 1997.

Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, and Yang Gao. Mining latent classes for few-shot segmentation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 8721–8730, 2021.

Sung Whan Yoon, Jun Seo, and Jaekyun Moon. TapNet: Neural network augmented with task-adaptive projection for
few-shot learning. In International Conference on Machine Learning, pp. 7115–7123. PMLR, 2019.

A Appendix

A.1 Impact of learning rate on fine-tuning (DI selection)

We fine-tuned the baseline model on DI-selected subsets with varying learning rates. Figure 3 shows that the boost in
accuracy compared to the baseline is highly dependent on the learning rate chosen.

11

Since the learning rate can have a strong effect on the final accuracy, we further propose to use our heuristics to
determine which learning rate is the most suitable. Note that we cannot use AA nor FIM to select learning rates of
feature extractors. These two methods purely on the choice of data independently of the model used. We observe strong
gains in performance in Figures 4 and 5 on most datasets. These Figures show that for cetain datasets the learning rate
of 0.001 that was reported in the main paper can be outperformed using the heuristics to select the best learning rate.

A.2 About batch normalization during fine-tuning

During the fine-tuning process, both the feature extractor parameters and batch normalization statistics can be adapted
to the selected subset. The latest statistics are estimated using moving averages whereas parameters are updated through
gradient descent. Thus, we consider experiments where the learning rate is set to 0, meaning that only the batch
normalization statistics are updated. Figure 3 shows that Batch Normalization alone can be highly beneficial to the
performance. This is particularly the case for Omniglot.

A.3 A closer look at the unsupervised selection of classes

We show the dendrograms built with Ward’s method below. We take a closer look at the cluster of birds in 12 and 13.
We show that both semantic and visual features demonstrate an impressive ability to identify a cluster related to birds.
However both identified clusters contain anomalies (non-birds) and miss some birds. More details are in the captions.
This is the rationale for our method of selection in using both visual and semantic features (X).

A.4 Description of heuristics

(Minor correction to main text: In addition to the SNR and AA heuristics, the FIM heuristic can also be used with only
a single shot.)

Leave-One-Out (LOO). LOO is a form of cross-validation on the support set. Validation is acquired by randomly
sampling a single element from the support set, making it unused in the estimation of class centroids. The process
is repeated a large number of times and averaged to obtain an estimated accuracy. To accelerate the calculations, we
isolate one sample per class in our experiments. LOO is required as it impacts the training set as little as possible. In
few-shot conditions, removing even just a few elements from the support set is expected to yield significant impact to
the performance of the considered classifier.

Signal-to-Noise Ratio (SNR). SNR is another metric that relates to the accuracy. In an isotropic Gaussian case, it is
a perfect heuristic for a theoretical accuracy. We define it as such for 2 classes {i, j}:

SNR(i, j) =
δ

ξ
= 2

∥E(N i)− E(N j)∥2
σ(N i) + σ(N j)

(1)

where E(N i) and σ(N i) are respectively the empirical expectation and standard deviation of the class i in the support
set, δ is the margin and ξ is the noise. For more than two ways tasks we compute the average over all couple of classes.

Support Set Accuracy (SSA) SSA is the accuracy of the support set using an NCM classifier. We consider a few-shot
task where the support set also plays the role of the query set.

Support Set Confidence (SSC) SSC is a confidence score. It is a soft version of SSA. It measures to what extent the
shots are centered around their respective centroids.

SSC ≃ E
(
max

i

(
softmax

k

(−di,k

T

)))
(2)

where di,k is the distance between a support sample i and the different centroids k and T the temperature. In a way it
measures if the class shots are well grouped.

Monte-Carlo Sampling (MCS). In MCS, we measure an empirical covariance matrix and centroid for each class of
the support set in the feature space. We then generate virtual data points in the feature space that mimic the distribution
of the support set. These data points are classified the same cay any query would and the derived accuracy is used as a
proxy to the actual one. In the case of a single shot an isotropic variance is used.

12

Rank-Me (RKM). RKM is another heuristic correlated with the performance of future downstream tasks introduced
in (Garrido et al., 2022). The idea is to define a soft version of the rank (Roy & Vetterli, 2007) and measure this pseudo
rank on a matrix of features from a model. The higher the rank the higher the performance. We use the the features of
the support set to compute it.

FIM FIM corresponds to the Fischer Information Matrix as described in Achille et al. (2019). We have directly made
use of their code to create embeddings for tasks and datasets. The Fisher information matrix (F) is defined as

F = Ex,y∼p̂(x)pθ(y|x)
[
∇θ log pθ(y|x)∇θ log pθ(y|x)T

]
(3)

that is, the expected covariance of the scores (gradients of the log-likelihood) with respect to the model parameters θ. x
are inputs and y are labels. p̂ is the empirical distribution defined by the training set and p = σ ◦ g ◦ hθ the baseline
model. The distance is measured using the normalized diagonals of the FIM of datasets. Cosine distance is used. We
used the probe networks proposed by (Achille et al., 2019). We compute the distances between clusters of base classes
and support sets from few-shot tasks.

AA Average Activation simply selects the cluster of classes the most activated by the support set of a task. The index
of the selected cluster s is :

s = argmax
i

 ∑
c∈Pi;x∈S

pθ(yc|x)

 (4)

where pθ(yc|x) is the activation of the base class c for a given image x in the support set S. Pi is the cluster of base
classes i.

A.5 Discussion on the difference between datasets

Here, we try to explain why we observe differences in performance boost across datasets. We mentioned different
explanations in the paper.

We ruled out the idea that boosts are only obtained for easy tasks (high accuracy). Such tasks would only be found in
datasets such as CUB and not on Traffic Signs or Aircraft where the domain gap with ImageNet is larger. To do this, we
invoked the inverse correlation of accuracy with boost of performance. We provide empirical evidence of this in the
Figure 17.

We briefly discussed the differences between Imagenet and the target datasets in the paper. Figure 10 helps us to
understand the results of the first table in the paper.

Aircraft Relatively poor boosts are obtained on the Aircraft dataset. Aircraft is almost fully captured by two base
classes. The ‘airliner’ class could be the source of collapse of all Aircraft classes. Such collapse would create confusion
between aircraft classes. This would mean that paradoxically closely related classes could be detrimental to the
performance. Further research is required on this point. Almost all Aircraft images are typical airliner. Contrarily, we
find that DTD and CUB cover a wide variety of closely related classes.

Traffic Signs Finally, Traffic Signs contains only very low-resolution, tightly cropped images and is thus particularly
different from ImageNet. It appears across all experimental settings that any fine-tuning seems detrimental to the
few-shot performance on Traffic Signs.

A.6 Logistic Regression Few-Shot Classifier

We verified that our method also provides better features when using a Logistic Regression (LR) in place of the NCM
classifier. Table 2 clearly shows the consistent and positive impact of our DI finetuning on the representations even
when using this new classifier.

13

Table 2: Accuracy obtained using a Logistic Regression (LR) classifier for both the baseline and proposed methodology
(instead of NCM).

Dataset 1-shot 5-ways 5-shot 5-ways MD
Baseline ∆ Baseline ∆ Baseline ∆

Aircraft 42.28 ±0.72 +0.07 ±0.42 68.50 ±0.69 -0.08 ±0.33 72.47 ±0.99 +0.88 ±0.27
CUB 65.28 ±0.82 +4.81 ±0.47 86.74 ±0.58 +2.91 ±0.29 77.85 ±0.93 +2.81 ±0.21
DTD 50.57 ±0.78 +1.88 ±0.50 72.02 ±0.60 +2.15 ±0.37 80.21 ±0.74 +1.92 ±0.31
Fungi 55.58 ±0.90 +0.45 ±0.45 76.32 ±0.76 +1.47 ±0.33 42.78 ±1.09 +2.59 ±0.27

Omniglot 66.41 ±0.99 +2.77 ±1.14 87.68 ±0.63 +1.86 ±0.66 64.45 ±1.35 +3.33 ±0.61
MSCOCO 46.97 ±0.87 +0.83 ±0.41 66.57 ±0.73 +0.60 ±0.32 44.42 ±1.09 +1.38 ±0.18

Traffic Signs 62.36 ±0.85 -1.16 ±0.93 83.96 ±0.64 -1.18 ±0.61 59.73 ±1.12 +2.78 ±0.38
VGG Flower 80.11 ±0.72 +1.50 ±0.38 95.15 ±0.30 +0.63 ±0.19 91.19 ±0.61 +1.91 ±0.19

Average 58.69 ±0.44 +1.39 ±0.23 79.62 ±0.35 +1.04 ±0.15 66.64 ±0.58 +2.20 ±0.12

14

A.7 Training from Scratch

We compared the DI finetuning to training from scratch on the same DI subsets. We report the results in Table 3. We
see that only for omniglot, training on fewer, more similar classes, helps. We used the same hyperparameters to train
our baseline model.

Table 3: Accuracy obtained when deploying the proposed methodology training from scratch on DI subsets (instead of
finetuning).

Dataset 1-shot 5-ways 5-shot 5-ways MD
Baseline ∆ Baseline ∆ Baseline ∆

Aircraft 39.95 ±0.70 -7.77 ±0.62 63.18 ±0.74 -19.12 ±0.64 65.87 ±0.90 -25.28 ±0.60
CUB 64.34 ±0.90 -8.13 ±0.85 87.78 ±0.59 -9.58 ±0.53 79.29 ±0.90 -14.43 ±0.42
DTD 45.21 ±0.77 -1.24 ±0.76 70.10 ±0.60 -6.98 ±0.53 76.03 ±0.69 -8.83 ±0.53
Fungi 53.01 ±0.92 -11.25 ±0.78 74.87 ±0.79 -15.54 ±0.61 51.57 ±1.16 -15.87 ±0.50

Omniglot 61.80 ±1.03 +3.10 ±1.26 81.53 ±0.76 +2.85 ±0.84 59.51 ±1.31 +3.82 ±0.66
MSCOCO 43.91 ±0.85 -5.52 ±0.62 63.04 ±0.79 -9.39 ±0.58 44.99 ±0.99 -10.37 ±0.35

Traffic Signs 57.35 ±0.85 -5.17 ±1.00 74.11 ±0.78 -4.17 ±0.77 53.77 ±1.05 -5.03 ±0.46
VGG Flower 75.86 ±0.84 -8.80 ±0.82 94.46 ±0.33 -6.94 ±0.46 92.77 ±0.58 -8.63 ±0.40

Average 55.18 ±0.44 -5.60 ±0.33 76.13 ±0.38 -8.61 ±0.29 65.47 ±0.55 -10.58 ±0.29

A.8 Silhouette scores

We provide in Table 4 silhouette scores (Rousseeuw, 1987) (from scikit-learn) which highlight how target classes are
more separable thanks to the DI finetuning. It provides insight into how well each sample lies within its class, which is
a reflection of the compactness and separation of the classes. Across all datasets, the silhouette score of features in the
different classes increased by ∆ = +0.0103 with an average silhouette score for the baseline of -0.001.

Dataset Baseline Ours
Aircraft 0.0104 0.0096
CUB 0.0303 0.0317
DTD 0.0293 0.0460
Fungi -0.0436 -0.0342
Omniglot -0.0719 -0.0016
Traffic Signs -0.0279 -0.0374
VGG Flower 0.0919 0.0913
MSCOCO -0.0277 -0.0224
Average -0.0011 0.0103

Table 4: Comparative Analysis of Silhouette Scores for Features Extracted Using Two Different Backbones Across
Diverse Datasets.

15

A.9 Ablation study on the number of selected classes

101 102

M

−4

−2

0

2

4

M
ea

n
D

iff
er

en
ce

1-shot 5-ways

101 102

M

5-shot 5-ways

101 102

M

MD

Aircraft

CUB

DTD

Fungi

Omniglot

MSCOCO

Traffic Signs

VGG Flower

Average

Figure 2: Relative gain in accuracy compared to the baseline after fine-tuning (Domain Informed setting), varying
the number of classes M selected using the Average Activation (AA) method. The star ticks correspond to the points
where 90% of the cumulative activation across classes is reached. Apart from Aircraft and Fungi, the 90% cumulative
activation threshold is reached around the same M ∼ 40 which is around the peak of difference with baseline. Figure
10 shows the distribution of activation among classes.

A.10 Segmentation Tasks

Table 5 shows that our DI finetuning improved representations for segmentation tasks as well. This highlights the ability
of our method to improve performances on different types of tasks.

Table 5: mIOU, mIOU reduced (hard classes ignored, specific to Cityscape) and accuracy on the segmentation dataset
of Cityscape (Cordts et al., 2016) using the method developed in (Yang et al., 2021). Our experiments compare DI
feature extractors with our baseline feature extractor on the same seeds (paired tests).

Metric 1-shot 5-ways 5-shot 5-ways
Baseline DI Baseline DI

mIOU 18.46± 0.26 18.72± 0.25 22.76± 0.13 23.07± 0.13
mIOU Reduced 21.87± 0.31 22.17± 0.30 26.92± 0.15 27.28± 0.15

Accuracy 70.49± 0.38 71.13± 0.33 74.24± 0.14 74.78± 0.13

A.11 Feature space distortion or better features?

To investigate whether the improvement is due to mere distortion as opposed to a better representation, we conducted a
set of experiments where the backbone was frozen and only an additional linear layer (with bias) was trained on the
class subset. This linear layer can thus distort the feature space without fundamentally changing the representation.

The results are presented in Table 6. Overall, training just this layer decreases the accuracy of the NCM classifier,
providing evidence that finetuning does yield an improved representation, rather than a simple distortion of the feature
space.

16

Table 6: Difference in performance between using the features from the backbone directly vs. adding an extra linear
layer, using DI subsets. We use the NCM classifier on top each time. The Mode column give more details about the
extra layer that is placed just before the classification head. This extra layer is trained with the classification head in
the same way as step 1. When “Finetune" is added to the mode we simply also apply step 2 (unfrozen backbone).
“640x640" corresponds to a randomly initialized linear layer. “640x640 Res" corresponds to the same layer initialized at
0 with a skip connection (c.f. ResNet architecture).

Dataset Mode 1-shot 5-ways 5-shot 5-ways MD

Average

640x640 Finetuned Res +1.71± 0.35 −0.08± 0.25 −1.19± 0.20
640x640 Res +0.59± 0.35 −2.18± 0.24 −3.66± 0.20
640x50 −1.69± 0.37 −6.64± 0.28 −10.44± 0.26
Finetuned 640x50 −0.80± 0.38 −5.60± 0.28 −8.83± 0.25
640x640 −0.32± 0.37 −3.77± 0.26 −5.82± 0.23

Aircraft

640x640 Finetuned Res −1.11± 0.85 −5.16± 0.76 −7.81± 0.59
640x640 Res −1.10± 0.84 −7.10± 0.73 −10.85± 0.61
640x50 −5.05± 0.86 −14.11± 0.74 −21.84± 0.66
Finetuned 640x50 −4.50± 0.81 −13.76± 0.77 −20.64± 0.66
640x640 −2.40± 0.87 −10.51± 0.73 −15.48± 0.60

CUB

640x640 Finetuned Res +8.02± 0.93 +1.82± 0.48 +0.49± 0.41
640x640 Res +9.37± 0.93 +1.24± 0.48 −0.41± 0.46
640x50 +6.37± 0.97 −1.80± 0.50 −6.38± 0.52
Finetuned 640x50 +7.86± 0.94 −0.92± 0.48 −4.82± 0.50
640x640 +9.13± 0.96 +0.51± 0.49 −1.73± 0.47

DTD

640x640 Finetuned Res +3.79± 0.99 +1.65± 0.66 −0.48± 0.63
640x640 Res +2.02± 0.97 +0.62± 0.66 −2.05± 0.61
640x50 +3.91± 1.01 −2.16± 0.63 −7.06± 0.67
Finetuned 640x50 +5.63± 0.99 −2.02± 0.66 −6.73± 0.65
640x640 +2.74± 1.02 +0.11± 0.65 −3.07± 0.62

Fungi

640x640 Finetuned Res −0.54± 0.99 −3.09± 0.67 −2.82± 0.56
640x640 Res −1.72± 0.98 −5.14± 0.67 −4.60± 0.56
640x50 −2.53± 0.98 −8.89± 0.69 −10.24± 0.60
Finetuned 640x50 −2.60± 0.98 −8.25± 0.67 −8.03± 0.58
640x640 −1.71± 0.99 −6.29± 0.67 −6.16± 0.62

MSCOCO

640x640 Finetuned Res +1.20± 0.98 +4.04± 0.70 +3.05± 0.46
640x640 Res +1.81± 0.99 +1.81± 0.75 +0.59± 0.45
640x50 +1.99± 1.02 +0.52± 0.76 −3.13± 0.46
Finetuned 640x50 +2.44± 0.97 +1.08± 0.76 −1.94± 0.46
640x640 +1.80± 0.98 +1.17± 0.77 −0.81± 0.45

Omniglot

640x640 Finetuned Res −0.42± 1.19 −0.84± 0.84 −1.61± 0.57
640x640 Res −5.16± 0.88 −6.10± 0.55 −7.43± 0.49
640x50 −11.48± 0.95 −15.09± 0.63 −17.28± 0.61
Finetuned 640x50 −9.04± 1.27 −11.78± 0.93 −13.66± 0.66
640x640 −7.93± 0.95 −9.24± 0.58 −10.78± 0.50

Traffic Signs

640x640 Finetuned Res +2.06± 0.92 +2.14± 0.71 +1.19± 0.44
640x640 Res +1.02± 0.95 −0.00± 0.70 −0.95± 0.43
640x50 −1.85± 0.94 −4.81± 0.74 −8.44± 0.45
Finetuned 640x50 −1.86± 0.95 −3.12± 0.73 −7.01± 0.46
640x640 −0.06± 0.94 −0.87± 0.72 −2.32± 0.43

VGG Flower

640x640 Finetuned Res +0.65± 0.91 −1.17± 0.38 −1.54± 0.33
640x640 Res −1.51± 0.95 −2.75± 0.38 −3.57± 0.34
640x50 −4.83± 0.96 −6.81± 0.47 −9.19± 0.43
Finetuned 640x50 −4.35± 0.93 −5.99± 0.47 −7.81± 0.41
640x640 −4.16± 1.01 −5.06± 0.43 −6.19± 0.40

17

A.12 Support set fine-tuning

Our fine-tuning on the support set followed as closely as possible the protocol described in (Triantafillou et al., 2019).
They used a variety of configurations. We reproduced three of them (reported as best). Results are shown in 7. The
performances are very low most of the time. Over-fitting is probably the issue on such small training dataset.

Table 7: Performance of fine-tuning on the support set with varying hyperparameters. We could not explore more than
three settings as these require long computational effort. All Positive values are highlighted. Frozen signifies that only
the last classification layer was trained while the rest of the network was frozen.

Sampling Dataset Frozen; lr = 10−3 lr = 10−3 lr = 10−4

1-shot 5-ways

Aircraft -12.24 ±0.73 -3.60 ±0.64 -6.64 ±0.66
CUB -18.04 ±0.86 -19.28 ±0.88 -25.52 ±0.97
DTD -3.74 ±0.88 0.66 ±0.77 -6.32 ±0.78
Fungi -10.90 ±0.81 -6.59 ±0.74 -14.91 ±0.87

Omniglot -29.13 ±1.06 -3.16 ±1.11 -21.17 ±1.08
MSCOCO -4.47 ±0.70 -5.44 ±0.66 -9.09 ±0.70

Traffic Signs -8.37 ±0.90 -4.67 ±0.66 -8.73 ±0.75
VGG Flower -20.69 ±1.15 0.19 ±0.79 -16.78 ±0.95

Average -13.45 ±0.85 -5.24 ±0.75 -13.64 ±0.81

5-shot 5-ways

Aircraft -24.55 ±0.85 -1.48 ±0.61 -11.71 ±0.67
CUB -15.60 ±0.82 -18.97 ±0.63 -25.50 ±0.70
DTD -16.33 ±0.84 -3.12 ±0.59 -9.49 ±0.62
Fungi -13.86 ±0.81 -8.33 ±0.62 -18.28 ±0.76

Omniglot -39.31 ±1.08 3.53 ±0.85 -22.57 ±1.09
MSCOCO -5.11 ±0.66 -6.20 ±0.63 -11.43 ±0.65

Traffic Signs -4.03 ±0.81 6.17 ±0.62 -0.67 ±0.62
VGG Flower -17.36 ±0.96 -1.45 ±0.37 -9.87 ±0.57

Average -17.02 ±0.81 -3.73 ±0.59 -13.69 ±0.68

MD

Aircraft -33.49 ±0.90 5.33 ±0.69 -16.98 ±0.82
CUB -18.49 ±0.65 -14.51 ±0.60 -39.36 ±0.80
DTD -24.93 ±0.94 -6.67 ±0.68 -11.06 ±0.63
Fungi -18.90 ±0.65 -15.05 ±0.53 -30.75 ±0.66

Omniglot -40.25 ±1.02 -4.59 ±1.07 -36.27 ±1.01
MSCOCO -8.85 ±0.44 -17.00 ±0.72 -20.21 ±0.50

Traffic Signs -14.70 ±0.57 0.77 ±1.00 -16.93 ±0.65
VGG flower -34.71 ±1.05 -5.18 ±0.51 -25.93 ±1.02

Average -24.29 ±0.76 -7.11 ±0.71 -24.69 ±0.74

18

A.13 Other tables and figures

Table 8: Performance change using the fine-tuning on the support (S), with a Task-Informed (TI) subset selection, a
Domain-Informed (DI) subset selection, and DI-UOT subset selection. All positive boosts with overlapping confidence
intervals are bolded.

Dataset Method 1-shot 5-ways 5-shots 5-ways MD

Baseline ∆ Baseline ∆ Baseline ∆

Aircraft

S

39.95 ±0.70

-3.60 ±0.64

63.18 ±0.74

-1.48 ±0.61

65.86 ±0.90

+5.33 ±0.69
TI -0.06 ±0.33 +0.26 ±0.31 +1.33 ±0.25
DI +0.34 ±0.32 +0.54 ±0.31 +1.32 ±0.27

DI-UOT -0.25 ±0.33 -0.04 ±0.30 +0.86 ±0.27
TI-UOT -0.06 ±0.33 -0.01 ±0.30 +0.93 ±0.26

CUB

S

64.34 ±0.90

-19.28 ±0.88

87.78 ±0.59

-18.97 ±0.63

79.29 ±0.90

-14.51 ±0.60
TI +2.64 ±0.44 +2.16 ±0.26 +1.08 ±0.19
DI +3.27 ±0.44 +2.29 ±0.26 +2.20 ±0.20

DI-UOT +2.99 ±0.43 +2.07 ±0.27 +1.97 ±0.20
TI-UOT +2.64 ±0.44 +1.11 ±0.26 +0.96 ±0.19

DTD

S

45.21 ±0.77

+0.66 ±0.77

70.10 ±0.59

-3.12 ±0.59

76.03 ±0.69

-6.67 ±0.69
TI +2.85 ±0.46 +2.77 ±0.33 +2.44 ±0.29
DI +2.90 ±0.48 +2.96 ±0.33 +2.78 ±0.31

DI-UOT +2.26 ±0.51 +2.62 ±0.34 +2.82 ±0.32
TI-UOT +2.85 ±0.46 +2.44 ±0.32 +2.82 ±0.32

Fungi

S

53.01 ±0.92

-6.59 ±0.74

74.87 ±0.80

-8.33 ±0.62

51.57 ±1.16

-15.05 ±0.53
TI +0.92 ±0.39 +1.67 ±0.30 +1.07 ±0.26
DI +1.07 ±0.41 +1.89 ±0.29 +1.38 ±0.25

DI-UOT +0.74 ±0.40 +1.46 ±0.29 +0.91 ±0.25
TI-UOT +0.92 ±0.39 +1.51 ±0.28 +0.80 ±0.25

Omniglot

S

61.80 ±1.03

-3.16 ±1.11

81.53 ±0.76

+3.53 ±0.85

59.51 ±1.31

-4.59 ±1.07
TI +2.65 ±0.38 +2.94 ±0.29 +3.74 ±0.23
DI +3.52 ±1.22 +3.57 ±0.81 +3.93 ±0.61

DI-UOT -3.70 ±1.00 -5.02 ±0.68 -5.76 ±0.66
TI-UOT +2.65 ±0.38 +2.58 ±0.82 +2.46 ±0.62

MSCOCO

S

43.91 ±0.85

-5.44 ±0.66

63.04 ±0.79

-6.20 ±0.63

44.99 ±0.99

-17.00 ±0.72
TI +1.27 ±0.35 +1.87 ±0.29 +1.85 ±0.17
DI +1.62 ±0.34 +2.09 ±0.30 +2.25 ±0.17

DI-UOT +1.27 ±0.35 +1.75 ±0.29 +2.09 ±0.18
TI-UOT +1.27 ±0.35 +1.30 ±0.28 +2.05 ±0.18

Traffic Signs

S

57.35 ±0.85

-4.67 ±0.66

74.11 ±0.78

+6.17 ±0.62

53.77 ±1.05

+0.77 ±1.00
TI -0.84 ±0.32 -1.22 ±0.25 -2.02 ±0.17
DI -0.79 ±0.95 -1.48 ±0.77 -1.82 ±0.44

DI-UOT -0.48 ±0.33 -0.64 ±0.27 -1.26 ±0.18
TI-UOT -0.84 ±0.32 -0.99 ±0.77 -1.33 ±0.43

VGG Flower

S

75.86 ±0.84

+0.19 ±0.79

94.46 ±0.33

-1.45 ±0.37

92.77 ±0.58

-5.18 ±0.51
TI +2.04 ±0.40 +0.64 ±0.18 +1.03 ±0.16
DI +1.88 ±0.41 +0.52 ±0.18 +0.84 ±0.16

DI-UOT +2.18 ±0.40 +0.67 ±0.18 +0.90 ±0.16
TI-UOT +2.04 ±0.40 +0.90 ±0.17 +0.95 ±0.16

Average

S -5.24 ±0.78 -3.73 ±0.61 -7.11 ±0.73
TI +1.43 ±0.38 +1.39 ±0.28 +1.31 ±0.21
DI +1.73 ±0.57 +1.55 ±0.41 +1.61 ±0.30

DI-UOT +0.63 ±0.47 +0.36 ±0.33 +0.32 ±0.28
TI-UOT +1.43 ±0.36 +1.10 ±0.44 +1.21 ±0.32

19

0.
0

0.
00

1

0.
01 0.
1

lr

CUB

Aircraft

Fungi

Traffic Signs

MSCOCO

DTD

VGG Flower

Omniglot

d
a
ta

se
ts

1-shot 5-ways
0.

0

0.
00

1

0.
01 0.
1

lr

CUB

Aircraft

Fungi

Traffic Signs

MSCOCO

DTD

VGG Flower

Omniglot

5-shot 5-ways

0.
0

0.
00

1

0.
01 0.
1

lr

CUB

Aircraft

Fungi

Traffic Signs

MSCOCO

DTD

VGG Flower

Omniglot

MD

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−8

−6

−4

−2

0

2

4

6

8

Figure 3: Boost in Accuracy compared to the baseline for various learning rates lr using the DI selected feature extractor
of each dataset. Learning rate is set to 0 when only batch normalization statistics are updated. In the paper we only
show the case of lr = 0.001. We observe a significant effect of the choice of the learning rate.

20

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
(%

)

Aircraft

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
∆

(%
)

CUB

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
(%

)

DTD

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
(%

)

Fungi

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
(%

)

Omniglot

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
(%

)

MSCOCO

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
(%

)

Traffic Signs

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
(%

)

VGG Flower

Oracle

Figure 4: Selection of learning rate in DI setting using heuristics in MD sampling. Fixed corresponds to the performance
of lr = 0.001 that was presented in the first table of the paper. Our methods outperforms the DI accuracy boost (Fixed)
on Aircraft, Omniglot and Traffic Signs. We use the different learning rates presented in Table 3

21

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Aircraft

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5
∆

(%
)

CUB

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

DTD

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Fungi

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Omniglot

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

MSCOCO

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Traffic Signs

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

VGG Flower

Oracle

Figure 5: Selection of learning rate in DI setting using heuristics in 5-ways 5-shots sampling. Fixed corresponds to the
performance of lr = 0.001 that was presented in the first table of the paper. Our methods outperforms the DI accuracy
boost (Fixed) on Aircraft, Omniglot and Traffic Signs. We use the different learning rates presented in Table 3

22

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5

∆
(%

)

Aircraft

Oracle

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5
∆

(%
)

CUB

Oracle

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5

∆
(%

)

DTD

Oracle

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5

∆
(%

)

Fungi

Oracle

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5

∆
(%

)

Omniglot

Oracle

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5

∆
(%

)

MSCOCO

Oracle

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5

∆
(%

)

Traffic Signs

Oracle

SNR RH Fixed

0.0

2.5

5.0

7.5

10.0

12.5

∆
(%

)

VGG Flower

Oracle

Figure 6: Selection of learning rate in DI setting using heuristics in 1-ways 5-shots sampling. Fixed corresponds to
the performance of lr = 0.001 that was presented in the first table of the paper. In this case, the available data for the
selection is not sufficient to outperform Fixed. We use the different learning rates presented in Table 3

23

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5

∆
(%

)

Aircraft

OR

OX

R

X

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5
∆

(%
)

CUB

OR

OX

R

X

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5

∆
(%

)

DTD

OR

OX

R

X

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5

∆
(%

)

Fungi

OR

OX

R

X

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5

∆
(%

)

Omniglot

OR

OX

R

X

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5

∆
(%

)

MSCOCO

OR

OX

R

X

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5

∆
(%

)

Traffic Signs

OR

OX

R

X

SNR LOO MCS SSA SSC RKM AA FIM RH

−2

−1

0

1

2

3

4

5

∆
(%

)

VGG Flower

OR

OX

R

X

Figure 7: Difference of accuracy with baseline after feature extractor selection using heuristics. Task are sampled
following the 5-ways 5-shots sampling procedure. In R (resp. X) heuristics select a feature extractor amongst the R
(resp. X) library of feature extractor. The oracle OR (resp. OX) selects the best feature extractor for each task in the R
(resp. X) library. The Random Heuristic (RH) picks a feature extractor uniformly at random.

24

SNR AA FIM RH

−2

0

2

4

6

∆
(%

)

Aircraft

OR

OX

R

X

SNR AA FIM RH

−2

0

2

4

6
∆

(%
)

CUB

OR

OX

R

X

SNR AA FIM RH

−2

0

2

4

6

∆
(%

)

DTD

OR

OX

R

X

SNR AA FIM RH

−2

0

2

4

6

∆
(%

)

Fungi

OR

OX

R

X

SNR AA FIM RH

−2

0

2

4

6

∆
(%

)

Omniglot

OR

OX

R

X

SNR AA FIM RH

−2

0

2

4

6

∆
(%

)

MSCOCO

OR

OX

R

X

SNR AA FIM RH

−2

0

2

4

6

∆
(%

)

Traffic Signs

OR

OX

R

X

SNR AA FIM RH

−2

0

2

4

6

∆
(%

)

VGG Flower

OR

OX

R

X

Figure 8: Difference of accuracy with baseline after feature extractor selection using heuristics. Task are sampled
following the 1-ways 5-shots sampling procedure. In R (resp. X) heuristics select a feature extractor amongst the R
(resp. X) library of feature extractor. The oracle OR (resp. OX) selects the best feature extractor for each task in the R
(resp. X) library. The Random Heuristic (RH) picks a feature extractor uniformly at random.

25

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5

∆
(%

)

Aircraft

OV

OSe.

V

Se.

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5
∆

(%
)

CUB

OV

OSe.

V

Se.

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5

∆
(%

)

DTD

OV

OSe.

V

Se.

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5

∆
(%

)

Fungi

OV

OSe.

V

Se.

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5

∆
(%

)

Omniglot

OV

OSe.

V

Se.

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5

∆
(%

)

MSCOCO

OV

OSe.

V

Se.

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5

∆
(%

)

Traffic Signs

OV

OSe.

V

Se.

SNR LOO MCS SSA SSC RKM AA FIM RH
−2

−1

0

1

2

3

4

5

∆
(%

)

VGG Flower

OV

OSe.

V

Se.

Figure 9: Difference of accuracy with baseline after feature extractor selection using heuristics. Task are sampled
following the MD protocol. In V (resp. Se.) heuristics select a feature extractor amongst the V (resp. Se.) library of
feature extractor. The oracle OV (resp. OSe.) selects the best feature extractor for each task in the V (resp .Se.) library.
The Random Heuristic (RH) picks a random feature extractor.

26

goldfinch, Carduelis carduelis
11.5%

junco, snowbird
albatross, mollymawkbulbul

hummingbird
magpie

brambling, Fringilla montifringilla
water ouzel, dipper

kite
red-breasted merganser, Mergus serrator

house finch, linnet, Carpodacus mexicanus
bittern

CUB

airliner

69.8%

warplane, military plane

20.3% space shuttle

Aircraft

velvet
16.1%

shower curtaincoil, spiral, volute, whorl, helix
window screen
honeycomb

maze, labyrinth

window shade
nematode, nematode worm, roundworm

shoji

DTD

velvet
16.7%

bulletproof vestWindsor tieisopodmilk can

MSCOCO

mushroom

20.4%

hen-of-the-woods, hen of the woods, Polyporu[...]

15.5%bolete
13.6%

earthstar

coral fungus

stinkhorn, carrion fungus
gyromitra agaric

Fungi

chain
13.8%

parallel bars, bars
corkscrew, bottle screwscorpion

hatchet
rocking chair, rocker

cleaver, meat cleaver, chopper
bolo tie, bolo, bola tie, bola

street sign

Omniglot

daisy

30.7%

bee

pot, flowerpot
coral fungus

earthstar
cardoon

yellow lady’s slipper, yellow lady-slipper, [...]
cabbage butterfly

sulphur butterfly, sulfur butterfly

VGG Flower

nematode, nematode worm, roundworm
14.0%

chiton, coat-of-mail shell, sea cradle, poly[...]velvet
Petri dish

frying pan, frypan, skillet
plunger, plumber’s helper

Traffic Signs

Figure 10: Logit activations of ImageNet classes when target datasets are processed by the base model. While it may
seem surprising that the ImageNet ‘Street sign’ class is not strongly activated within the Traffic Signs dataset, this
is because its tightly cropped, low resolution images are highly dissimilar from the photographs of street signs in
ImageNet. Notice how Aircraft is almost fully captured by two classes.

27

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Aircraft

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5
∆

(%
)

CUB

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

DTD

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Fungi

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Omniglot

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

MSCOCO

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Traffic Signs

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

VGG Flower

OR

OV

OSe.

OX

R

V

Se.

X

Figure 11: Ablation of the effect of R, V, Se. and X on a reduced number of heuristics for lisibility. X is sometimes
outperformed by V and Se. but overall X is the best.

28

Figure 12: Zoom over the birds (gray), reptiles (yellow) and monkeys (pink) of the Semantic (Se.) dendrogram of
classes built using Ward’s method. Notice that we used “a photo of a" in front of each classes to improve the CLIP
embedding. Out of the 44 classes in the birds cluster 3 classes are not birds : The proboscis monkey, Yellow Lady’s
Slipper, Fox Squirrel. Their semantic relations to birds must explain their relation to this cluster. Some ambiguous
words like “Crane" or “Kite" might not be captured by the semantic embeddings.

29

Figure 13: Zoom over the birds (gray), reptiles (yellow) and buildings (pink) of the Visual (Se.) dendrogram of classes
built using Ward’s method. Notice that “Kite" was classified as part of the birds for trivial reasons (kites in the sky can
be mistaken for a bird).

30

Figure 14: Visual (V). dendrogram of classes built using Ward’s method

31

Figure 15: Semantic (Se.) dendrogram of classes built using Ward’s method

32

Figure 16: Visual-Semantic (X). dendrogram of classes built using Ward’s method

33

30 40 50 60 70 80 90 100
Baseline Accuracy

−10

−5

0

5

10

15

20

∆

Figure 17: DI Boost versus baseline accuracy in 1-shot 5-ways for CUB. This refutes the hypothesis that only problems
which already enjoy high accuracy can benefit from subset selection: rather, there is a negative correlation between
boost in accuracy and baseline accuracy (as mentioned in the paper). The regular grid stems from the discrete set of
possible outcomes for 75 query examples (5 ways with 15 query examples per class).

34

0 5 10 15 20 25 30 35 40 45

Number of shots per class

0

10

20

30

40

50

O
cc

ur
re

nc
es

CUB shots

0 10 20 30 40 50 60 70 80

Number of shots per class

0

5

10

15

20

25

30

35

40

Aircraft shots

0 15 30 45 60 75 90

Number of shots per class

0

5

10

15

20

25

30

35

40

DTD shots

0 15 30 45 60 75 90

Number of shots per class

0

10

20

30

40

50

MSCOCO shots

0 10 20 30 40 50 60 70

Number of shots per class

0

10

20

30

40

50

60

O
cc

ur
re

nc
es

Fungi shots

1 2 3 4 5 6 7 8 9

Number of shots per class

0

20

40

60

80

100

120

Omniglot shots

0 8 16 24 32 40 48 56 64 72

Number of shots per class

0

10

20

30

40

VGG Flower shots

0 15 30 45 60 75 90

Number of shots per class

0

10

20

30

40

50

Traffic Signs shots

5 7 9 11 13 15 17 19 21 23 25 27 29

Number of ways

0

5

10

15

20

25

30

O
cc

ur
re

nc
es

CUB ways

5 6 7 8 9 10 11 12 13 14 15

Number of ways

0

10

20

30

40

50

60

O
cc

ur
re

nc
es

Aircraft ways

5 6 7

Number of ways

0

25

50

75

100

125

150

175

200

O
cc

ur
re

nc
es

DTD ways

5 9 13 17 21 25 29 33 37

Number of ways

0

5

10

15

20

25

O
cc

ur
re

nc
es

MSCOCO ways

5 9 13 17 21 25 29 33 37 41 45 49

Number of ways

0

5

10

15

20

O
cc

ur
re

nc
es

Fungi ways

5 9 13 17 21 25 29 33 37 41 45

Number of ways

0

5

10

15

20

25

30

35

O
cc

ur
re

nc
es

Omniglot ways

5 6 7 8 9 10 11 12 13 14 15 16

Number of ways

0

10

20

30

40

50

60

70

O
cc

ur
re

nc
es

VGG Flower ways

5 9 13 17 21 25 29 33 37 41

Number of ways

0

5

10

15

20

25
O

cc
ur

re
nc

es
Traffic Signs ways

Figure 18: Histogram of the number of shots and ways for each dataset using MD sampling. This shows the great
variability of the sampling procedure described in (Triantafillou et al., 2019).

35

0 50 100 150 200

0

100

200

300

400

500

600

CUB

5-shots 5-ways

1-shots 5-ways

MD

0 50 100 150 200

0

100

200

300

400

500

600

Aircraft

5-shots 5-ways

1-shots 5-ways

MD

0 50 100 150 200

0

100

200

300

400

500

600

DTD

5-shots 5-ways

1-shots 5-ways

MD

0 50 100 150 200

0

100

200

300

400

500

600

MSCOCO

5-shots 5-ways

1-shots 5-ways

MD

0 50 100 150 200

0

100

200

300

400

500

600

Fungi

5-shots 5-ways

1-shots 5-ways

MD

0 50 100 150 200

0

100

200

300

400

500

600

Omniglot

5-shots 5-ways

1-shots 5-ways

MD

0 50 100 150 200

0

100

200

300

400

500

600

VGG Flower

5-shots 5-ways

1-shots 5-ways

MD

0 50 100 150 200

0

100

200

300

400

500

600

Traffic Signs

5-shots 5-ways

1-shots 5-ways

MD

Figure 19: Number of selections of ImageNet1k classes. The classes are ordered to be less and less selected in 1-shots
5-ways. We observe a strong difference in class selection between samplings. 1-shot 5-ways is clearly less consistent
across episodes since the initial plateau depicting the base classes which are selected in all 600 episodes (top left of
each plot) is often much smaller (if present at all) for these tasks.

36

−4 −2 0 2 4 6

−4

−2

0

2

4

6

8

PCA of Features CUB baseline

0

1

2

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8
PCA of Features CUB DI fine-tuned

0

1

2

Figure 20: PCA of features of three classes before and after fine-tuning using DI (successful example). We clearly
observe an increased separability between classes orange and blue.

37

	Introduction
	Background and related work
	Feature extractors for fewer base classes
	Formulation
	Choosing class subsets: Informed settings
	Choosing class subsets: Uninformed setting
	Heuristics for selecting a feature extractor

	Experiments
	Effect of informed class selection
	Uninformed setting
	Implementation details
	Discussion

	Conclusion
	Appendix
	Impact of learning rate on fine-tuning (DI selection)
	About batch normalization during fine-tuning
	 A closer look at the unsupervised selection of classes
	Description of heuristics
	Discussion on the difference between datasets
	Logistic Regression Few-Shot Classifier
	Training from Scratch
	Silhouette scores
	Ablation study on the number of selected classes
	Segmentation Tasks
	Feature space distortion or better features?
	Support set fine-tuning
	Other tables and figures

