
HAL Id: hal-04736733
https://hal.science/hal-04736733v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reliability Assessment of Large DNN Models: Trading
Off Performance and Accuracy

Junchao Chen, Giuseppe Esposito, Fernando Fernandes dos Santos,
Juan-David Guerrero-Balaguera, Angeliki Kritikakou, Milos Krstic, Robert

Limas, Josie E Rodriguez Condia, Matteo Sonza Reorda, Marcello Traiola, et
al.

To cite this version:
Junchao Chen, Giuseppe Esposito, Fernando Fernandes dos Santos, Juan-David Guerrero-Balaguera,
Angeliki Kritikakou, et al.. Reliability Assessment of Large DNN Models: Trading Off Performance
and Accuracy. VLSI-SoC 2024 - IFIP/IEEE International Conference on Very Large Scale Integration,
Delft University of Technology and University of Abdelmalek Saadi University, Oct 2024, Tanger,
Morocco. pp.1-10, �10.5286/ISIS.E.RB2300036)�. �hal-04736733�

https://hal.science/hal-04736733v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Reliability Assessment of Large DNN Models:
Trading Off Performance and Accuracy

Junchao Chen1, Giuseppe Esposito2, Fernando Fernandes dos Santos3, Juan-David Guerrero-Balaguera2,
Angeliki Kritikakou3, Milos Krstic1,4, Robert Limas Sierra2, Josie E. Rodriguez Condia2,

Matteo Sonza Reorda2, Marcello Traiola3, and Alessandro Veronesi1

1IHP – Leibniz Institute for High-Performance Microelectronics, Germany
2Politecnico di Torino, Department of Control and Computer Engineering (DAUIN), Turin, Italy

3Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France
4University of Potsdam, Germany

Abstract—The adoption of Deep Neural Networks (DNNs) in
several domains allows for increased effectiveness in applications
that deal with massive data-intensive and complex data inputs.
When employed in safety-critical scenarios, such as automotive,
aerospace, healthcare, and autonomous robotics, assessing the
DNNs’ reliability and functional safety is crucial to ensure their
correct in-field operation, even in the presence of hardware faults.
However, the system complexity and the massive amounts of
data to be processed by DNNs prevent the effective adoption
of traditional strategies for reliability characterization and for
identifying the most fault-sensitive structures. Accurate fault
assessment strategies usually require unacceptable computational
power and large evaluation times. On the other hand, faster
strategies commonly lack accuracy in correctly representing
system faults. Consequently, it is necessary to develop effective
strategies that trade-off between performance and accuracy.

This work analyses three reliability assessment strategies for
deep neural networks and their underlying hardware, highlight-
ing the main solutions and challenges in terms of evaluation
performance and fault characterization accuracy. We overview
different solutions to evaluate the hardware accelerators im-
plementing DNNs at three abstraction levels: i) by physically
injecting faults on a GPU running DNNs, ii) by performing mi-
croarchitectural characterization of GPUs to develop application-
accurate error models, and iii) by using structure-aware cross-
layer error modeling on DNN hardware accelerators. Our ex-
perimental results indicate that accurate error representation
requires structural features from the targeted hardware.

I. INTRODUCTION

Deep Neural Networks (DNNs) are widely used in various
fields to enhance the performance of complex applications,
such as autonomous driving, natural language processing,
and industrial robots. These applications typically involve
processing complex operations and large volumes of data (i.e.,

This work was partially supported by the Italian National Resilience and
Recovery Plan (PNRR) through the National Center for HPC, Big Data and
Quantum Computing, and by the Federal Ministry of Education and Research
of Germany under the programme of “Souverän. Digital. Vernetzt.” Joint
project 6G-RIC, project identification number: 16KISK026.
This activity received funding from the European Union’s 2020 re-
search and innovation programme under grant agreement No 101008126
(RADNEXT project), and by the ANR FASY (ANR-21-CE25-0008-01).
ChipIR provided and supported neutron beam time experiments (DOI
https://doi.org/10.5286/ISIS.E.RB2300036).

1x106 operations per second) [1], [2]. When employed in
safety-critical applications, such as aerospace, automotive, and
healthcare, DNN-based solutions must match strict reliability
requirements mandated by industrial standards (i.e., ISO 26262
and ISO/IEC 22989 [3], [4]). In safety-critical applications,
reliability characterization and evaluation are mandatory to
ensure that any fault/defect arising in the system can be
controlled and properly handled. These reliability assessments
may guide designers during early design stages and contribute
to achieving the target fault tolerance.

DNN accelerators, including Graphics Processing Units
(GPUs), are built with advanced technology node processes
that enable the design of smaller, faster, and energy-efficient
devices [5]. Unfortunately, miniaturization (7nm or below) se-
riously increases the reliability concerns in a system connected
to temporal (aging and wear-out) and environmental variations
(over-stress, environmental harshness due to temperature, volt-
age, or radiation) [6]–[8]. These variations increase the fault
rate, impacting the hardware and propagating the faults to the
application as Silent Data Corruptions (SDCs), jeopardizing
the in-field operation of the complete system [9]–[11].

To assess the impact of faults in a DNN-based system,
several reliability evaluation strategies have been developed,
such as formal techniques, simulation-based architectural eval-
uations, and physical/beam experiments. Formal evaluation
and software simulation strategies focus their analyses on the
DNN model with feasible evaluation times but neglect the
underlying hardware. In contrast, other strategies inject faults
at the hardware level and can provide fine-grain accuracy, i.e.,
at the gate or micro-architectural level. However, hardware
simulations for large DNNs often lead to years/decades of ex-
pected simulation time. Hence, DNN’s complexity, operational
density, and underlying hardware demand the development
of effective strategies to provide efficient evaluation times
under feasible levels of fault characterization accuracy [12].
Inspired by the performance bottlenecks in some evaluation
strategies and the challenges in correctly characterizing fault
impacts on DNN-based systems, we analyze and discuss
the main advantages and challenges of three strategies to



assess the reliability of DNNs. These strategies consider the
structural hardware characteristics while keeping a good trade-
off between evaluation time and fault simulation details.

The first strategy (Section III) combines physical char-
acterization using a beam of neutrons and software-based
fault simulation on real devices to evaluate the impact of
transient faults on large DNN models for image classifica-
tion. Additionally, we show that an evaluation that considers
the hardware characteristics is mandatory to deploy efficient
software fault tolerance for large DNNs. A second strategy
(Section IV) combines the structural features of a GPU and its
units (i.e., schedulers and ‘TCUs’) to characterize fault effects
at the system level. This strategy determines representative
hardware-aware fine-grain corruptions to identify accurate
error models for evaluating large DNNs at the software level.
Finally, the third strategy (Section V) develops a cycle-
accurate micro-architecture model of the NVDLA architecture,
incorporating fine-grained structural details to ensure accurate
fault characterization for large DNN workloads, and shows that
variations in hardware parameters significantly impact both
the types and occurrence of observed errors, depending on the
specific DNN model.

We explore the benefits of combining two or more layers
of fault injection abstraction to effectively assess and harden
large and complex DNNs within acceptable evaluation times.
The strategies we discuss are intended to support quick system
improvements and efficient hardening.

II. CHALLENGES IN DNN RELIABILITY ASSESSMENT

When GPUs are used as DNN accelerators in autonomous
systems, they are susceptible to multiple sources of failures,
such as ionizing radiation, permanent faults, performance de-
grading faults, timing errors, and intermittent faults [13], [14].
These sources of faults may not make the GPU completely
inoperative, but they can significantly impact the execution of
DNN models, potentially changing the final inference result.
When not masked, faults can become errors that can propagate
to the software level and lead to failures such as the Detected
Unrecoverable Errors (DUEs), which hang the program or
crash the entire system, and Silent Data Corruptions (SDCs),
that allow the application to complete its execution but with
an incorrect output. Without a proper reliability assessment
guiding the introduction of proper fault-tolerance solutions,
the resulting failure remains undetected. When considering
DNN models, SDCs can be further categorized into Tolerable
SDCs, which modify the model output but not the inference
outcome (i.e., the classification, detection, or segmentation), or
Critical SDCs, which cause the model to change the inference
probabilities, resulting in mis-classification, mis-detection, or
mis-segmentation.

In order to characterize the hardware faults that reach the
highest levels of a system and become failures, different
approaches can be used, each one having its own advantages
and disadvantages. We can separate the reliability assessment
methods into three categories: physical fault injection, fault
simulation techniques, and software-based fault simulation.

Physical fault injection require special facilities to expose
the system to a beam of particles and induce faults in hardware.
This strategy is an efficient and realistic evaluation approach
for safety/mission-critical systems that operate in harsh en-
vironments, such as space and avionics applications. As the
faults are physically injected into the circuit, physical fault
injection effectively characterizes radiation-induced transient
faults and permanent faults from accumulated radiation dose
[15]–[17]. However, the strategy can hardly provide informa-
tion regarding specific sub-structures in a system or a DNN
model. For instance, radiation experiments do not allow fault
propagation analysis since failures are only observed at the
output, making it hard to identify the error sources in hardware
or software parts in a system, as well as hindering the error
modeling [18]. These constraints impede the straightforward
identification of the most vulnerable parts of the system.

Hardware fault simulation techniques can be performed
at several abstraction levels, from low-level micro-architecture
(i.e., Register-Transfer or gate levels) [19] to architecture/func-
tional evaluations [20], [21]. These strategies measure the fault
propagation probability on the system, i.e., the Architectural
Vulnerability Factor [22]. Hardware fault simulations have a
fine-grain accuracy and can support the identification of the
most fault-vulnerable hardware structures. However, for the
hardware fault simulations, the computational power and eval-
uation times are proportional to the fine-grain abstraction, the
system’s size, and complexity. Thus, the complexity and time
required for a detailed evaluation can require an unacceptable
time, e.g., > 10, 000 days for a small DNN evaluation [14].

Software-based fault simulation consists of code instru-
mentation or/and modification strategies that add instructions
or routines to a targeted application to allow faults injection in
the underlying hardware architecture [23], [24]. Faults injected
in software fault simulations can be used to estimate the
Program Vulnerability Factor (PVF), i.e., the probability for a
fault to propagate [25]. Software-based strategies usually use
real execution time and can be performed on actual hardware
platforms, leading to fast evaluations. The main challenge of
software fault simulation strategies is the accuracy of identi-
fying and describing faults from the underlying hardware. The
user defines the fault model, which risks not being realistic,
leading to inaccurate results. Additionally, the evaluated faults
can only be injected into a subset of available and accessible
resources at the software level (e.g., registers or variables).

The following sections demonstrate how to effectively and
efficiently evaluate large DNN models by combining two or
more reliability assessment approaches without compromising
accuracy or incurring prohibitively long evaluation times.

III. DNN’S RELIABILITY EVALUATION THROUGH
PHYSICAL AND SOFTWARE FAULT INJECTION

In this section, we show how combining two experimental
evaluation methods – physical fault injection using a neutron
beam and software fault simulation – enables the efficient
evaluation and hardening of large DNN models without com-
promising accuracy. We start by summarizing the experimental



methodologies, and then we discuss the general trends ob-
served in the experiments and their importance.

A. Experimental Methodologies

We performed fault injection using a software fault sim-
ulator and a neutron beamline. For all the experiments, we
evaluated 5 ViT models without any protection, as well as the
same models protected by a range restriction strategy. In the
employed range restriction, the ViT parameters are checked
to see if they fall within a range of accepted values when
propagating through the ViT’s Identity layers. If they do, they
are propagated as usual. If not, they are replaced by 0. We
evaluate both versions of the ViT models to demonstrate why it
is mandatory to consider both hardware and software analysis
when proposing a fault tolerance method for DNNs.

1) Software fault simulation: We used the NVIDIA Bit
Fault Injector (NVBitFI) [24] for instruction-level fault simu-
lation. NVBitFI enables the simulation of faults at the Shader
Assembly level (SASS), which means at the assembly level of
GPU kernels. With NVBitFI, we could select different fault
models and sites to evaluate the ViT models.

We injected faults in general-purpose registers, memory
load instructions, and arithmetic floating-point operations. We
simulated 1,750 faults per ViT model. The failures (SDCs and
DUEs) were counted similarly to beam experiments. Through
fault simulations, we calculated the Program Vulnerability
Factor (PVF) for each ViT model. The PVF represents the
probability of an injected fault propagating from the assembly
instruction to the application output [25].

We performed fault simulations with single-bit flip, random
value, and warp random value fault models. The first two
fault models change an instruction’s output register by flipping
a bit or replacing it with a random value. While injecting
single-bit flips at software is a widely used fault model, it
has been demonstrated to incorrectly model fault impact for
complex applications [26]. Injecting an experimentally tuned
fault model in software (i.e., the observed manifestation of
the hardware fault in a software visible state) has been proven
to be accurate for GPUs [12], [27]. Consequently, faults are
also injected at the warp level using NVBitFI. The warp level
fault model is based on recently proposed fault models for
GPUs [19], [27], where the outputs of the same instruction in
all the threads within a warp are corrupted.

2) Beam experiments: Experimental tests were conducted
at ChipIr in Rutherford Appleton Laboratory (RAL, UK).
The facility provides a neutron beam to replicate atmospheric
neutron effects on electronic devices [28]. This allows for the
realistic measurement of device failure rates while running a
code. Figure 1 shows the installed setup, which consists of
GPUs aligned with the neutron beam and connected to the
motherboard. Python scripts run on a server outside the beam
monitor and launch the ViT models on the devices inside the
beam room. The software is designed to recover from device
hangs and restart the program if it fails to respond within a
specified timeframe. The same ViT model is run on the GPU
for several iterations, and any differences between the output

Main server

A DUE checker 
thread

GPU runs 
the DNN

Start app 
on DUT

Log received data

Check 
hangs and 

crashes SDC

Yes No

Beam source

GPU

Hardware Setup at ChipIr
Beam room

Fig. 1: Software and hardware setups for the neutron beam ex-
periments at ChipIr. The server located outside the beam room
controls the devices exposed to the neutron beam. Scripts monitor
any disturbances (SDCs and DUEs) while the ViT models perform
inferences on the GPUs.

TABLE I: VIT MODELS SIZE, ACCURACY ON IMAGENET DATASET,
AND EXECUTION TIMES FOR PASCAL GPU.

Config. Size (MB) Accuracy (%) Time (ms)

ViT-H [29] H14-224 2479 88.20 1644
EVA2 [30] L14-448 1176 89.95 2686
SwinV2 [31] L-256 787 86.94 404
MaxViT [32] L-384 845 87.98 938

and a previously saved output (fault-free golden) are recorded
as Tolerable SDC or Critical SDC. We make all the codes used
in the beam experiments available 1.

The beam experiments measured the probability of a neu-
tron causing a failure in the GPU. The failure rate determined
in the experiments can be used to estimate the terrestrial failure
rate caused by neutrons on a GPU. The beam experiments
provide the Failure In Time (FIT) - the number of faults
expected in 109h of operation. FIT is calculated by dividing
the number of errors by the neutron fluence, then multiplying
by the terrestrial neutron flux (13n/(cm2 × h)) and by 109.

3) Device and DNNs Under Test: For the beam ex-
periments, the NVIDIA GPU Pascal architecture (Quadro
P2000) was used. The Quadro P2000 is built with TSMC
16nm FinFET, featuring an L1 cache of 48KB per Streaming
Multiprocessor (SM), an L2 cache of 1280 KB, and 1024
CUDA cores. The GPU has 256 KB registers per SM and
a power consumption of up to 75W. Our beam experiments
only focus on GPU core errors (beam spot set to 2cm diameter
to avoid affecting onboard DRAM).

We evaluated 5 ViT models from the HuggingFace li-
brary [33]. The models belong to 4 families: Original ViT [29],
EVA2 [30], SwinV2 [31], and MaxViT [32]. The models differ
in size and input patches. For the experiments, we used a
Python program with PyTorch to load the ViT and perform
inferences on a batch of random images from the ImageNet
dataset [34].

B. Software Fault Simulation vs Beam Experiments

Fault simulation and lower levels of fault injection (such as
physical or microarchitectural) can yield significantly different

1https://github.com/diehardnet/maximals



0%

10%

20%

30%

40%

50%

C
ri

ti
ca

l S
D

C

ViT-L EVA2-L MaxViT-LSwinV2-L

Single Bit-Flip Random Value Warp Random ValueNeutron Beam

ViT-H

Fig. 2: Comparison of Critical SDC percentages between software
fault simulations and neutron beam experiments. We used various
fault models for broad analysis.

results [26]. Recent studies have shown that this difference can
be orders of magnitude [26], [35]. To measure the differences
between the beam experiments and the software fault injection
for ViTs, we start our analysis by evaluating the impact of the
faults on the Critical SDCs.

Figure 2 shows the percentages of Critical SDCs for both
NVBitFI and ChipIr neutron beam experiments of all the ViTs
listed in Table I. In all cases, the single-bit flip underestimated
the percentages of Critical SDCs compared to the beam
experiments. On average, 0.80% of the injections with a single
bit flip generated a Critical SDC, while 13.95% of the observed
SDCs in the beam experiments were critical. Similar to other
types of DNNs, ViTs are resistant to single-bit flips caused
by transient faults [36]. The effect of a single bit in a single
parameter on models containing millions of parameters is
expected to be minimal. More complex fault models resulted
in a significantly higher percentage of Critical SDCs, with
10.87% for random value and 18.27% for warp random
value. Our data indicates that more complex fault models are
mandatory to evaluate large ViTs’ reliability accurately.

Single-bit flips injected at the instruction level do not
provide a realistic ViT evaluation since most are masked
and produce a Critical SDC rate close to zero, well off the
rate obtained with beam experiments. We observed on the
fault simulation that only 3% of single-bit flip fault injections
resulted in values higher than 106 after the fault mask was
applied to the target register. In contrast, when random values
were used, 45% of the fault mask immediately produced
values higher than 106, NaN, or infinity values. If these faults
spread to ViT structures, they may lead to Critical SDCs. To
protect the ViTs against those faults, we employed float value
restriction on the Identity layers of the selected models. Value
restriction limits the maximum and minimum values the DNN
parameters can propagate, filtering the values corrupted by
faults. Value restriction is a standard method to improve the
fault tolerance of DNNs with a low overhead [37].

Table II presents the Critical SDC comparison between the
Baseline and Hardened ViT models, assessed using NVBitFI
(Critical SDC PVF) and the ChipIr (Critical SDC FIT rate)

TABLE II: COMPARISON OF THE RESULTS OBTAINED FROM SOFT-
WARE FAULT SIMULATION AND BEAM EXPERIMENTS FOR BOTH
THE UNHARDENED MODELS (BASELINE) AND THE MODELS PRO-
TECTED BY RANGE RESTRICTION (HARDENED).

NVBitFI
[PVF]

ChipIr
[FIT]

Reduction
NVBitFI ChipIr

ViT-L Baseline 6.29% 1.77±0.45 3.67× 1.69×Hardened 1.71% 1.05±0.26

ViT-H Baseline 6.11% 1.61±0.33 2.74× 3.20×Hardened 2.23% 0.50±0.13

EVA2-L Baseline 15.20% 3.95±1.18 10.64× –Hardened 1.43% 0.00±1.99

SwinV2-L Baseline 2.17% 0.87±0.60 1.23× 1.74×Hardened 1.77% 0.50±0.21

MaxViT-L Baseline 15.89% 1.75±0.36 1.94× 4.61×Hardened 8.17% 0.38±0.07

neutron beam. The Critical SDC reduction (Baseline/Hard-
ened) is presented for both NVBitFI and ChipIr experiments.
During the beam experiment campaign, no Critical SDC was
observed for EVA2-L.

By employing a complex fault model in the software
simulation, we are able to design a fault tolerance that is
capable of preventing Critical SDCs on the beam experiments.
Table II shows that the hardened versions of the ViT models
produced, on average, 2.81× less Critical SDCs compared
to the unhardened version on the ChipIr beam experiments.
Similarly, the NVBitFI, using a set of complex fault models
(including single-bit flip, random values, and warp random
values), shows a 2.40× reduction on the Critical SDC.

Physical fault injection with a beam of particles is a
method widespread in industries such as space exploration
and avionics, and they are also used as a validation method
for academic research. However, the high cost (thousands of
dollars per hour), complexity, and limited availability (facilities
have scheduling windows of months) hinder a more detailed
evaluation of complex systems such as DNN-based systems.
As a result, fault simulation is employed to model faults and
errors at various hardware and software abstraction levels.
Using fault simulation, researchers and engineers are not
limited to transient or permanent faults caused by ionizing
particles but also transient and permanent faults from other
sources, such as aging, voltage variations, and performance
degrading faults. The following sections will explore different
methods for simulating faults on DNNs.

IV. MODELING ERRORS FROM FAULTY TCUS IN GPUS

A. TCUs in GPUs

Modern GPUs are equipped with specialized in-chip ac-
celerators (e.g., Tensor Core Units, or TCUs) to boost the
computation of General Matrix Multiplication (GEMM) al-
gorithms, representing the fundamental building blocks for
the efficient implementation of DNNs, including cutting-edge
models, such as transformers or Large Language Models [38],
[39]. Moreover, optimized libraries (such as cuBLAS for
NVIDIA GPUs) use the GEMM algorithm to reshape the
kernel weights and feature maps as matrices [40] for their
later deployment in GPUs. In particular, these libraries split



C

Bks

A

ks

Thread Block levelDevice level

ms

ns
Warp Tile CUDA/Tensor Cores

D=AxB+C

A

D

C

B

Fig. 3: A scheme of the tiling-based GEMM execution in TCUs.

matrices into tiles and exploit the TCUs inside a GPU, splitting
tiles at the device level into sub-tiles at the thread block,
warp, and TCU levels, as depicted in Fig. 3 for the matrix
operation A×B+C [41]. In detail, each tile is assigned to a
unique cooperative thread group (CTA), which accelerates the
computations by distributing all CTAs among the available
parallel cores (SMs) in a GPU.

The widespread use of TCU-based GPUs for GEMM ac-
celeration raises reliability concerns due to the large size
of DNNs, and the increasing complexity of the underlying
hardware [14], [42]. This section shows an efficient and
accurate strategy to characterize the corruption effects from
faults in the TCUs in terms of software-level error models,
thus supporting application-level evaluations.

B. A method to model errors produced by faults in TCUs

Our strategy for software-level error modeling consists of
determining bit-flip-masks that represent the corruption effects
of the faults affecting the TCUs on the outputs of GEMM
operations. Our strategy includes four steps: i) structure-aware
fault characterization, ii) fault analysis and error modeling, iii)
error generation, refinement and compression, and iv) model
enhancement and validation (Fig. 4).

1) Structure-aware fault characterization: a seed GEMM
operation describes a normal distribution of synthetic data with
statistical information on the weights and the intermediate
features from a target DNN model. The GEMM operation is
deployed and executed on an instruction-accurate architectural
simulator of TCUs in GPUs, which includes fault injection (FI)
infrastructure for reliability evaluation [38], [39], [43]. Then,
FI campaigns are conducted on the TCU’s data-path structures.

2) Error generation: The fault effects are analyzed to
determine spatial and scalar effects on the GEMM’s outputs.
The spatial evaluation finds the likelihood of every GEMM’s
output element (location) when corrupted by a faulty TCU.
Furthermore, the scalar evaluation measures the bit-flip rate
of the corrupted outputs on the GEMM computation. In
particular, we consider two factors that corrupt a GEMM’s
output: i) the matrix tile’s size, and ii) the ability of the data
to activate and propagate faults. Thus, propagation effects are
observed at the GEMM output as data corruptions in some
locations of the executed tiles (i.e., from 1 to 8 corrupted
elements per GEMM’s tile at the warp level [38], [39]). Other
factors, such as the number of SMs and the scheduling policy,
directly depend on the targeted GPU (i.e., a faulty TCU inside
an SM might induce data corruption only into those CTAs/tiles
executed in the affected SM) [43].

The spatial effects are computed as corruption probabilities
through a bi-dimensional representation in which every tile

structure-aware 
fault 

characterization

Fault analysis 
and error 
modeling

Error generation, 
refinement, and 

compression

Error models 
enhancement 
and validationA

B

Synthetic 
GEMM

Fault 
Injection

Spatial Scalar

P(x’,y’) Bit-Flip Mask

Pb

𝜇, 𝜎,𝑚𝑎𝑥,𝑚𝑖𝑛

1

2

3

4

𝑃𝑏: Probability of 
corruption for bit b

Error 
refinement

Fault 
clustering

• GEMM shape error 
model

• Validation with real 
DNNs

Error models
Fig. 4: A general scheme of the proposed strategy.

location reports the probability of a fault to induce corruption.
In detail, we employ a common coordinate system (x′,y′),
an indicator function 1(x′,y′)(x, y) [44], and the experimental
results to indicate spatially the corrupted GEMM’s locations.
Then, the probability per fault P (x′, y′) is calculated as the
ratio between the number of observed effects in the (x′, y′)
element and the total number of executed tiles in a faulty SM.

At the scalar level, we evaluate the impact of permanent
faults in TCUs as the changes on one or multiple bits of the
final value of the computed GEMM operation by resorting
to bit-flip probabilities. These correspond to the probability
of corruption per bit (Pb), i.e., to the number of times the
bit b changes w.r.t. the golden values divided by the total
number of corrupted bits. It must be noted that the bit-flip
probabilities can be adapted to specific number formats (e.g.,
floating-point or integer). Both probabilities (corruption and
bit-flip) are combined to generate corruption masks (bit-flip-
masks) to describe errors from hardware faults directly on the
outputs of the GEMM operation.

In this work, we focused on floating-point formats, so bits
are grouped as Sign, Exponent and Mantissa, which allow the
identification of bit probabilities per group (e.g., Probability
of Exponent Corruption or PEC, which is the ratio between
faulty values with at least a one-bit flip in the exponent over
the total number of elements affected by the fault) and simplify
the definition of injection masks correctly describing identical
effects from permanent faults in TCUs. From experimental
results, we calculate metrics to identify corruption masks in
the exponent and mantissa, such as PEC. Then, we combine
error generation and refinement steps by first processing any
propagated fault as a GEMM error. Afterward, we evaluate
the error quality in a refinement routine. A complementary
error compression step optimizes the number of errors for
application-level evaluations. In our strategy, each fault caus-
ing a spatial GEMM corruption in the generic element x, y is
evaluated through an iterative process. The strategy classifies
the corruption probability per affected location (P (x′, y′) ̸= 0)
as a feasible target for error generation. Then, a bit-flip-mask is
generated for the given error and associated with the allocated
CTAs/tiles (GEMM coordinate) on a faulty TCU.

It must be noted that one or more bit-flip-masks can be
associated with each fault. Moreover, some error models
might produce equivalent spatial corruptions (i.e., sharing an
identical spatial distribution but corrupting a value differently).
In both cases, refinement and compression processes compact



the errors while preserving the quality and accuracy for the
represented scalar error corruptions as bit-flip-masks.

3) Error refinement: in this step we use two complemen-
tary and focused evaluations using new randomly generated
GEMM seeds. The first evaluation employs FI campaigns
targeting all faults that caused error effects, while the second
one uses the initial bit-flip-masks to place corruptions on
GEMM operations. Then, we compute the Mean Absolute
Error or (MAE) for corruptions from the FI campaigns
(MAEfaulty) and from the error models (MAEmasks), evalu-
ating the error replication accuracy by comparing (MAEfaulty

and MAEmasks). Errors over- or under-estimating the scalar
corruption effects (i.e., larger or lower MAE’s magnitude
than standard) are discarded, and their faults are considered
”unmodelable”. Then, a refinement Threshold (Th, maximum
discrepancy between corruptions from the proposed strat-
egy w.r.t. the standard evaluation) is applied as (1/Th <
MAEsmask/MAEsfault < Th) and experimentally tuned
to trade-off corruption accuracy and number of represented
errors from hardware faults.

4) Error Compression: this step compacts similar error
models into clusters by considering their GEMM location
and corruption magnitude. First, we group error models with
the same corrupted GEMM region. Then, we compare the
MAE per bit-flip-masks with the (Th) to organize them as
clusters. A low value of Th provides higher error corruption
accuracy (more clusters) but a lower compression, while a
large value of Th allows higher compression (fewer clusters)
at the expense of some loss in the error modeling accuracy.
This compression also optimizes the overall error evaluation
time since its main idea is to employ only one error per
cluster instead of several errors with equivalent effects during
application-level evaluations.

5) Model enhancement: this step focuses on improving
and validating the effectiveness of the error models for differ-
ent GEMM scenarios (i.e., sizes) against the conventional FI
campaigns. Since the GEMM size, the number of tiles (T ), and
the reuse of faulty TCUs impact the distribution and accuracy
of erroneous outputs, we resort to shape-wise error models
to enhance the accuracy of errors according to the GEMM’s
shape. For this purpose, we compress error models for several
GEMM shapes (e.g., 200 × 200 × 200) using GEMM seeds.
Then, we validate the accuracy of the shape-wise error models
using convolutional layers from typical DNNs.

The validation involves two evaluations per layer: 1) con-
ventional FI campaigns in the TCUs and 2) error evaluations
using the shape-wise error models, injecting only one bit-flip-
mask per cluster. The MAEs are collected for both evaluations
to compute the vector cross-correlation coefficient and quan-
tify the equivalence between the strategies (FI campaigns and
the proposed one). When the error model is accurate enough
to represent hardware faults, it can evaluate complete CNNs.

C. Results and analyses

In the experiments, we use a tool named PyOpenTCU,
which combines the behavioral operation of the schedulers

TABLE III: DNN LAYERS FOR ERROR MODEL VALIDATION.

DNN layer GEMM shape (A×B×C)
ResNet18 RB1 64×147×12,544
ResNet18 RB2 64×576×12,544
MobileNetV2 3×3×12,544

LeNet5 6×75×576
YoloV5 32×27×102,400

TABLE IV: NUMBER OF FAULTS MODELED AS ERRORS (bit-flip-
masks) AND COMPRESSED CLUSTERS PER GEMM SEED.

Golden GEMM seed faults as bit-flip-masks Clusters
100X 7,998 (94.1%) 1,350
200X 7,052 (83%) 1,159
300X 7,740 (91.1%) 1,052
400X 7,602 (89.4%) 939

and general GPU’s hierarchy with the instruction-accurate
TCU architecture [38], [39]. For the purpose of this work,
PyOpenTCU is configured with 7 SMs and 28 TCUs.

For the shape-wise error model generation, eight statistical
FI campaigns injected 6.8x104 permanent (stuck-at) faults
on the TCUs of one SM, with the 95% of confidence level
and 1% error margin, and observed the corruptions only at
the GEMM’s outputs. The first 4 FI campaigns resort to
GEMM seeds with shapes: 100X (100 × 100 × 100), 200X
(200 × 200 × 200), 300X (300 × 800 × 300), and 400X
(400×1, 200×400) to identify corruptions and define the initial
error models. Then, a second set of 4 campaigns performs the
error refinement. We use 5 representative convolutional layers
with different GEMM shapes for validation purposes (LeNet5,
ResNet18-RB1, ResNet18-RB2, Yolov5, and MobileNetv2), as
reported in Table III. Five additional FI campaigns (one per
layer) injected around 5x103 faults to generate the reference
corruptions for validation against the proposed shape-wise
error models. All experiments used a workstation HP Z2G5
with a 20-core Intel i9-10800 CPU and 32 GB of RAM.

A preliminary analysis indicates that a considerable per-
centage of the evaluated faults in TCUs (around 70% to 90%)
produced corruption effects (SDCs).

We refined the initial scalar error models for each fault that
causes corruptions (bit-flip-masks) during the FI campaigns.
Then, we compare the MAEs from the additional FI campaigns
(randomly generating new GEMM seeds for each fault) and
those obtained through the error models.

Our exploration of different thresholds (Th) indicates that a
narrow Th (i.e., 1) reduces the number of bit-flip-masks rep-
resenting the corruption effects from hardware faults and only
groups those errors with high corruption accuracy. However,
when Th moves from 3 to 10 the total amount of bit-flip-
masks describing corruptions under acceptable levels increases
from about 66% to around 93% on all analyzed GEMM seed
shapes under the same order of magnitude. This proves that
the refinement can provide acceptable accuracy to represent
errors, as reported in Table IV with compression results on
each shape-wise error model for Th=10.

In some cases, e.g., 100x GEMM seed, the shape-wise
error model (bit-flip-masks) covers a considerable percentage



of effectively represented errors (up to 94.1%) from hardware
faults under an acceptable number of clusters (1,350). Thus,
instead of using a conventional FI campaign (7,998 faults),
an application-level error evaluation provides the equivalent
corruption effects by evaluating only 1,350 errors with our
approach. Moreover, the experimental results support the idea
that compression can effectively reduce the number of cor-
ruption errors to evaluate in large GEMM workloads with a
similar impact on their evaluation times (5X to 8X).

Finally, we validated the effectiveness of the shape-wise
error models by determining the cross-correlation factor (the
higher, the better) between conventional FI campaigns and
our error modeling strategy for the DNN layers. The results,
illustrated in Figure 5 (Left), show that the GEMM seed’s
shape is vital for the effective representation of errors at the
software level. The results suggest that small-shape GEMMs
(100X with correlations from 55% to 92%) are more accurate
than large ones (e.g., 400X with correlations from 15% to
52%) in representing errors on all evaluated layers. A compar-
ison of MAEs from the FI campaign and the shape-wise error
model for ResNet18 RB1 layer in Figure 5 (Right) shows that
up to 92% of the bit-flip-masks accurately represented errors.
In contrast, large-shape GEMMs are affected by the amount
and size of operations in the layers and the GEMM seeds
(i.e., a similar amount and size of operations in 100X shape-
wise error models and the evaluated layers, while completely
different for the 300X and 400X models).

The results indicate that our strategy can represent with a
good accuracy the effect of faults and optimize application-
level reliability evaluations with performance improvements
of up to 225X (from 8.82 h in conventional FIs to 2.26 min
using our error modeling strategy with 100X bit-flip-masks).

V. CROSS-LAYER SIMULATION METHODOLOGIES IN AI
ACCELERATORS

Deep Learning Accelerators (DLAs) are typically optimized
during design-time to meet stringent area, power, and perfor-
mance requirements. However, these architectural parameters
can also impact the propagation of faults through the system,
affecting overall dependability. While existing studies have
explored the correlation between architectural parameters and
SDC errors, they remain in the preliminary stages and lack
comprehensive methodologies to evaluate the impact of design
choices on system reliability [45] [46]. Simulation-based and
emulation-based techniques offer high fault-injection control
but often suffer from long simulation times, limiting their
applicability to early design phases [47] [48].

In this section, we present a cross-layer simulation method-
ology designed to evaluate the reliability of DLAs by injecting
faults at various levels of abstraction. Our approach lever-
ages a cycle-accurate microarchitectural simulation tool that
allows for fault injection in software-visible registers while
maintaining the time-awareness of RTL simulations [49]. This
enables us to model how architectural parameters influence
SDCs and assess their impact on DNN applications in terms
of performance and dependability.

0%

20%

40%

60%

80%

100%

LeNet5 ResNet18
RB1

ResNet18
RB2

Yolov5 MobileNet
v2

C
ro

s
s
 C

o
rr

e
la

ti
o
n

100x 200x 300x 400x

0 200 400 600 800 1000

10
-2

10
0

10
2

10
4

10
5

Clusters

M
A

E

 

 

FI Campaigns

100X shape-wise errors

Fig. 5: Cross-correlation on the shape-wise error models for the
evaluated layers.

A. Case Study: The NVIDIA Deep-Learning Accelerator

AXI4 Interconnect

CACC

+

R
ound

CSC

DL

ABUF
SDP

DBUF

WL

CMAC

MAC Cell
MAC Cell

MAC Cell

...

A
tom

ic - K

CBUF

SD
P - Thpt

Atomic - C

Fig. 6: The NVDLA pipeline as block diagram

The NVIDIA Deep-Learning Accelerator (NVDLA) [50] is
a domain-specific accelerator designed for 2D convolution
operations. It features a five-stage convolution pipeline, com-
prising key components such as a dedicated memory interface
(CDMA), tightly coupled input buffers (CBUF), a control unit
for data and weight loading (CSC), a multiply-and-accumulate
unit (CMAC), and an accumulation unit (CACC). The pipeline
is followed by a reconfigurable post-processing unit (SDP),
which supports element-wise operations like activations.

The system’s flexibility stems from its configurability. Key
parameters include the buffer sizes, the number of input/output
channels handled by the CMAC (Atomic-C, Atomic-K), and
the precision of integer pipelines (8, 16, or 32 bits). By
analyzing different configurations, we assess how hardware
choices impact fault propagation and system reliability during
deep learning operations.For further details on the NVDLA
architecture, refer to our previous work [49].

B. Cross-Layer workflow

To overcome RTL simulation speed, without loosing the
time information, we adopt in our workflow a cycle-accurate
microarchitectural model extended with hardware information.

The example in Pseudocode 1 shows a possible imple-
mentation of the NVDLA CMAC unit, performing vector-to-
matrix multiplications of sizes Atomic-C × Atomic-K. While
Pseudocode 2 presents a possible extension to model it as an
array of multipliers, followed by an adder tree, which critical
path is reduced by inserting a register barrier in the middle.

1 cmac(weights, inputs, psums):
2 for outCh in range(0, Atomic-K):
3 for inCh in range(0, Atomic-C):



(a) Single Point
(b) Single Channel
Random (c) Single Block (d) Single Block (e) Full Channel (f) Bullet Wake

(g) Multi Channel
Random

Fig. 7: Observed error patterns in the output tensor of single DNN layers.

4 // Multiply-and-Accumulate
5 psums[outCh] += inputs[inCh] * weights[outCh][

inCh];

Pseudocode 1: ”Plain” implementation of NVDLA MAC array.
1 cmac(weights, inputs, psums):
2 for outCh in range(0, Atomic-K):
3 // Multiplier Array
4 for inCh in range(0, Atomic-C):
5 mulout[inCh] = inputs[inCh] * weights[inCh];
6 // Adder Tree - Level 1
7 for inCh in range(0, Atomic-C):
8 reg[inCh / regnum] += mulout[inCh];
9 // Adder Tree - Leve 2

10 for rit in range(0, regnum):
11 psums[outCh] += reg[rit];

Pseudocode 2: ”Extended” implementation of NVDLA MAC array.
regnum is the number of registers in the middle of the adder tree.

By modeling hardware registers as software-visible vari-
ables, we can observe the register content at simulation time
and, thus, inject it with faults in the form of bitflips or
corruption masks thanks to the support of saboteurs. The
latter can be easily built after an accurate RTL description
inspection, thus closely matching the hardware behaviour.

Last, to characterize the error models observed in the
accelerator, we feed the simulation results to CLASSES [12].
This state-of-the-art tool is composed of an analyser, extracting
error models statistics, and by a network error simulator, which
replicates the observed error models in order to asses the full-
system fault tolerance [45].

C. Error Modeling Results

TABLE V: ANALYSED NVDLA CONFIGURATIONS. BUFFER SIZES
ARE NORMALIZED ON THE DATAPATH BITWIDTH.

Configuration CBUF Atomic-C Atomic-K CACC SDP
size size thpt

nv small64 131072 8 8 8192 1
nv small256 262144 32 8 8192 1
nv medium512 262144 32 16 32768 4
nv medium1024 262144 32 32 65536 8
nv large2048 262144 64 32 65536 16

Table V reports the analyzed NVDLA configurations (avail-
able at [50]). They majorly differ in MAC array sizes and post-
processing unit parallelism. However, buffers don’t linearly
scale up with the configuration complexity. In particular, the
CBUF is constant through most of the tested designs. We
performed a SEU injection campaign in the form of bitflips in
registers for every combination of designs under test and tested
the network layer. The layers were selected from AlexNet

cbu
f dl wl

cm
ac ab

uf
db

uf sdp

Functional Units

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

Single
Single Channel Random
Full Channel

Single Block
Bullet Wake
Multi Channel Random

Fig. 8: Relative frequency of error patterns across hardware units in
the nv small256 configuration, quantized to 16-bit precision.

and ResNet-18 and trained on CIFAR-10 and CIFAR-100,
respectively. Each fault injection campaign consists of 10.000
SEU injections, for a total of 10K simulations for 15 designs
and 24 convolutional layers.

The observed error models (Figure 7) present in the output
tensors belong to six different geometries previously charac-
terized for GPUs [12]. They are referred to as:

• Single Point: A single output tensor value is corrupted;
• Single Channel Random: Multiple corrupted values in

the same channel;
• Single Block: Corrupted elements sharing the same chan-

nel having contiguous X-Y locations;
• Full Channel: An entire channel is corrupted;
• Bullet Wake: Multiple corrupted values across different

channels sharing the same X-Y coordinates;
• Multi Channel Random: Multiple values across differ-

ent X-Y coordinates and channels.
Figure 8 presents the relative distribution of the observed

error models into the nv small256 configuration running with
integer 16-bit precision. Single Point errors are by far the most
common in the pipeline and are associated with corrupted data
that are not reused during the computation. On the other hand,
data from the CBUF, DL, or WL easily turns into error models
associated with multiple erroneous values in the output tensor.

Full Channel, Single Block, and Single Channel Random
error patterns are always associated to a weight data corrup-
tion, where the difference between the three is determined
by the error activation probability. An erroneous weight can
impact even all the output partial sums associated with a given
neuron, but they always share the same output channel. In fact,



10 20 30 40 50
K / Atomic-K

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Er
ro

r P
ro

ba
bi

lit
y 

(%
)

Fig. 9: Probability of output tensor corruption over the number of
tiled convolutions (K / Atomic-K).

0 20 40 60
C / Atomic-C

0.0

0.2

0.4

0.6

0.8

1.0

Fu
ll

Ch
an

ne
l

To
ta

lS
in

gl
e

Ch
an

ne
l

(a)

0 20 40 60
C / Atomic-C

0.0

0.2

0.4

0.6

0.8

Bu
lle

t
W

ak
e

To
ta

lM
ul

ti
Ch

an
ne

l

(b)

Fig. 10: Relative frequencies of error patterns for faults in the weights
(a) and faults in the features(b), against the number of CBUF entries
(C / Atomic-C).

due to the weight-stationary data reuse policy of NVDLA,
we know how a corrupted weight won’t be prefetched until
the accelerator processes all the corresponding input features,
thus impacting multiple X-Y coordinates. Differently, Multi
Channel Random and Bullet Wake error patterns are associated
with feature data corruption. In fact, corrupted feature data
are broadcasted to multiple neurons, impacting multiple output
channels. Thanks to the hardware parallelism of NVDLA, this
also suggests how a multi-channel pattern cannot impact more
than Atomic-K channels at a time. Last, we can also observe
a minor presence of Full-Channel, Single Block, and Single
Channel Random error patterns in the post-processing unit.
They are majorly associated with biased data corruption. Since
biases are loaded at the beginning of the execution and are
added to all the elements of the same output channel.

The probability that, given an SEU, this translates into any
of the observed error patterns is plotted in Figure 9. As can
be observed, this exposes a negative trend against the ratio

K
Atomic-K , where K is the number of output channels of a layer
and Atomic-K is the number of hardware neurons. It is easy
to observe how this ratio represents the number of hardware
convolutions the layer is tiled into. Therefore, since the more
the tiles, the smaller they are, with the growth of the K

Atomic-K
ratio, we are computing fewer data together, so the probability
that corrupted data is computed with sensitive data decreases.

Second, Figure 10 plots the relative frequency of error
patterns associated with weights and feature corruption in the
CBUF. As illustrated, there is a growing trend in association
with the growth of the C

Atomic-C ratio, where C is the number
of layer’s input channels, and Atomic-C is the number of
hardware input channels of the CMAC. This can be explained
if we observe how the hardware execution time is proportional

int8 int16 int32
Bitwidth

0.000

0.005

0.010

0.015

0.020

0.025

Er
ro

r P
at

te
rn

 P
ro

ba
bi

lit
y

Fig. 11: Error pattern probability in relation to datapath bitwidth. The
colors correspond to the error patterns shown in Figure 8.

to the ratio C
Atomic-C . In fact, by increasing the total execution

time, it also increases the time window for the CBUF to be
exposed. Therefore, it increases the incidence of error patterns
associated with CBUF data corruption.

Last, Figure 11 illustrates the probability of different error
patterns across the analyzed hardware datapath precisions. It
can be observed that the probability of error patterns does not
scale uniformly across all datapath precisions. While Single
Point patterns are by far the most common in 8-bit pipelines,
error patterns related to weight data corruption rapidly scale
up with larger bit widths. This effect is directly caused by the
quantization scheme. Our analysis adopted a symmetric post-
training quantization scheme, which quantizes the weights
at 8 bits to reduce memory usage. This means that the
remaining bits in the pipeline are used for sign bit extension.
Faults among the sign bits are way more impactful than
bitflips among the information bits. Furthermore, quantization
schemes are not designed to account for robustness against
faults but to preserve the highest network accuracy with the
minimum memory usage. Therefore, pipelines designed to
support large data (i.e., 32-bit) computation expose a higher
amount of sign bits, and thus a higher probability to generate
error patterns different from Single Point.

It is possible to observe how different error patterns ex-
pose different impacts on the final application [12], [45]. In
particular, while Single Point errors are the most common,
other patterns may be way more dangerous (in particular,
Bullet Wake patterns). As Figure 9 and Figure 10 illustrate,
the relationship between DNN hyper-parameters and DLA
hardware parameters has a significant impact on the type of
observed error patterns and the probability with which they
appear, opening the door for future reliability-driven hardware
configuration space explorations.

VI. CONCLUSIONS

In this paper we first assessed the effects of faults induced
by radiation on large ViTs for image classification. While ViT
models provide high accuracy, we observed in our experiments
a high percentage of critical SDCs (misclassifications). We
then designed a fault tolerance approach based on value
range restriction to reduce/remove the critical SDCs. Our
approach combines analysis from beam experiments and data
from software fault simulation. Furthermore, we analyzed the
effectiveness of multi-abstraction assessments to characterize



the impact of hardware faults in TCUs and propose software
error models able to preserve accuracy while significantly
speeding up reliability evaluation. Finally, we highlighted how
different hardware parameters in an NVDLA core can signifi-
cantly change the observed error models and their occurrence,
depending on the target DNN model. Our work opens future
perspectives in investigating performance-dependability-cost
tradeoffs.

REFERENCES

[1] A. Khan et al., “A survey of the recent architectures of deep convo-
lutional neural networks,” Artif. Intell. Rev., vol. 53, pp. 5455–5516,
2020.

[2] L. Alzubaidi et al., “Review of deep learning: concepts, cnn architec-
tures, challenges, applications, future directions,” J. Big Data, vol. 8,
pp. 1–74, 2021.

[3] ISO 26262-5, “Road vehicles — functional safety — part 5: Product
development at the hardware level,” pp. 1–90, 2018.

[4] ISO/IEC 22989, “Information technology — artificial intelligence —
artificial intelligence concepts and terminology,” pp. 1–60, 2022.

[5] I. Hill et al., “Cmos reliability from past to future: A survey of
requirements, trends, and prediction methods,” IEEE Trans. Device
Mater. Reliab., vol. 22, no. 1, pp. 1–18, 2022.

[6] J. D. Guerrero Balaguera et al., “Understanding the effects of permanent
faults in gpu’s parallelism management and control units,” in Int. Conf.
for High Performance Computing, Networking, Storage and Analysis
(SC’23), 2023.

[7] J. Rajski et al., “The future of design for test and silicon lifecycle
management,” IEEE Design & Test, pp. 1–1, 2023.

[8] IEEE, “The international roadmap for devices and systems: 2022,” in
Institute of Electrical and Electronics Engineers (IEEE), 2022.

[9] H. D. Dixit et al., “Silent data corruptions at scale,” 2021. [Online].
Available: https://arxiv.org/abs/2102.11245

[10] P. H. Hochschild et al., “Cores that don’t count,” in Workshop on Hot
Topics in Operating Systems, 2021, p. 9–16.

[11] G. Papadimitriou and D. Gizopoulos, “Silent data corruptions: Microar-
chitectural perspectives,” IEEE on Trans. Comput., vol. 72, no. 11, pp.
3072–3085, 2023.

[12] C. Bolchini et al., “Fast and accurate error simulation for cnns against
soft errors,” IEEE Trans. Comput., vol. 72, no. 4, p. 984–997, apr 2023.

[13] N. Mahatme et al., “Comparison of Combinational and Sequential Error
Rates for a Deep Submicron Process,” IEEE Trans. Nucl. Sci., vol. 58,
no. 6, pp. 2719–2725, 2011.

[14] J. E. R. Condia et al., “A multi-level approach to evaluate the impact of
gpu permanent faults on cnn’s reliability,” in EEE Int. Test Conf. (TC),
2022, pp. 278–287.

[15] K. Ito et al., “Analyzing due errors on gpus with neutron irradiation
test and fault injection to control flow,” IEEE Trans. Nucl. Sci., vol. 68,
no. 8, pp. 1668–1674, 2021.

[16] J. M. Badia et al., “Comparison of parallel implementation strategies in
gpu-accelerated system-on-chip under proton irradiation,” IEEE Trans.
Nucl. Sci., pp. 1–1, 2021.

[17] M. B. Sullivan et al., “Characterizing and mitigating soft errors in gpu
dram,” in 54th Ann. IEEE/ACM Int. Symp. on Microarchitecture, 2021,
pp. 1–10.

[18] P. R. Bodmann et al., “Soft error effects on arm microprocessors:
Early estimations versus chip measurements,” IEEE on Trans. Comput.,
vol. 71, no. 10, pp. 2358–2369, 2022.

[19] J. E. R. Condia et al., “Flexgripplus: An improved gpgpu model to
support reliability analysis,” Microelectronics Reliability, vol. 109, p.
113660, 2020.

[20] A. Chatzidimitriou et al., “RT level vs. microarchitecture-level relia-
bility assessment: Case study on ARM(r) cortex(r)-a9 CPU,” in DSN
Workshop, 2017.

[21] C. Constantinescu et al., “Error injection-based study of soft error
propagation in amd bulldozer microprocessor module,” in DSN, 2012.

[22] S. S. Mukherjee et al., “A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance Micropro-
cessor,” in MICRO, 2003.

[23] A. R. Anwer et al., “Gpu-trident: Efficient modeling of error propagation
in gpu programs,” in SC, 2020.

[24] T. Tsai et al., “NVBitFI: Dynamic Fault Injection for GPUs,” in Ann.
IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN),
2021, pp. 284–291.

[25] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural depen-
dency from Architectural Vulnerability.” IEEE HPCA, 2009.

[26] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulner-
ability stack: Transient fault effects across the layers,” in IEEE ISCA.
IEEE ISCA, 2021, p. 902–915.

[27] F. F. d. Santos et al., “Characterizing a neutron-induced fault model
for deep neural networks,” IEEE Trans. Nucl. Sci., vol. 70, no. 4, pp.
370–380, 2023.

[28] C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning
of a fast neutron beamline for chip irradiation,” Journal of Physics:
Conference Series, vol. 1021, no. 1, p. 012037, may 2018.

[29] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale.” 9th Int. Conf. on Learning Represen-
tations (ICLR), 2021.

[30] Y. Fang et al., “Eva-02: A visual representation for neon genesis,” arxiv,
2023.

[31] Z. Liu et al., “Swin transformer v2: Scaling up capacity and resolu-
tion.” IEEE IEEE/CVF Computer Vision and Pattern Recognition Conf.
(CVPR), 2022, pp. 12 009–12 019.

[32] Z. Tu et al., “MaxViT: Multi-axis vision transformer.” ECCV, 2022,
pp. 459–479.

[33] R. Wightman, “Huggingface,” huggingface.co/timm.
[34] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”

in IEEE CVPR. IEEE CVPR, 2009, pp. 248–255.
[35] F. F. d. Santos et al., “Demystifying gpu reliability: Comparing and

combining beam experiments, fault simulation, and profiling,” in IPDPS,
2021.

[36] G. Gavarini et al., “Evaluation and mitigation of faults affecting swin
transformers.” IEEE 29th Int. Symp. on On-Line Testing and Robust
System Design (IOLTS), 2023.

[37] Z. Chen et al., “A Low-cost Fault Corrector for Deep Neural Networks
through Range Restriction.” IEEE/IFIP DSN, 6 2021.

[38] R. L. Sierra et al., “Analyzing the impact of different real number
formats on the structural reliability of tcus in gpus,” in IFIP/IEEE 31st
Int. Conf. on Very Large Scale Integration (VLSI-SoC), 2023, pp. 1–6.

[39] R. Limas Sierra et al., “Exploring hardware fault impacts on different
real number representations of the structural resilience of tcus in gpus,”
Electronics, vol. 13, no. 3, 2024.

[40] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” 2017.

[41] V. Thakkar et al., “CUTLASS,” 2023.
[42] A. Ruospo et al., “A pipelined multi-level fault injector for deep neural

networks,” in IEEE Int. Symp. on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2020, pp. 1–6.

[43] R. Limas Sierra et al., “Analyzing the impact of scheduling policies on
the reliability of gpus running cnn operations,” in 42nd IEEE VLSI Test
Symp. (VTS 2024), 2024, pp. 1–7.

[44] K. Q. Ye, “Indicator function and its application in two-level factorial
designs,” The Annals of Statistics, vol. 31, no. 3, pp. 984 – 994, 2003.

[45] A. Veronesi et al., “Cross-layer reliability analysis of nvdla accelerators:
Exploring the configuration space,” in IEEE European Test Symp. (ETS),
2024, pp. 1–6.

[46] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in 55th ACM/ESDA/IEEE Design Automation
Conf. (DAC), 2018, pp. 1–6.

[47] S. Pappalardo et al., “A fault injection framework for ai hardware
accelerators,” in 24th Latin American Test Symp. (LATS), 2023, pp. 1–6.

[48] X. Feng et al., “Runtime fault injection detection for fpga-based dnn
execution using siamese path verification,” in 2021 Design, Automation
& Test in Europe Conf. & Exhibit. (DATE), 2021, pp. 786–789.

[49] A. Veronesi et al., “Exploring software models for the resilience analysis
of deep learning accelerators: the nvdla case study,” in Int. Symp. on
Design and Diagnostics of Electronic Circuits and Systems, 2022, pp.
142–147.

[50] “The nvidia deep-learning accelerator.” [Online]. Available:
www.nvdla.org


