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S1 Experimental details

S1.1 Pinned interfaces

From a mathematical point of view, pinned bubbles are surfaces where some points on the surface are
fixed points in space. Here the fixed points are on circular frames. The following explains how the pinning
was realised in our experiments. We deal with static interfaces controlled by interfacial tension. That
means the only forces exerted on the contact line between the frame and the interface are interfacial
tensions. The force equilibrium at the contact line in the frame plane in radial direction is expressed with
the Young-Dupré law [1]

γFi − γFo = γb cos θ, (S1)

illustrated in Fig. S1a. The interfacial tension between the frame and the inner fluid is γFi. The interfacial
tension between the frame and the outer fluid is γFo. The interfacial tension between the inner and outer
fluid is γb. Since in most cases all three interfacial tensions are constant, the angle θ at the contact line
is constant as well. If the volume or other constraints change, the contact line between the frame surface
and the bubble interface can move to adapt to the new constraints. Here we want to work with pinned
interfaces. This is achieved, when one of the three interfacial tensions on the contact line is variable in
amplitude or the surface has a kink. Discontinuities in geometry could be seen as an infinitely strong
gradient in space for the interfacial tension, as sketched in Fig. S1b. To move the contact line over
the edge of the frame the angle θ between the surface and the horizontal plane is free to take any value
between θ1g and θ2g (”g” for geometrical discontinuity). We therefore define the pinning strength

Δθ = θ1g − θ2g. (S2)

The maximal Δθ for a geometrical discontinuity is therefore 180◦. We have almost achieved this with
very thin edges of the frames (Fig. S1c left and right frame). In general, the frames have 90◦ < Δθ < 180◦.

For soap films the scenario is slightly more complicated. The film will always form a meniscus at the
contact to the pinning object. The geometry of the meniscus plays an important rule for the pinning
strength. It is influenced by the energy and geometry of the surface also by the liquid fraction. A good
approximation for the contact angle between an object and a soap film is θ = 90◦. It is exact for a soap
film on a homogeneous plane.
For our experimental setup it was important that the change in θ during the tilting instability and a
detachment instability was smaller than the Δθ defined by the setup. We used for that different frame
geometries, see Fig. S1c. For some (R, V ) we had to repeat the experiment with different frame geome-
tries to measure the tilting instability and a detachment instability.

S1.2 Bond number

The Bond number is a dimensionless quantity measuring the importance of gravitational forces compared
to interfacial tension forces.

In the case of drops, it is given by

Bo =

(
h

λc

)2

=
Δρgh2

γ
, (S3)

where h is the characteristic length in the vertical direction, and λc the capillary length (λc =
√

γ/Δρg).
For the silicone oil / water system one obtains Bo < 2.5 · 10−3 (see Fig. S2).

For soap bubbles, the average film thickness e0 must be taken into account (see for example the work
of Cohen et al.[2]) leading to

Bo =

(
Δρge0h

γ

)2

. (S4)
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Figure S1: Three schemes explaining how the frame geometries are chosen. a) Force equilibrium between
the different interfacial tensions at one point of the contact line between the bubble interface and the
frame. γb is the interfacial tension between the outer and inner fluid, γFo is the interfacial tension between
the frame and the outer fluid and γFi is the interfacial tension between the frame and the inner fluid. The
contact point is part of the contact line between the frame surface and the bubble interface. b) Principal
idea of pinning with help of a geometrical discontinuity. The contact line is pinned for a contact angle θp
between θ1g > θp > θ2g with Δθ = θ1g − θ2g, ”g” stands for geometrical discontinuity. c) Chosen frame

geometries for different boundary conditions, ĥ, R̂ and θc.
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Figure S2: Influence of gravity (expressed by the Bond number Bo) on the transition height hCB←→TB

of the tilt instability for the case θc = 0◦ and R̂ = 0.7. The results are obtained with Surface Evolver.
The maximal Bo encountered in the experiments for the two used systems, soap bubbles and water drops
with SDS in silicone, are highlighted in blue and red, respectively. The horizontal line shows hCB↔TB for
Bo = 0.

In our experiments, with an estimated film thickness of 1 μm, Bo < 10−3.
In both cases we obtain very small Bo and gravity is therefore negligible. The assumption of a con-

stant Δp is therefore reasonable.

In order to estimate the influence of gravity for the range of Bo numbers used in our experiments, we
show in Figure S2 how the onset of the tilting instability hCB↔TB is expected to depend on Bo for the
case θc = 0◦ and R̂ = 0.7. These results are obtained by Surface Evolver simulations. It can be seen that
for soap bubbles and water drops in silicone, the influence of gravity is negligible in the range of Bo of
our experiments.

S1.3 Pressure measurement

Fig. S3 shows the two pressure sensors for the upper and bottom bubble (drop) with the important
parameters which are needed to obtain the pressure difference between the inside and outside of the
two bubbles (drops). Since it is impossible to place the pressure sensor directly at the interface of the
bubbles (drops) there is always a distance in space between the point where we measure the pressure
difference and the point where we want to know the pressure difference. In the general case these two
pressures are not the same due to hydrostatic and hydrodynamic pressures. In the absence of liquid flow,
the differences in pressure between the sensors and the drop interfaces are only related to hydrostatic
pressures. We will start with this simple case. Afterwards, we will show that for the applied flow rates
we can also neglect hydrodynamic effects.
The pressure difference between the inside and outside of the lower bubble (drop) is

Δp−A = 2H−
Aγ−

b = p−i − po = p−S + (L− − L−
A)ρig − ρog(L

−
F − L−

A), (S5)

where the index ”−” stands for ”bottom”, ”i” for ”inside”, ”o” for ”outside”, ”A” for ”Apex”, ”F” for
frame, and ”b” for ”bubble”. p−S is the pressure measured at the sensor for the bottom bubble and Δp−A
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the pressure jump across the bottom bubble interface at the apex. The distances L are illustrated in
Fig. S3. The pressure jump at the apex is the Laplace pressure at the apex. It is proportional to the
mean curvature at the apex H−

A and the interfacial tension of the bottom bubble (drop) γ−
b . Due to the

axisymmetric shape of the bubbles the two principle curvatures at the apex are identical. That is why
we took the apex as our calibration point. The two densities of the inner and outer phase, ρi and ρo, are
measured independently with Mettler Toledo D4 at 20 ◦C. By rearranging eqn. (S5) we obtain

p−S + gL−
A(ρo − ρi) = 2H−

Aγ−
b + ρogL

−
F − ρigL− = 2H−

Aγ−
b +K−, (S6)

with K− = ρogL
−
F −ρigL

−. Since the temperature, the bottom frame position and the liquid level of the
outer liquid are constant, K− is constant as well. The liquid level stays constant since the temperature
is constant and evaporation of the the outer liquid is avoided. For the calibration of the pressure sensor
the two liquid phases are chosen in a manner that γ−

b is constant as well (high concentration of low
molecular weight surfactants). In this case, one can make a linear fit between the measured H−

A and
p−S for quasi-static inflation and deflation of the bubble. The measured pressure of the sensor has to be
corrected with gL−

A(ρo − ρi) where only L−
A changes during the experiment and is measured optically

during the calibration with a precision of 10 μm. The same procedure is applied for the upper sensor S+.
To obtain the respective equations one has to replace only the index ”−” with ”+” and change the sign
in front of L−

A in (S6) to obtain

p+S − gL+
A(ρo − ρi) = 2H+

Aγb + ρogL
+
F − ρigL

+ = 2H+
Aγb +K+, (S7)

with K+ = ρogL
+
F − ρigL

+. Since the upper frame changes position during an experiment, K+ changes
as well. That is why we relate the variable K+ to the frame distance between the bottom and top frames
LFF which is also measured optically. It follows

K+ = K+
0 + g(LFF0 − LFF )(ρo − ρi), (S8)

where the index ”0” indicates the values at the onset of the experiment. The variables K+
0 and LFF0 are

constants and obtained during the pressure calibration of the upper bubble. Consequently the calibration
constant K+ is a function of LFF . Whenever possible, the calibration is repeated before and after a set of
experiments to verify that the calibration constants do not change with time. Fig. S4 shows an example of
a typical pressure calibration inflation/deflation curve. On the left part in Fig. S4 the measured pressure
(corrected with the changing bubble height L−

A) is plotted against H−
A . The color of the measurements

symbolise the time: starting from purple at t0, it passes through green at t1, before ending at yellow at
t2. The red line is the obtained calibration curve, which gives K− and γb. The right part of Fig. S4
compares Δp−A obtained from image analysis with the Young-Laplace equation and the pressure sensor
for the inflation and deflation. Both show excellent agreement. Since for inflation and deflation the same
pressures were measured for the same mean curvatures (Fig. S4), we can conclude that the hydrodynamic
effects are negligible for the applied flow rates.
Fig. S5 shows examples of the physically measured pressures (right) and forces (left) for different R̂ for
typical withdrawing/approaching experiments.

S2 Delaunay Surfaces

S2.1 Parametrisation of Delaunay Surfaces

The five different axisymmetric constant mean curvature surfaces (nodoid, sphere, unduloid, cylinder and
catenoid) can be obtained by rolling a cone section (Fig. S6) along the symmetry axis of the Delaunay
surfaces and following one of the focal points of the cone sections. The path of the focal point than draws
a section in the rz-plane of the surface.
The parametrisation of an unduloid is obtained by rolling an ellipse along the symmetry axis. One
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Figure S3: Scheme showing the relationship between the measured pressures in the Sensors S (Fig. 5
(10)) and the pressure difference between the inside and the outside of the bubbles. L are lengths, ρ
densities and p pressures. The indices ”+” and ”-” stand for ”top” and ”bottom” respectively, ”i” and
”o” for ”inside” and ”outside”, ”A” for ”apex” and ”F” for ”frame”.

obtains

z̃(ω) = −2F̃z

∫ ω

ω0

du

(1 + e cosu)
√
1− e2 cos2 u

,

r̃(ω) =

√
−F̃z

1− e cosω

1 + e cosω
, (S9)

with e =
√
4F̃z + 1 being the eccentricity of the ellipse and u and ω the angular position of the rolling

ellipse above the plane, with ω0 the starting point of the surface and ω the current point.
The limit case of a cylinder is obtained when e = 0 with F̃z = −0.25. Eqn.s (S9) then become

z̃(ω) = −2F̃z

∫ ω

ω0

du,

r̃(ω) =

√
−F̃z =

1

2
. (S10)

The parametrisation of a nodoid is obtained by rolling a hyperbola along the symmetry axis of the
nodoid and following one of the focal points. One obtains [3]

z̃(ω) = −2F̃z

∫ ω

ω0

cosudu

(e+ cosu)
√
e2 − cos2 u

,

r̃(ω) =

√
−F̃z

e− cosω

e+ cosω
. (S11)

The eccentricity e is a function of F̃z only. Consequently, F̃z defines the eccentricity of a conic section.
The mean curvature H scales the size of the conic section, and F̃z changes the angle of the cutting plane
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Figure S4: Left: measured pressure of the bottom bubble (drop) corrected with the apex height L−
A

plotted against the measured mean curvature at the bottom bubble apex H−
A to obtain the calibration

constant K− and the interfacial tension of the bottom bubble γb using eqn. S6. Right: pressure evolution
at the apex of the bottom bubble obtained either with the pressure sensor or with image analysis, plotted
during an inflation and deflation of a bubble/drop.

Figure S5: Left: normal force measurements for the double soap bubble setup for four different R̂ values
plotted over the physical distance between the frames. Right: pressure difference for two drops in contact
for different R̂.
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Figure S6: Examples of the different conic sections and the associated surfaces. F̃z rotates the cutting
plane for the conic section and H shifts the cutting plane up or down. The figure is a modified figure
from Wikipedia[4].

for the conic section. By increasing F̃z, the plane becomes more vertical and by decreasing F̃z more
horizontal. With F̃z = −0.25, the plane is horizontal and cuts a circle out of the cone. H shifts the
cutting plane with increasing H down and with decreasing H up, see Fig. S6.
If the tilt angle of the cutting plane is identical to the opening angle of the cone, then e → 1 and F̃z → 0.
One can distinguish two different cases. In the first case, H �= 0 goes against a fixed value and we obtain
a line as a conic section with a sphere as the associated surface. One obtains the unit sphere

z̃(ω) = sinω,

r̃(ω) = cosω, (S12)

with −π/2 ≥ ω ≥ π/2 and F̃z = 0. For the sphere we use the same parametrisation variable ω, even if it
is not the rolling parameter of the conic section.
For H = 0, the conic section is a parabola with a catenoid as the associated surface. For the catenoid we
can no longer use our dimensionless representation where we multiply by the mean curvature H because
it is zero. Therefore, we show in this case the lengths in dimensional form

z = a arsinh(ω),

r = a
√
1 + ω2,

(S13)

with the neck radius a = limH→0; F̃z→0 F̃z/H. By eliminating ω in eqn.s (S13) we obtain the classical
equation of a catenoid

r = a cosh
(z
a

)
. (S14)

All five types of surfaces are present in the double bubble experiments.

S2.2 Cutting and scaling of the Delaunay surfaces

The Delaunay Surfaces have to fulfil a set of conditions given by our experimental setup. The following
equations are related to the boundary conditions, the volume constraint (eqn. (S15)), the frame radius
(eqn. (S16)), the distance h between the frames (eqn. (S17)) and the contact angle θc between the two
bubbles (eqn. (S18)).
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V = |H|−3(ω, ω0)Ṽ (ω, ω0)

= |H|−3(ω, ω0)

∫ z̃(ω)

z̃(ω0)

πr̃2dz̃, (S15)

R = |H|−1(ω, ω0)r̃(ω), (S16)

h

2
= |H|−1(ω, ω0)z̃(ω, ω0), (S17)

dr(ω0)

dz(ω0)
=

dr̃(ω0)

dz̃(ω0)
= cot (θc). (S18)

Finding a suitable surface for a specific set of boundary conditions is difficult, and there is no unique
solution. A more efficient method is to fix F̃z and search for all surfaces which fulfil all boundary conditions
except of one, for example the volume constraint or the distance between the two frames. That is the
principle idea of the algorithm detailed which we use in the article and which we detail below.

• Step 1: setting the problem

We choose a parameter that changes during an experiment, such as h, V , R or θ. In our case, it is
h, but the method is more general and can be applied to other cases.

• Step 2: Accessible force range

We define a range of F̃z with F̃z,min ≤ F̃z ≤ F̃z,max. F̃z,min = −0.25, and we choose a realistic

value for F̃z,max, depending on the other boundary conditions and on the investigated problem.

• Step 3: Setting the surface type

We choose a value F̃z ∈
[
−0.25, F̃z,max

]
, allowing to calculate the eccentricity e, and the parametri-

sation r̃, z̃ and dr/dz. This step defines if the surface is part of a cylinder, unduloid, sphere or
nodoid.

• Step 4 : Setting the starting point ω0

To ensure the contact angle condition, we solve eqn. (S18) giving all possible start points ω0 for
the given F̃z and θc. Depending on F̃z and θc there are zero, one or two solutions for eqn. (S18).

• Step 5 : Setting the end point ω1

For each starting point ω0 we have to ensure now the pressure difference (mean curvature) condi-
tions. Calculating H(ω) with

H(ω)−1 = 3

√
V

Ṽ (ω)
(S19)

obtained with eqn. (S15), gives us the end point ω = ω1 which solves eqn. (S16). This gives us the
full profile which we compare to a profile obtained by experiments in Fig. S7.

• Step 6: removing unphysical solutions

Solutions defined by the values of ω0, H(ω1), and r̃(ω) are the Delaunay Surfaces which fulfil all
the boundary conditions except the one chosen at Step 1 (in our case the distance between the two
frames h). We now have to remove unphysical solutions.

First, It makes sense to consider only the solutions which include not more than one period, since
they are physically unstable [5, 6]. We therefore eliminate all solutions with π ≥ |ω0 − ω1|.
It is still possible to obtain several solutions, but in general only one corresponds to an energy
minimum. Looking at the whole set of solutions which differ only in the height h̃, one can distinguish
different branches and bifurcations in the h-Fz plane. To decide which branches are stable or
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Figure S7: Comparison between the theoretical and experimental profile of a nodoid with F̃z = 0.25 and
θc = 90◦ on the left and F̃z = 0.34 and θc = 0◦ on the right. The parameters ω0, ω1, R and h are also
indicated.

Figure S8: A fold with an opening to the right on the left and a fold with an opening to left on the right
for a Fz(h) curve [7].

unstable we use the second derivative of the surface energy H, i.e., the Hessian matrix. If one
eigenvalue of the Hessian matrix is negative the surface is unstable. To calculate this matrix
analytically is most of the time impossible. But we know from the publication of J. H. Maddocks
[7], that any fold in the h-Fz plane of curves representing extremal surfaces, must have a change
of sign of at least one eigenvalue of H. If the opening of the fold is to the left (Fig. S8) the upper
branch is unstable. One eigenvalue of H becomes negative. Consequently, we can exclude all upper
branches after a fold with the opening to the left systematically. Nevertheless, we cannot say that
the lower branch is stable in all cases. To be 100% sure, we performed a simulation with Surface
evolver.
Two examples of surfaces obtained with this procedure are in shown in Fig. S7 on the left a capillary
bridge with θc = 90◦ and F̃z > 0 and on the right for two drops in contact with θc = 0◦ and F̃z > 0.
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S3 Bubble frame detachment CB→DB, bubble bubble detach-
ment CB→SB and their intersections for different θc

In this section we present detailed information on the exact location of the bubble frame detachment
CB→DB and its intersection with the bubble bubble detachment CB→SB in the θc-ĥ-R̂ space.
Fig. S9 gives with the sub-figures a, b, c, d and e an overview about the shapes and the position in
the shape diagrams of CB→DB, CB→SB and the triple point Tr1 of CB, SB and DB for different θc.
Fig. S9a and b show the upper (dashed lines) and lower branches (solid lines) for CB→DB and the
beginning of CB→SB (dashed dotted lines) with the intersection of CB→DB and CB→SB, the triple
point Tr1. Different colors represent different θc. Some examples of shapes on CB→DB for different θc
are represented in Fig. S9d. For all of their shapes r̂,ẑ(±ĥ/2) = 0 (indicated in Fig. S9c with the right
angle), and the total surface of both bubbles includes at least one complete period of a Delaunay surface.
It follows that

ω1 = π (S20)

|ω1 − ω0| > π. (S21)

As discussed in Section 3.3, the upper branch (Fig. S9a blue dashed line) for CB→DB with θc = 90◦ has
a maximum in r̂(ω1) and a minimum at r̂(ω0), the lower branch (Fig. S9a blue solid line) has a minimum
at r̂(ω1) and a maximum at r̂(ω0). In order to have a θc < 90◦, r̂ must increase with changing ẑ at least
in the close neighbourhood to ẑ = 0. Consequently, ω0 moves away from the maxima and minima in r̂
with decreasing θc. In order to fulfill the condition of eqn. (S20) and the condition of eqn. (S21), the

upper branch is folded to larger ĥ and smaller r̂ for θc < 90◦ (Fig. S9a). As θc decreases, the upper and
lower branches approach each other and become shorter (Fig. S9a).
One observes that Tr1 is within the precision of the calculation on the point, where the upper and lower
branch meet each other. The shapes related to this intersection have a F̃z(θmin = θc) from Fig. 7 and
fulfill eqn.s (S20) and (S21). They are unique shapes for a specific contact angle θc. An exception is the
case of a capillary bridge. The triple point is not at the intersection of the upper and lower branches. It
is inside of the upper branch. The part of the upper branch above Tr1 is part of the unstable branch of
a typical withdrawing/approaching experiment, see, for example, Fig. 9c and d.
Furthermore, a region in the phase diagrams in Fig. S9a and b close to Tr1 with θc < 90◦ (shaded
area in Fig. S9b) is not accessible for a typical withdrawing/approaching experiment. The size of this
region decreases dramatically with a decreasing θc. To quantify this decrease, we calculated the relative
difference between the coordinates (R̂, ĥ) of the maximum in R̂ and Tr1 and plot it against θc in Fig. S9c.

ΔR̂/R̂Tr1 and Δĥ/ĥTr1 decrease exponentially with decreasing θc. Numerical and experimentally we did
not succeed to verify without doubt the stability in the shaded region in Fig. S9b. In the experiments
(θc = 60◦), this region is already very small, below our measurement precision. In the simulations, the
converging process turned out to be difficult for these shapes. The energy difference between stable shapes
and unstable shapes is very small in this region. This makes it necessary to use a high number of facets
to be able to distinguish between them. Therefore, the shapes need a lot of calculation time to converge
towards a minimum. A complex convergence study is needed to solve the problem with certainty, which
remains to be done. It therefore remains an interesting open question, if the shaded region in Fig. S9b
belongs to stable or unstable shapes.
For θc = 0◦ the CB→DB does not exist, since there are never attractive forces between the bubbles.
Consequently there are no unduloids fulfilling all boundary conditions. The upper and lower branch
vanish in the triple point Tr1(θc = 0◦), which corresponds to the shape of two spheres in contact in a
point.

S4 Catenoid

Since the normalised force F̃z is not defined for the catenoid (because H = 0) (see Section S2.1), we obtain
the corresponding shapes separately from the other Delaunay surfaces. We take the parameterisation of

S11



Figure S9: a) Lines and points in the phase diagram R̂ over ĥ for different θc, such as the R̂(ĥ) for
CB→SB and CB→DB, where the latter has been split into an upper and lower branch. The intersection
of CB→SB and CB→DB (Tr1) is also shown. b) A zoom in to the triple point Tr1 for θc = 88◦ with the

definition of ΔR̂ and Δĥ. c) The evolution of ΔR̂/R̂Tr1 and Δĥ/ĥTr1 with increasing θc. d) Shapes with
different θc and F̃z, which fulfill the conditions of eqn.s (S20) and (S21) shifted horizontally for a better
visualisation. e) The legend for all sub figures.

S12



a catenoid (eqn. (S14)) and the derivative with respect to z

r,z = sinh
(z
a

)
. (S22)

The standard catenoid is obtained with θc = 90◦ (top Fig. S10a). With θc < 90◦, a ”diabolo” catenoid
[8] is obtained (Fig. S10a). We are interested in the smallest R̂ for a specific contact angle θc, which has
a solution with Δp̂ = 0. For larger R̂ there are always two solutions. For larger R̂ the pressure difference
Δp̂ becomes negative for some ĥ. The height of the standard catenoid (distance between the two frames,
Fig. S10a) is

h1 = 2a arccosh(R/a). (S23)

The volume of the standard catenoid (volume between one frame and the mid plane with z = 0, see Fig.
S10a) is

V1 =

∫ h1/2

0

πr2dz = πa2
(
h1

2
+

a

2
sinh

h1

a

)
. (S24)

A diabolo catenoid is obtained by subtracting the red part from the grey part in Fig. S10a. The red
part depends on θc, obtained with eqn. (S22) and given with

h2 = 2a arcsinh(cot(θc)). (S25)

The volume V2 of the red part is obtained with the eqn. (S24) by replacing h1 with h2. The volume of a
diabolo catenoid (bottom of Fig. S10a) is then simply

V = V1 − V2. (S26)

The distance between the two frames is
h = h1 − h2. (S27)

As the neck a is always smaller than R, the ratio a/R < 1. Therefore, a similar procedure as in Section.
S2.2 is used with 0 < a/R < 1 instead of F̃z;min ≤ F̃z ≤ F̃z;max. One obtains all possible catenoid
solutions for a given θc. By normalising R, h and a with eqn. (14) with the volume V from eqn. (S26),

we obtain R̂ and ĥ. Fig. S10b shows this dependency of the smallest R̂ on θc with Δp̂ = 0. For larger R̂
there are always two catenoid solutions with different ĥ and different â.

S5 Surface Evolver

Converged surfaces in Surface Evolver are always in an energy minimum. The energy gradient is in this
case zero. By making a Taylor expansion around this minimum one obtains information about the second
derivative the Hessian matrix H, eqn. (S28)

E(	v0 + d	v0) = E0 +∇E · d	v0 + 1

2
d	v0	v0

T ·H · d	v0 (S28)

The vector 	v0 represents the coordinates of all vertices of the Surface Evolver model in the converged
state. The surface energy is E. Since we consider here only converged surfaces, ∇E(	v0) = 0 and the
change in E depends locally only on H. The eigenvalues of the Hessian matrix λi are always positive, if
the energy is in a minimum. A shape transition is related to an eigenvalue which approaches zero. For
the extremum to be stable, all eigenvalues of H must be positive.

S6 Tilt instability CB↔TB

The point for the tilting instability is obtained experimentally and with Surface Evolver. Fig. S11 shows
the evolution of the two smallest eigenvalues of the Hessian matrix with respect to the frame distance ĥ.
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Figure S10: a) An illustration of the standard catenoid (top) and a diabolo catenoid (bottom) with the
important geometrical parameters, explained in the text. b) The smallest R̂ where the surface is a part
of a catenoid as a function of the contact angle θc.

For a specific height the smallest eigenvalue λ0 and second smallest λ1 decrease rapidly and reach almost
zero in comparison to other eigenvalues. Afterwards λ0 stays almost zero and λ1 increases rapidly again.
λ0 is not perfectly zero due to the precision of Surface Evolver. The two eigenvalues are equal if the
surface is axissymetric. The point where λ0 �= λ1 is the point of instability for the tilting instability. The
reason why λ0 stays zero (in Surface Evolver λ0 ≈ 0) is because the surface can rotate around the z-axis
without energy change. The tilted state is therefore a Goldstone mode. The reason why the plateau in
Fig. S11 where λ0 ≈ 0 is not the same is because λi is proportional to the number of facets in the Surface
evolver model.

The precision of the tilting/shifting point in Surface Evolver can be estimated with help of a conver-

gence study. Fig. S12 shows that the critical height ĥCB↔TB , where the surface looses the axisymmetry,
converges against a value for increasing number of facets. We worked with approximately 5000-10000
facets, which gives us a precision of approximately 0.1%.

The contact surface of the tilted bubbles is shown in Fig. S13 for two different θc. It has to be a
minimal surface since the pressure difference between the two bubbles is zero. However the surface is not
a plane anymore, as can be seen in Fig. S13. We define a new coordinate system with (x′, y′, z′) where
	ez′ is normal to the best fitting plane of the contact surface. That defines the tilting angle ϕ with:

cos(ϕ) = 	ez · 	ez′ (S29)

Note the different scaling for the z′ axis, needed to reveal the small changes in z′ compared to x′ and y′

extension. The difference to a tilted plane is not detectable experimentally. The three ridges and three
valleys change in amplitude by changing ĥ. The angle ϕ can be used as an order parameter to investigate
the shape transition from the axisymmetric configuration to the tilted configuration.

In Fig. 9, the force only changes its slope at the critical point ĥCB↔TB . We do not see any force
jump, which suggests that this shape transition is a second order shape transition. Noting that the energy
of the system is a function of the angle ϕ with a periodicity of π, we use a Landau approach, the total
energy of the system is described with sin(ϕ)

E = E0(ϕ = 0) + a(ĥ) sin(ϕ)2 + b(ĥ) sin(ϕ)4 (S30)

Close to a second order shape transition, we can make the approximation a(h) = a0(h − ĥCB↔TB) and

b(ĥ) = b0. For ĥ < ĥCB↔TB one obtains two minima with the equation

sin(ϕ)2 = −a0
b0

(
ĥ− ĥCB↔TB

)
. (S31)
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Figure S11: The two smallest eigenvalues λi of the Hessian matrix obtained with Surface evolver for
different R̂ plotted over the frame distance ĥ.

Figure S12: Height ĥCB↔TB where the surface looses the axisymmetry for a simulation in Surface Evolver
with different number of facets ([352, 1408, 5632, 22528]), R̂ = 0.4 and θc = 60◦.

Figure S13: Examples of tilted bubble configurations simulated in Surface Evolver. Left: θc = 0◦. Right:
θc = 60◦. The upper part of the figure shows the shape of the contact film in the (x′,y′,z′) coordinate
system which has been rotated by ϕ.
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Figure S14: Comparison between the tilt angle sin(ϕ)2 obtained with the Surface Evolver simulations
and with the eqn.s (S31) and (S32) for two different R̂.

For ĥ > ĥCB↔TB one obtains one minimum with the equation

ϕ2 = 0. (S32)

Since only energy minima give stable shapes, we use eqn. (S32) for ĥ > ĥCB↔TB and use eqn. (S31) for

ĥ < ĥCB↔TB . In Fig. S14 we compare the theory from eqn. (S31) and the simulated ϕ. ĥCB↔TB and

a0/b0 are obtained by fitting ϕ from the simulation. The difference between the fitted ĥCB↔TB and the

ĥCB↔TB obtained with help of the eigenvalues is below 0.3%. Which is also close to the precision of the
simulation. This Landau approach can be extended to describe the tilted film shape and even the shape
of the shifted bubbles (ShB). Further information can be found in the thesis of Friedrich Walzel [9].

S7 Delaunay Surfaces without mirror symmetry

There are stable Delaunay Surfaces which are not mirror symmetric to the xy-mid plane - but only if
the upper and lower frame radius are not identical. Since in experiments that is always the case due to
inaccuracies and rim thicknesses, we observed some of them in our experiments. An example is shown in
Fig. S15.
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Figure S15: A Delaunay Surfaces obtained with a capillary bridge, which is not mirror symmetric to the
xy-min plane.
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