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Abstract—Blind Source Separation (BSS) has gained a large
interest in many fields, including hyperspectral unmixing which
is broadly used in remote sensing and astrophysics. BSS being an
ill-posed problem, many strategies have been proposed to solve it,
ranging from model-based to deep-learning ones. While model-
based algorithms are in general interpretable, in contrast with
neural networks, these algorithms often require a large number
of iterations and obtain worse unmixing results that their deep-
learning counterparts. To try to obtain the best of both worlds, in
this work we unroll the multiplicative updates algorithm, leading
to two new algorithms. The first one, NALMU, learns some
parameters which are fixed once the training is over. The second
one, ALMU, enables the parameters of the unrolled algorithm
to be predicted by small neural networks, making the whole
algorithm adaptative to the specific datasets considered in the
test phase. We conduct experiments on two astrophysic datasets,
and show that our approach enables to largely outperform the
other unmixing unrolled algorithms, while largely reducing the
number of iterations compared to the original multiplicative
updates algorithm.

Index Terms—Blind source separation, hyperspectral unmix-
ing, deep unrolling, interpretable deep learning, nonnegative
matrix factorization, multiplicative updates.

I. BLIND SOURCE SEPARATION / UNMIXING

Blind source separation (BSS) has applications in a large
variety of fields, such as astrophysics [1], biomedical imaging
[2], chemistry [3] and hyperspectral remote sensing [4], in
which case it is known under the name of HyperSpectral Un-
mixing (HSU). BSS assumes the observed multi-valued signals
X ∈ Rm×t, with m the number of observation channels and t
the number of samples, to have been generated by n unknown
elementary signals, called the sources S∗ ∈ Rn×t. Despite its
limitations [5] and due to its simplicity, many BSS algorithms
further assume the mixing model to be linear:

X = A∗S∗ +N,

where A∗ are some unknown mixing coefficients and N stands
for potentially any additive noise, although we will assume in
the following a white Gaussian noise. In short, BSS aims at
recovering the sources S∗ as well as the mixing coefficients
A∗ from the data matrix X [6], up to a scaling and permutation
indeterminacy.

Classical BSS approaches: BSS is severely ill-posed, since
for any invertible matrix P ∈ Rn×n, Â = A∗P and
Ŝ = P−1S∗ are such that X = ÂŜ +N. Therefore, solving
it requires introducing further knowledge about the sought-
after A∗ and S∗ matrices. In this context, several matrix
factorization approaches have been proposed in the last decade
to incorporate further handcrafted priors. Among the first ones,
independent component analysis [6], [7] assumes the statistical
independence of the sources. On the other hand, sparse matrix
factorization [8], [9] assume the sources to be sparse in a
(potentially transformed) domain. Lastly, Nonnegative Matrix
Factorization (NMF) [10], [11] has recently obtained broad
success due to its mathematical guarantees and the fact that the
nonnegativity prior is met in a large number of applications.

BSS through deep learning: Due to their flexibility, several
deep learning BSS neural networks have also been introduced.
In the field of hyperspectral unmixing, many such approaches
leverage the linear mixture model by using auto-encoders with
linear decoders [12]. Going a step further, a few methods
enable to cope with non-linear models by dealing with the
spectral variabilities. Nevertheless, such approaches often rely
on black-box architectures, thus lacking in interpretability.
Leveraging a different point of view, some algorithms have
tried to bridge model-based and deep-learning algorithms;
among them, Plug-and-Play [13] and deep unrolling [14]
methods exhibit a higher interpretability than black-box neural
networks. Due to its high computational efficiency, we focus
in this work on the latter category. Deep unrolling originated
from the work of [15], where a reparametrization of the
iterative skrinkage thresholding algorithm (ISTA) was learnt
from a training set, enabling to drastically reduce the number
of iterations. Several works towards this direction have then
been conducted [14], [16], which have been extended later
on to BSS. Among them, DNMF [17] unrolls the well-known
Multiplicative Updates (MU) algorithm for performing NMF.
Nevertheless, in that work, unrolling is only performed for the
S factor, without alternating between the A and S updates.
This might potentially reduce the estimation quality. More
focused on hyperspectral unmxing, MNNBU [18] and SNMF
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[19] unroll a sparsity-based algorithm, the latter algorithm bet-
ter enabling to take into account potential spectral variabilities
within the image. Very closely related to these two algorithms,
the LPALM [20] unrolls a sparsity based BSS algorithm in
a transformed wavelet domain. Lastly, the authors of [21]
propose to leverage a group sparsity constraint to better take
into account the spatial dependencies in hyperspectral images.

Contributions: due to its popularity in the NMF field,
we propose in this work to unroll the iterates of the MU
algorithm, leading to a first algorithm, the NALMU. This has
only been considered in the work [17], which however does
not use an alternating framework and uses a different update,
which leads to worse separation results (as will be confirmed
in the experimental section). In addition and in contrast to
what is usually done in deep unrolling, we propose in a
second algorithm, coined ALMU, to learn a data-adaptative
reparametrization of the MU iterates. This enables a higher
flexibility when the test samples exhibit a large degree of
variability. The experimental section shows the interest of the
two proposed algorithms, which largely outperform two other
existing unrolled methods, while enabling a huge reduction in
terms of number of iterations compared to the original MU.
This is even more interesting since both NALMU and ALMU
are trained on simplistic synthetic datasets.

II. PROPOSED APPROACH

In the following, we briefly review the MU algorithm, which
is the starting point of the two methods we propose, detailed
in the next subsections.

A. Multiplicative updates

The MU algorithm [22] is a wide-spread algorithm for BSS
and HSU, known for its simplicity: the updates only take the
form of componentwise multiplications. Starting from positive
initializations of A and S, the MU performs LMU iterations,
each of them alternating between updates of the A and S
factors. An iteration l of the MU writes as:

A(l+1) ← A(l) ⊙ XS(l)T

A(l)S(l)S(l)T

S(l+1) ← S(l) ⊙ A(l+1)TX

A(l+1)TA(l+1)S(l)
.

B. Non Adaptative Learned Multiplicative Updates (NALMU)

We propose to apply deep unrolling to the MU algorithm,
leading to a first algorithm denoted as NALMU, summarized
in Algorithm 1. To this end, we introduce in the MU updates of
matrix A a number LNALMU of trainable matrices WA

(l) ∈
Rm×n, l ∈ {1..LNALMU}:

A(l+1) ← A(l) ⊙WA
(l) ⊙ XS(l)T

A(l)S(l)S(l)T
. (1)

The main insight in doing so is that, by learning the WA
(l)

matrices on a training dataset, the resulting NALMU updates
might be more adapted to the test dataset at hand, reducing

the number of required iterations compared to the MU and
potentially improving the separation quality. Introducing the
above updates form is motivated by several observations:

1) setting all the entries of the WA
(l) matrices to 1 for

every layer, we recover the original MU — as such,
the algorithm should in theory be able to outperform
the original MU, provided that the number of iterations
LNALMU is large enough. This is in contrast to the
DNMF [17] algorithm, in which the AT and ATA
matrices are replaced by two trainable matrices, which
are thus highly dependent on the input data.

2) From our empirical observations, the WA matrix in (1)
might behave as a masking matrix, enabling to enhance
the unmixing by focusing during the first iterates on the
least mixed rows of A and setting to zero the other ones.
Moreover, using different matrices WA

(l) for each layer
(untied weights) enables to empirically obtain better
estimates of A∗ and S∗.

3) We could in principle follow a similar update rule as (1)
for S, leading to:

S(l+1) ← S(l) ⊙WS
(l) ⊙ A(l+1)TX

A(l+1)TA(l+1)X
,

with WS
(l) ∈ Rm×t. We did not do so, because it

would require the S∗ matrices in the training set and
in the test set to have the same sizes, which is a strong
assumption in the case of the images we will consider in
the experimental section. Moreover it largely increases
the number of trainable parameters, thus requiring more
training samples to obtain good results.

Algorithm 1 NALMU
Require: X, LNALMU

Initialize A(1) and S(1) with positive coefficients
for l ∈ {1..LNALMU} do
A(l+1) ← A(l) ⊙WA

(l) ⊙ XS(l)T

A(l)S(l)S(l)T

S(l+1) ← S(l) ⊙ A(l+1)TX
A(l+1)TA(l+1)S(l)

.
end for
return A(L+1) and S(L+1)

C. Adaptative Learned Multiplicative Updates (ALMU)

A limitation of the above NALMU algorithm is that the
WA

(l) matrices are the same for all X samples in the (train-
ing and test) datasets. While such approach already lead to
interesting results as will be shown in the experimental section,
we propose here to make the WA

(l) matrices adaptative to the
considered data X matrix, enabling improved results when the
considered X matrices have a large variability in the train and
test datasets. A difficulty is however that the X matrices can
be high dimensional. To reduce the computational burden, we
thus rather preferred to make the WA

(l) matrices depend on
a first guess of A∗, obtained using NALMU and denoted as
ANALMU . The adaptative WA

(l) matrices, now denoted as
WA

(l)(ANALMU ) to emphasize their depency on ANALMU ,
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are in practice parametrized using Multi-Layer Perceptrons
(MLPs). There are LALMU such matrices. The resulting
algorithm, called Adaptative LMU (ALMU) is summarized
in Algorithm 2.

Algorithm 2 ALMU
Require: X, LNALMU , LALMU

ANALMU ,SNALMU = NALMU(X, LNALMU )
A(1) = ANALMU , S(1) = SNALMU

for l ∈ {1..LALMU} do
A(l+1) ← A(l) ⊙WA

(l)(ANALMU )⊙ XS(l)T

A(l)S(l)S(l)T

S(l+1) ← S(l) ⊙ A(l+1)TX
A(l+1)TA(l+1)S(l)

.
end for
return A(L+1) and S(L+1)

D. Training

The proposed algorithms, NALMU and ALMU, are trained
on a supervised dataset containing D matrices (d)X and their
associated groundtruths (d)A and (d)S, d ∈ {1..D}. The
NALMU is trained end-to-end while the ALMU is trained
in two stages: the NALMU is first pretrained and then its
parameters are frozen while the parameters of the adaptive
part of ALMU are updated. We use in the loss the Spectral
Angular Distance (SAD), which is defined between two ma-
trices B ∈ Rb×c and C ∈ Rb×c as

SAD(B,C) =
1

b

b∑
k=1

< bk|ck > . (2)

After several tests, and in agreement to [12], we indeed found
the results to be better when using the SAD rather than the
normalized Mean Square Error. Precisely, the loss we aim at
minimizing is given by:

L = −
D∑

d=1

L∑
l=1

v(l)
(

SAD((d)A(l), (d)A∗) + SAD((d)S(l), (d)S∗)
)
,

(3)
with (d)A(l), (d)S(l) the estimates of the considered learned
MU algorithm at the l-th iteration when given as input the (d)X
matrix. L is the total number of iterations (L = LNALMU or
L = LALMU ). The v(l) weights are used are used to put more
emphasis on the estimates given by the last iterations. Such an
approach is already used in [19], [20]. In this work, we chose
weights increasing linearly: v(l) = 1

L−1 (l − 1).

III. EXPERIMENTS

A. Experimental setting

Considered datasets: The experimental assessment of the
NALMU and ALMU algorithms is performed on astrophysical
data, in which there are n = 4 sources to unmix. The mixing
matrices A∗ come from astrophysical simulations, described
in [23], which have been derived from real astrophysical data:
the Cassiopea A supernovae remnant as observed by the X-ray
space telescope Chandra1. Every A∗ matrix is composed of

1chandra.harvard.edu

4 different spectra of size 65 each: i) a synchrotron emission
spectrum, ii) a thermal emission spectrum that is composed
of various emission lines, and iii) two line emission spectra
that are related to a single atomic component (e.g. iron) but
with different redshifts due to the Doppler effect. Examples of
generated A∗ matrices are shown in Figure 1, in which we can
see that the spectra exhibit a large variability. Concerning the
S∗, which corresponds to the spatial repartition of the different
emissions, we have only access to a single dataset, which will
be used for testing the algorithms. Precisely, we used in this
work three datasets:

• Training set: 750 datasets X are generated in the fol-
lowing way: 750 realistic A∗ matrices are first simulated
as mentionned above. Due to the lack of training data
for the S∗ matrices, natural images coming from the
tiny ImageNet dataset are used. Specifically, we randomly
concanate 4 such images to obtain S∗ ∈ R4×16384. Lastly,
mixtures are generated adding some white Gaussian noise
with a SNR of 60 dB.
It is interesting to note that the synthetically generated S∗

matrices are quite different from the real repartion maps
in supernovae remanants. Nevertheless, we will show that
such a simple training method enables to obtain good
results on the realistic test dataset.

• Simplistic test dataset: 150 datasets X are generated
using exactly the same generation process as for the
training set, but different A∗ and S∗ matrices are used.

• Realistic test dataset: 150 datasets X are generated, first
by simulating 150 A∗ matrices. Nevertheless, in contrast
to the simplistic test dataset, we here assess LPALM
using a real S∗coming from a true image of supernovae
remnant. A white Gaussian noise is added so that the
SNR is 60dB.

Implementation details: the NALMU algorithm was imple-
mented with LNALMU = 50 iterations. To assess the ALMU
algorithm with a similar total number of iterations, we used
LNALMU = 25 iterations in the NALMU preprocessing step,
and LALMU = 25 in the adaptative step. Concerning the
ALMU, each of the LALMU MLPs used for predicting the
WA(ANALMU )

(l), l = 1..LALMU has three linear layers and
a ReLU activation function is used. The layers respectively
have 265, 130 and 75 dimensional inputs, with ReLU acti-
vations (except for the last layer). This architecture was not
fine-tuned. The loss in (3) was optimized for 2000 epochs
using the ADAM optimizer with a learning rate of 10−5. We
used a mini-batch size of 25.
Evaluation metric: to assess the methods, we compute using
definition (2) the SADs between each estimated and ground
truth component.

B. Results on the simplistic test set

Both NALMU and ALMU are first assessed on the sim-
plistic dataset. The results are reported in Table I, in which
the two algorithms are further compared with the original MU
algorithm using a large number of iterations, LMU = 10000.
To better assess the variability of the ALMU algorithm, we
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TABLE I
QUANTITATIVE EVALUATION OF THE TWO PROPOSED LEARNED MU AND

COMPARISON WITH MU ON THE SIMPLISTIC DATASET.

MU NALMU ALMU (averaged)
SAD(A∗,A) 0.9850 0.9626 0.9986± 2.9620× 10−5

SAD(S∗,S) 0.9951 0.9873 0.9989± 2.5043× 10−5

have run the adaptive part of the algorithm three times and
we display the average results and the standard deviation.

Several remarks are in order. First, all the algorithms per-
form quite well on this simple dataset. In particular, while the
NALMU algorithm obtain the worst results, it is interesting to
see that its estimates are only slightly worse than the ones of
the MU, while it performs 200 times fewer iterations. On the
contrary, the ALMU algorithm obtains the best results, both
for A∗ and S∗ estimates. This shows that making the WA

matrices adaptative to the considered dataset is crucial to make
the unrolled algorithm able to outperform the original MU.
In addition, it can be seen that the standard deviation of the
ALMU results is quite small, meaning that the training of the
LALMU = 25 MLPs for predicting the WA(Â)(l) matrices is
stable enough.

C. Results on the realistic test dataset

The proposed algorithms are now tested on the realistic
dataset, in which the S∗ matrix is a real map coming from a
true supernovae remanent. Qualitative results are presented in
Figure 1, in which we can see that both the estimated A and S
are of high quality. Quantitative results are given in Table II, in
which the algorithm is compared with the two recent unmixing
unrolled methods SNMF [19] and DNMF [17]. Due to the
way these methods are designed, it is necessary to retrain the
corresponding neural networks for each new test image, which
we did. For DNMF, a λ hyperparameter is to be tuned by the
user. We tried the 3 proposed values in the original article
(λ ∈ {0, 1, 2}) and took the best results. Lastly, the Coordinate
Descent (CD) NMF method of scikit-learn [24], which is often
recognized as superior to the MU in unmixing problems with
Gaussian noise [10], is also used as a benchmark.

First, both the NALMU and ALMU algorithms outperform
the other unrolled algorithms. Concerning DNMF, this is likely
to be linked to the fact that this method does not leverage
alternations between the updates of A and S. In addition, in
contrast to us, the update of S is unrolled (not the one of A)
and the AT and ATA matrices are used as end-to-end-learned
variables. Concerning SNMF, the results for A are acceptable
but the results for S are the worst. Note that our approach
differs quite a lot from this method, which is mostly based on
sparsity.

Compared to the MU and CD, the ALMU algorithm obtain
the best results for estimating the A∗ matrix. However, the
model-based algorithms perform quite well for estimating the
S∗ matrix. In contrast, the matrices S∗ in the ALMU training
set may be too far from the test data, slightly deteriorating the
results. The experiment we performed in the previous subsec-
tion, in which the ALMU algorithm was outperforming the

MU algorithm when the test matrices S∗ were generated from
tiny ImageNet seems to confirm this hypothesis. Therefore,
a path for future improvement might be to find a database
containing closer-to-real supernovae remanant S∗ matrices for
the training.

In the last experiment, we compare in Figure 2 the re-
sults of MU and ALMU as a function of the number of
MU iterations. Even with several orders of magnitude fewer
iterates, the ALMU outperforms the MU for estimating A∗.
Concerning the estimation of S∗, the ALMU obtains, using
only 50 iterations, competitive results with the MU for up to
4000 iterations. Therefore, using the proposed method as a
preprocessing of the MU seems to be a valid approach for
speeding-up the unmixing.

CONCLUSION

In this work, we perform deep unrolling of the multiplicative
updates for BSS, leading to two new algorithms, NALMU
and ALMU. The ALMU method, by enabling the unrolling
parameters to depend on the considered data matrix through
a parametrization by small neural networks, largely outper-
forms the other tested unrolled algorithms on the considered
astrophysics dataset. Future work include improving the S∗

training matrices, testing the algorithm on different kind of
BSS problems and deriving mathematical guarantees for our
algorithm.
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