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• Challenges for on wafer characterization of SiGe HBTs at high freq.

• Calibrations and EM probe coupling

• Probes contact impact on results

• Introduction to development of a new probe

• Mechanical simulation

• Conclusions
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Introduction (1/3)

probe-probe coupling

Probe to substrate coupling
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Mason’s and H21 gain-bandwidth product vs frequency for 
the same SiGe HBT measured at IHP and Infineon
B. Heinemann et al IEDM 2016, [4]

 Measuring FOMs for advanced and miniaturized transistors becomes a challenge when their fMAX >> 100 GHz 
due to EM probe coupling

Bipolar transistors (InP DHBTs) Mason's gain-bandwidth vs frequency 
product at different collector current IC and VCE = 1.6 V 
N. Davy et al EuMIC 2023 [5] 

Measurement difficulties to evaluate fMAX

Introduction (2/3)
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• Broad-band
• EM probe coupling not 

negligible for HBT

Pico-Probe and  Infinity DC-110 GHz, 
100µm pitch 

Images of the probes available at 
Bordeaux University

University of Virginia & Dominion 
[M,Bauwens ; Phd thesis ;2014]

China Electronics Technology Group Corporation, 
Shijiazhuang [W. Wu et al TIM;2022 ]

• Minimized EM probe coupling 
• Limited frequency band due to wave-guide

• New dual band FormFactor Twaves 220 GHz 
and broadband MPI TITAN 220 GHz probes 
may show interesting performances

Introduction (3/3)

Attempt to build some broad-band RF probes within a french consortium 
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Silicon MEMS probe mounted on 1 mm connector

Dashed line is MPI TITAN 220 GHz probe 
typical specifications for comparison
https://www.mpi-corporation.com/

EM preliminary results (1/2)
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EM field distribution at 60 GHz for Infinity standard probe 

• The Infinity standard probe EM model shows distributed coupling at the tips
• A clear improvement in EM confinement for the silicon MEMS probe 
• Crosstalk difference > 15 dB less for the silicon MEMS probes on a 50  load

PAD-LOAD structure on BiCMOS

EM preliminary results (2/2)

EM field distribution at 60 GHz for silicon MEMS probe 

T. Bouzar et al., JNM 2024
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325-500 GHz GGB Pico-probe pitch 50 µm

Procedure:
1- Make a “reliable” contact on a transistor 
short 
2- Go on pad-short and make first contact
3- Probes are put up and down 
4- DC & RF measurements are performed 
and repeated 9 times

Aluminum pad Gold pad 

Error seems to increase for the smallest probes

Contact resistance test – IHP Bip. Technology with Al or Au pads

Probe skating is much larger in Al case compared to Au

Rbias_tee~1.85 ohm



9

Influence of bias point on FOMInfluence of RBX = +/- 0.5 on FOM

HICUM Compact model simlation

The importance of electrical contact quality

M. Cabbia, PhD thesis , Bordeaux, 2021 [3]
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7µm 16µm

Bibliography (1/3)

Minimum force is 3 mN on gold and 25mN on aluminum

Typical scratch marks on gold and aluminum films by 15µm 
thick silicon micromachined probe tips

Univ. Virginia, Bauwens et al., phd thesis [1]
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Bibliography (2/3)

Contact resisitvity vs force 

Applied force 

Material hardness

T. J. Reck et al., "Micromachined on-wafer probes," 2010 IEEE MTT-S IMS, 2010 [2] 

Virginia Univ. : Contour plot of the stress under 1mN load at each tip 

Virginia Univ. : Measurement of the contact 
resistance plotted against bending force of the 

probe

Univ. Virginia, Bauwens et al., phd thesis [1]
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Bibliography (3/3)

F = Applied force
L= Cantilever length (580µm)
E =Young modulus =185 GPa for silicon
t = Thickness of cantilever (5 or 15µm)
w = Width of cantilever (75µm)

Force vs Overtravel

Univ. Virginia, Bauwens et al., phd thesis [1]

t [µm] K [mN/µm] Overtravel for Au
(3mN) [µm]

Overtravel for Al 
(25mN)

5 0.03 100 840

15 0.8 3.7 31
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Fixed point

30°
467µm

810µm

W=300µm

936µm

Probe minimal force for aluminum

25mN applied (30° angle)

Overtravel = 810 µm
Skating = 467µm

Stiffness= 30 N/m

Preliminary Mechanical simulation (1/3)

Young modulus for Si= 166GPa
Anisotropy is settled

Probe V0 

Designed without mechanical consideration
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On gold
Overtravel = 40 µm
Skating = 23µm

On aluminum 
Overtravel = 417 µm
Skating = 236µm

Stiffness= 60 N/m

 useful on gold only but not for aluminum

25mN applied (30° angle)

Preliminary Mechanical simulation (2/3)

Fixed point

Probe V1 

Probe minimal force for aluminum
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25mN applied (30° angle)

On gold
Overtravel = 5,6 µm
Skating = 3,2µm

On aluminum 
Overtravel = 46 µm
Skating = 26 µm

Stiffness= 540 N/m

=> useful for both gold and aluminum 

Preliminary Mechanical simulation (3/3)

Probe V1 + connector clamp => reduction of effective cantilever length

Probe minimal force for aluminum
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GGB 220-325 GHz
Pitch 50µm

GGB DC-110 GHz
Pitch 100µm

MEMS Si probe
Pitch 50µm

Mechanical simulation: Comparison of the 3 probes (stiffness, skating)
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Mechanical simulation: boundary conditions

• GGB pico 110 GHz – 100 µm pitch

Overdrive (vertical movement only) 

Fixed support

Frictional connection between 
probe and Au [12]

Al2O3

BeCu

PTFE

Total link
1- PTFE / BeCu
2- Au / Al2O3

Au  (150*50*5µm3)

Meshing
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Side view movie showing skating and probe bending

GGB Picoprobe 325 GHz
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Side view simulation showing skating and probe bending

GGB Picoprobe 325 GHz



 The skating vs z-over-travel ratio seems similar for 
all the 3 probes

 But stiffness is different:
 GGB 325G vs GGB 110G: 

 The metals are thinner but are 
compensated by a shorter structure

=> more force on the 325 GHz
 GGB 110 G vs Si MEMS probe: 

 Young's modulus is similar
 Si MEMS structure is longer and finer 

=> force applied is lower for Si MEMS
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Mechanical simulation : results (1/3)

Frictional connection between probe and Au neglected 



 The skating vs z-over-travel ratio seems similar for all 3 tip

 MEMS V2 probe stiffness seems sufficient compared to commercial probes

21

Mechanical simulation : results (2/3)

Type stiffness[N/m]
GGB 325 GHz / simulation ~30000
GGB 110 GHz / simulation ~8000

MEMS Si 50µm (probeV2), simulation ~3000
MEMS Si 50µm (probe V1), simulation ~600

MEMS Si 50µm (probe V0), simulation / 
analytical equation

~88 / 99

MEMS Si 15µm , [1] ~1300
DC Needle [X] ~106

Improved geometry
Probe V2
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Mechanical simulation : results (3/3)

25µm overtravel
magnification x4 (simulation)

20µm overtravel
magnification x4 (simulation)

PRECISE V2

GGB 110 GHz

Contact resistance = a

Conductivity on gold film =3.7µ.cm [13]
a = radius of penetration computed from
contact area in Ansys

Scrubs on gold Scrubs on gold 
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• EM probe coupling needs to be decreased for the high freq. and miniaturized Si 
transistor

• MEMS probes reduces EM coupling but:
• Need to be optimized to increase the applied force

=> A tradeoff needs to be found between EM and Mechanical 

• Outlooks: 
• Study the influence of the tips geometry on the contact stability 

• Attempts to fabricate a silicon probe at IEMN and MC2 technologies

Conclusion and outlooks
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• Special Session: ARFTG On-Wafer User’s Forum on Tuesday morning
• S. Fregonese et al. « Challenges in characterizing BiCMOS SiGe HBT technologies for FOM evaluation 

and compact modelling”
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Thanks!

Email: sebastien.fregonese@ims-bordeaux.fr

EuMW 2024 – WM-02, 23rd September 2024

Acknowledgements for providing silicon:
- IHP for SiGe HBT technology supply
- STMicroelectronics for BiCMOS 55nm supply

Work done within the framework of ANR PRECISE
Fruitfull discussion within ANR PRECISE :  

J. D. Arnould S. Arscott, V. Merupo C. Gaquiere
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