

Laboratoire IMS, CNRS, Univ. Bordeaux, INP, France

* Laboratoire TIMA, Univ. GRENOBLE, CNRS

Email: sebastien.fregonese@ims-bordeaux.fr ims

Université BORDEAUX

_

- Challenges for on wafer characterization of SiGe HBTs at high freq.
 - Calibrations and EM probe coupling
 - Probes contact impact on results
- Introduction to development of a new probe
- Mechanical simulation
- Conclusions

Outline

Université BORDEAUX

2

Introduction (1/3)

Measurement difficulties to evaluate fMAX

Introduction (2/3)

Mason's and H21 gain-bandwidth product vs frequency for the same SiGe HBT measured at IHP and Infineon B. Heinemann *et al* IEDM 2016, [4]

Bipolar transistors (InP DHBTs) Mason's gain-bandwidth vs frequency product at different collector current I_c and $V_{CE} = 1.6 V$ N. Davy *et al* EuMIC 2023 [5]

 \Rightarrow Measuring FOMs for advanced and miniaturized transistors becomes a challenge when their f_{MAX} >> 100 GHz due to **EM probe coupling**

Pico-Probe and Infinity DC-110 GHz, 100µm pitch

Images of the probes available at Bordeaux University

- Broad-band
- EM probe coupling not negligible for HBT

University of Virginia & Dominion [M,Bauwens ; Phd thesis ;2014]

China Electronics Technology Group Corporation, Shijiazhuang [W. Wu *et al* TIM;2022]

- Minimized EM probe coupling
- Limited frequency band due to wave-guide
- New dual band FormFactor Twaves 220 GHz and broadband MPI TITAN 220 GHz probes may show interesting performances

Attempt to build some broad-band RF probes within a french consortium

5

université BORDEAUX

6

EM preliminary results (1/2)

Silicon MEMS probe mounted on 1 mm connector

T. Bouzar et al., JNM 2024

PAD-LOAD structure on BiCMOS

EM field distribution at 60 GHz for Infinity standard probe

EM field distribution at 60 GHz for silicon MEMS probe

- The Infinity standard probe EM model shows distributed coupling at the tips
- A clear improvement in EM confinement for the silicon MEMS probe
- Crosstalk difference > 15 dB less for the silicon MEMS probes on a 50 Ω load

université BORDEAUX

7

Contact resistance test – IHP Bip. Technology with Al or Au pads

Procedure:

1- Make a "reliable" contact on a transistor short

- 2- Go on pad-short and make first contact
- 3- Probes are put up and down

4- DC & RF measurements are performed and repeated 9 times

325-500 GHz GGB Pico-probe pitch 50 μm

11 [E-3]

université BORDEAUX

R_{bias_tee}~1.85 ohm

Probe skating is much larger in Al case compared to Au

Error seems to increase for the smallest probes

The importance of electrical contact quality

Eum Association

Influence of $\Delta R_{BX} = +/-0.5 \Omega$ on FOM

Influence of bias point on FOM

Univ. Virginia, Bauwens et al., phd thesis [1]

Typical scratch marks on gold and aluminum films by 15μm thick silicon micromachined probe tips

Bibliography (1/3)

Minimum force is 3 mN on gold and 25mN on aluminum

Université BORDEAUX

10

Bibliography (2/3)

Contact resisitvity vs force

Res an

Univ. Virginia, Bauwens et al., phd thesis [1]

Virginia Univ. : Contour plot of the stress under 1mN load at each tip

Bibliography (3/3)

Univ. Virginia, Bauwens et al., phd thesis [1]

Force vs Overtravel

Red Red

F = Applied force L= Cantilever length (580µm) E =Young modulus =185 GPa for silicon t = Thickness of cantilever (5 or 15µm)

w = Width of cantilever (75µm)

$$k = \frac{F_{contact}}{d_{overtravel}} \qquad \qquad k = \frac{E w}{4 \cos^2(\theta)} \left(\frac{t}{l}\right)$$

3

Figure 3.3: Profile view of probe contacting wafer on initial contact (dotted out lines) and after deflection (solid outlines).

EUROPEAN MICROWAVE WEEK PORTE DE VERSAILLES PARIS, FRANCE 22-27 SEPT. 2024 WWW.eUMWWEek.com Waves Connecting Europe	t [μm]	K [mN/μm]	Overtravel for Au (3mN) [μm]	Overtravel for Al (25mN)
	5	0.03	100	840
	15	0.8	3.7	31
		1 22218 1	ins 🐨 🛛	niversité 12

Preliminary Mechanical simulation (2/3)

Probe V1

Probe minimal force for aluminum

On gold Overtravel = 40 μ m Skating = $23\mu m$

On aluminum Overtravel = $417 \mu m$ Skating = $236\mu m$

Stiffness= 60 N/m

 \Rightarrow useful on gold only but not for aluminum

Preliminary Mechanical simulation (3/3)

Probe V1 + connector clamp => reduction of effective cantilever length

On gold Overtravel = 5,6 μm Skating = 3,2μm

On aluminum Overtravel = $46 \mu m$ Skating = $26 \mu m$

Stiffness= 540 N/m

=> useful for both gold and aluminum

Side view movie showing skating and probe bending

GGB Picoprobe 325 GHz

université BORDEAUX

Side view simulation showing skating and probe bending

GGB Picoprobe 325 GHz

Mechanical simulation : results (1/3)

Mechanical simulation : results (2/3)

- □ The skating vs z-over-travel ratio seems similar for all 3 tip
- □ MEMS V2 probe stiffness seems sufficient compared to commercial probes

EuMW 2024 – WM-02-08, 23rd Septemberns

www.eumweek.com

Connectina

22

- EM probe coupling needs to be decreased for the high freq. and miniaturized Si transistor
- MEMS probes reduces EM coupling but:
 - Need to be optimized to increase the applied force ۲
- => A tradeoff needs to be found between EM and Mechanical
- **Outlooks:** •
 - Study the influence of the tips geometry on the contact stability
 - Attempts to fabricate a silicon probe at IEMN and MC2 technologies ۲

23

université

BORDEAUX

Special Session: ARFTG On-Wafer User's Forum on Tuesday morning

AN AN

 S. Fregonese et al. « Challenges in characterizing BiCMOS SiGe HBT technologies for FOM evaluation and compact modelling"

- [1] Bauwens, Matthew, Electrical Engineering School of Engineering and Applied Science, University of Virginia, "Micromachined On-Water Probes for Characterization of Terahertz Devices and Circuits", https://libraetd.lib.virginia.edu/public_view/7s75dc733, 2014
- [2] T. J. Reck et al., "Micromachined on-wafer probes," 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 2010, pp. 65-68, doi: 10.1109/MWSYM.2010.5517580
- [3] M. Cabbia, PhD thesis « Calibrage sur plaquette et caractérisation des dispositifs à ondes (sub)millimétriques », 2021, Univ. Bordeaux
- [4] B. Heinemann et al., "SiGe HBT with fx/fmax of 505 GHz/720 GHz," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016, pp. 3.1.1-3.1.4, doi: 10.1109/IEDM.2016.7838335
- [5] N. Davy et al., "InP DHBT On-Wafer RF Characterization and Small-Signal Modelling up to 220 GHz," 2023 18th European Microwave Integrated Circuits Conference (EuMIC), Berlin, Germany, 2023, pp. 101-104, doi: 10.23919/EuMIC58042.2023.1028849
- [6] T. Zimmer et al., "SiGe HBTs and BiCMOS Technology for Present and Future Millimeter-Wave Systems," in IEEE Journal of Microwaves, vol. 1, no. 1, pp. 288-298, Jan. 2021, doi: 10.1109/JMW.2020.3031831
- [7] C. Yadav et al., "Importance and Requirement of Frequency Band Specific RF Probes EM Models in Sub-THz and THz Measurements up to 500 GHz," in *IEEE Transactions on Terahertz Science and Technology*, vol. 10, no. 5, pp. 558-563, Sept. 2020, doi: 10.1109/TTHZ.2020.3004517
- [8] M. Cabbia, C. Yadav, M. Deng, S. Fregonese, M. De Matos and T. Zimmer, "Silicon Test Structures Design for Sub-THz and THz Measurements," in IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5639-5645, Dec. 2020, doi: 10.1109/TED.2020.3031575
- [9] S. Fregonese, M. Deng, M. Cabbia, C. Yadav, M. De Matos and T. Zimmer, "THz Characterization and Modeling of SiGe HBTs: Review (Invited)," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 1363-1372, 2020, doi: 10.1109/JEDS.2020.3036135
- [10] S. Fregonese, M. De Matos, M. Deng, D. Céli, N. Derrier and T. Zimmer, "Importance of Probe Choice for Extracting Figures of Merit of Advanced mmW Transistors," in *IEEE Transactions on Electron Devices*, vol. 68, no. 12, pp. 6007-6014, Dec. 2021, doi: 10.1109/TED.2021.3118671
- [11] D. -S. Liu, M. -K. Shih and F. -M. Zheng, "An Investigation of Wafer Probe Needles Mechanical Properties and Contact Resistance Changing Under Multiprobing Process," in IEEE Transactions on Components and Packaging Technologies, vol. 31, no. 1, pp. 196-203, March 2008, doi: 10.1109/TCAPT.2008.916856
- [12] K. Miyoshi, T. Spalvins, et D. Buckley, « Friction and hardness of gold films deposited by ion plating and evaporation », août 1983. Consulté le: 22 novembre 2023. [En ligne]. Disponible sur: https://www.semanticscholar.org/paper/Friction-and-hardness-of-gold-films-deposited-by-Miyoshi-Spalvins/b43d122f299aea8fe26c3a1ad18bf42258a51240
 - [13] H. Kwon et al., « Investigation of the electrical contact behaviors in Au-to-Au thin-film contacts for RF MEMS switches », J. Micromechanics Microengineering, vol. 18, no 10, p. 105010, sept. 2008, doi: 10.1088/0960-1317/18/10/105010

A Million

EuMW 2024 – WM-02-08, 23rd September

