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Abstract—We propose MaxiMals, an experimentally tuned low-
cost mitigation solution to reduce the impact of transient faults
on Vision Transformers. MaxiMals can correct 73.06% of critical
failures on average, with overheads as low as 0.25%.

I. INTRODUCTION

Transformers are state-of-the-art ML models that excel in
various autonomous system tasks such as language processing,
image classification, radar processing, and instance segmenta-
tion. Thanks to their ability to learn a wide range of concepts
from data, ViTs are especially useful for complex applications
like autonomous driving [1] and industrial automation [2].
However, given the complexity of the models and the high
number of parameters (which can exceed one trillion [3]), ViTs
need to be executed on large hardware accelerators, such as
Graphic Processing Units (GPUs). GPUs are the most suitable
hardware architecture to train and use large ViT models due to
their flexibility and high-performance computing capabilities.
GPU vendors have significantly improved their products’ com-
puting power, frameworks, and hardware reliability. Modern
GPUs feature a tailored Single Error Correction Double Error
Detection (SECDED) Error Correction Codes (ECC) in the
main memories [4]. Despite ECC, GPUs executing ViTs can
still present high neutron-induced fault rates due to their
extensive computing resources. The probability of multiple
parallel units being simultaneously affected compromises the
reliability of ViT-based systems, posing a threat to ViT-based
autonomous safety-critical applications.

Unfortunately, traditional mitigation strategies, such as mod-
ular redundancy [5] and Algorithm-Based Fault Tolerance
(ABFT) [6], become nearly impractical when adapted to
large Transformers, since there are billions (even trillions) of
parameters and gigabytes of memory to manage and protect.
Even a simple float value restriction, applied across all layers
of a ViT model, imposes a significant 68.61% overhead [7].
Thus, novel and effective solutions are required to enhance
ViT’s reliability, such as the one we propose in this paper.

We propose a protection strategy tailored to ViT, targeting
only faults more likely to affect the model’s accuracy. To
identify the faults to correct, we expose an NVIDIA GPU
to a neutron beam with a fluence of 4.1 × 1011, measuring
the error rate of 5 large ViT models and characterizing the
fault model of ViT basic kernels. Based on the ViT kernels
evaluation, we propose a low-cost and effective fault-tolerant

mechanism, named MaxiMum corrupted values (MaxiMals),
that corrects only the critical corrupted floating-point values
during the inference. Notably, MaxiMals incurs low execution
time overheads, as low as 0.25% (3.53% on average), and
requires minimal model modifications while reducing up to
100% of misclassifications (73.06% on average). Specifically,
our contributions include:
• A reliability evaluation of 5 ViTs on NVIDIA Pascal archi-

tecture (Quadro P2000) using a neutron beam.
• The ViT neutron-induced fault model characterization and

how transient faults affect ViT kernels.
• An efficient hardening technique with minimal model mod-

ifications and low execution time overhead. The proposed
approach, MaxiMals, was validated with neutron beam
experiments.

II. BACKGROUND AND CONTRIBUTIONS

The ViT model, introduced by Dosovitskiy et al. [8], im-
proves image classification accuracy by treating input images
as sequences of patches. These patches are transformed using
linear transformations before being fed into the model. Addi-
tionally, the ViTs have similar structures across their variants
like EVA2 [1], SwinV2 [9], and MaxViT [10]. Transform-
ers use Encoder Blocks, including Multi-Layer Perceptrons
(MLP), Identity and Normalization layers, and Multi-Head
Attention (MHA) networks. While Normalization, Identity,
and MLP are conventional kernels of ML, the MHA module,
the innovation of Transformers, enables attention to image
areas for context understanding. We evaluate the impact of
neutron-induced faults (error rate and model) on each ViT
kernel to enable efficient fault tolerance for ViTs. Our analysis
in Section V shows that ViT’s error rate is dependent on
memory and computational resources.

Hardware accelerators for ViT on autonomous systems are
susceptible to soft errors caused by faults induced by ionizing
particles, such as high-energy neutrons [11]. These errors may
not damage the device physically but can significantly impact
the output of ViT models, potentially changing their final
classifications. When not masked, soft errors can propagate to
the software level and cause Detected Unrecoverable Errors
(DUEs), hang the program or crash the entire system, and
Silent Data Corruptions (SDCs), that allow the application to
complete its execution but with an incorrect output, and with-
out a fault-tolerance method, the failure remains undetected.



2

Particularly concerning ViT models, SDCs can be further cate-
gorized into Tolerable SDCs, which modify the model output
but not the classification outcome, or Critical SDCs, which
causes the model to change the top 1 classification probability,
resulting in misclassification. We focus on correcting Critical
SDCs only to provide efficient mitigation solutions.

In order to provide an efficient hardening, we adopt a
strategy that consists of observing, with beam experiments,
how (and how often) the hardware fault propagates to a
software visible state. We built specific microbenchmarks to
evaluate the impact of the transient faults on the ViTs’ main
operations, MLP, Attention, and Block.

ABFT [6] and value restriction [12]–[14] are established
approaches to prevent Critical SDC on ML models. Inter-
estingly, conventional strategies for large Transformers lead
to high overheads due to their resource-demanding nature.
Researchers have adapted ABFT [15] and range restriction [7]
for ViTs. However, a simple range restriction approach for all
the layers of a ViT model can add up to 68.61% overhead
on execution time [7]. To address this issue, our proposed
MaxiMals approach is an experimentally tuned method at the
application level that increases fault tolerance for large ViT
models with low overhead. This is achieved by targeting only
critical faults. We refrain from suggesting hardware design
changes, resulting in costly hardware modifications that could
affect performance and design time. Instead, we efficiently
manage hardware faults at the application level.

III. EXPERIMENTAL METHODOLOGIES

In this section, we explain our experimental methodology
and the error rate metrics used to evaluate ViT’s failure rate
and failure criticality.

System Under Test: We performed beam experiments
with NVIDIA GPU Pascal architectures (Quadro P2000). The
Quadro P2000 is built with TSMC 16nm FinFET, featuring an
L1 cache of 48KB per Streaming Multiprocessor (SM), an L2
cache of 1280 KB, and 1024 CUDA cores. The GPU has 256
KB registers per SM and a power consumption of up to 75W.
Our beam experiments only focus on GPU core errors (beam
spot set to 2cm diameter to avoid affecting onboard DRAM).

We evaluated 5 ViT models from the HuggingFace library
(v0.8.19) [16]. The models belong to 4 families: Original
ViT [8], EVA2 [1], SwinV2 [9], and MaxViT [10]. The models
differ in size and input patches. For the experiments, we used
a Python program with PyTorch v2.0.0 to load the ViT and
perform inferences on a batch of random images from the
ImageNet dataset [17].

Table I displays the essential features of the evaluated
models, such as their GPU memory usage, accuracy, execution
time, and the minimum and maximum output values of Identity
layers utilized for the MaxiMals implementation. To obtain
the value ranges for the MaxiMals implementation, we ran
the ViT models on the entire Imagenet dataset and recorded
the minimum and maximum values forwarded through each
Identity layer.

Beam Experiments: We measured the neutron-induced
error rate of the ViTs from Table I by exposing the GPUs

TABLE I: ViT models size, accuracy, execution times for
Pascal GPU, and Imagenet dataset profiled value ranges.

Value RangePatch
Size

Size
(MB)

Acc.
(%)

Time
(ms) Min Max

ViT-L [8] L14-224 1164 87.90 488 -231.3 124.6
ViT-H [8] H14-224 2479 88.20 1644 -83.4 90.9
EVA2 [1] L14-448 1176 89.95 2686 -342.6 327.6
SwinV2 [9] L-256 787 86.94 404 -22.5 22.7
MaxViT [10] L-384 845 87.98 938 -66806.8 35259.4

Neutron 
Beam

Pascal 
GPU

Host device and 
ethernet connections

Fig. 1: Quadro P2000 GPUs on ChipIR beamline.

to a neutron beam. The beam experiments provide the Failure
In Time (FIT) – the number of faults expected in 109h of
operation. FIT is calculated by dividing the number of errors
by the neutron fluence and then multiplying by the terrestrial
neutron flux (13n/(cm2 × h)) and by 109. The experiments
were done at the ChipIR facility of the Rutherford Appleton
Laboratory, UK. Figure 1 shows the installed setup, consisting
of GPUs aligned with the neutron beam and connected to
the motherboard. The beam setup utilizes Python scripts to
monitor and execute ViT models on a server outside the beam
room, while the software is designed to recover from device
hangs and restart the program if it fails to respond within
a set timeframe. The same ViT model is run on the GPU for
several iterations, and any differences between the outputs and
a previously saved output are recorded as Tolerable SDC or
Critical SDC. The codes used on the beam experiments are
disclosed1.

IV. MAXIMALS

In this section, we assess the effects of faults induced by
neutrons on the main kernels of ViT models (MLP, Attention,
and the Transformers Encoder Block). We first demonstrate
how errors in ViT operations alter values, then we show how
we can prevent these values from generating critical SDCs.

A. ViT’ Fault Models

We analyze the reliability of the most common ViT kernels
(MLP, Attention, and the Block) to unveil the leading causes
of Critical SDCs. Table II shows data from beam experiments

1https://github.com/diehardnet/maximals
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TABLE II: Experimental data of ViT kernels in the neutron
beam experiments for Pascal GPU.

FIT Rate Inf/NaN
(%)

Max value
differenceSDC DUE

MLP 22.2± 6.7 24.8± 7.1 0.0% 1.3× 1034

Attention 13.9± 3.2 26.2± 4.4 10.5% 6.0× 1034

Block 25.2± 3.6 39.14± 4.5 2.9% 1.0× 1037

for the kernels extracted from the ViT-L model on a single
inference on Pascal GPU. We compute SDC and DUE FIT
rates, the percentage of Not a Number (NaN) and ±infinity
(inf ) values observed in all the experiments, and the maximum
difference between fault-free and corrupted outputs, for each
kernel.

The SDC FIT rates for kernels (on average, 20.49) are
higher than the FIT rate of most ViT models (see Section V).
This is not surprising, since an SDC in a kernel of the ViT
still needs to propagate through the ViT model, and it can still
be masked in the downstream Encoder Blocks. That is, we are
not yet considering the propagation probability of these faults
in the ViT model. Similarly, the DUE FIT rate is higher than
the ViT model’s (30.08 on average).

The MLP kernel produces no inf /NaN values. The MLP
algorithm is a sequence of multiplying and accumulating
instructions and being a simpler algorithm, MLP has less
chance of generating inf /NaN values. Contrarily, the Attention
kernel is composed of softmax and division operations. Those
operations demand many cycles to compute and are more
prone to yield inf /NaN values, leading to the highest percent-
age of corrupted values. Lastly, the ViT Block reveals much
lower inf /NaN percentages in the output than the Attention
kernel. Attention produces many inf /NaN values, but, due to
masking, these values may not propagate through to the final
output of the ViT Block. If corrupted values reach the output
of the Block, they can potentially affect the classification of
the entire ViT model.

B. Proposed Hardening Approach

The inf, NaN, and large values pose a risk to ViT’s relia-
bility, recent research shows that those corrupted values can
reduce the accuracy of a ML model to random guessing [7],
[13], [14]. We modified the Identity layers within the ViT
Block to prevent the propagation of corrupted values that
can generate Critical SDCs. Figure 2a shows a standard ViT
Encoder Block, while Figure 2b shows the modified model
structures needed to implement MaxiMals.

Using simple object-oriented programming techniques, the
MaxiMals approach can be easily implemented for any ViT
structure. We create a child class (HardenedIdentity) that
extends the default Identity layer class. Replacing the default
Identity object with the extended HardenedIdentity allows us
to effortlessly harden 5 different models described in Table I
without any compatibility problem. Then, we execute all
the ViTs on the entire ImageNet validation dataset, store
the minimum and maximum output values on the Identity
layers, and use them as bounds to filter corrupted values. To
avoid changing values that are lower/higher false positives,
we multiply the profile values by 1.3. If the corrupted value

Multi-Head 
Attention

Norm

+

Norm

MLP

+

Input 
Patches

NaN filter

Inf/-inf filter

MAX/MIN filter

NaN filter

Inf/-inf filter

MAX/MIN filter

Multi-Head 
Attention

Norm

+

Norm

MLP

+

Input 
Patches

a) Standard ViT Block b) Hardened ViT Block

Fig. 2: Unhardened and Hardened ViT Blocks.

TABLE III: Overheads introduced by MaxiMals on ViTs.

Execution Time Overhead Added Instructions
ViT-L 3.52% 1.52%
ViT-H 1.72% 1.23%
EVA2 1.37% 0.43%
SwinV2 0.25% 0.07%
MaxViT 10.78% 2.76%

is detected, it is replaced by the lowest or highest value in
the case of ±inf, and 0 in the case of NaN. MaxiMals can
be applied to any of the 120,000 models available on the
HuggingFace library that uses the default PyTorch modules.

Identity layers neither perform any arithmetic operations nor
have learnable parameters. Thus, the performance impact of
the MaxiMals is proportional to the number of ViT Identity
layers. Table III shows the execution time and additional
instructions overheads added by MaxiMals. Our method has
a very low overhead in terms of execution time, on average,
3.53%. The worst case is the MaxViT models, which have
384 Identity layers, with a time overhead of 10.78%. We
also use NVIDIA profiling tools (Nvprof) to measure the
GPU-executed instructions for each ViT model for more
precise measurements. MaxiMals increases by up to 2.76%
the number of executed instructions.

V. EXPERIMENTAL VALIDATION

In this section, we analyze the FIT rate of ViT and the
efficiency of our hardening approach in reducing the critical
SDCs rate (i.e., misclassification rate).

Figure 3 shows the experimentally measured SDC (Overall
and Critical) and DUE FIT rates for the tested Baseline ViTs
models, and the models protected by MaxiMals Values are
reported with 95% confidence intervals considering a Poisson
distribution.

All ViTs exhibited high DUE FIT rates, on average, the
baseline models have DUE FIT rate of 17.60, and the hard-
ened models 14.98. We investigated the causes of DUEs and
discovered that memory faults, such as incorrect memory
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Fig. 3: Overall SDC, Critical SDC, and DUE Failure In Time for the evaluated ViT models (Baseline and MaxiMals).

address accesses and unaligned memory operations, are the
source of 84.23% of the DUEs. Due to the resource-demanding
nature of Transformers models, their implementation leads to
an increased number of global memory accesses and warp
scheduling stress, which translates to a high DUE rate.

The SDC FIT rates, as illustrated in Figure 3, are directly
affected by the complexity and type of the ViT model. The
average Overall SDC FIT rate (Tolerable + Critical SDCs)
for baseline models is 17.30, while for MaxiMals-protected
ViTs, it is 19.74. Notably, the highest Overall SDC FIT rate
is from MaxViT protected by MaxiMals, which is 40.60 FIT.
This is not surprising since MaxViT has the highest number
of Identity layers of all the models (384 identity layers). Even
after correcting any errors by clipping them to the maximum
values, the last classification head’s output may still differ
from the fault-free output. This is because the corrupted values
corrected by MaxiMals will differ from the expected values
but will not lead to any Critical SDCs. It is important to note
that we consider any difference in the classification head’s
output from the fault-free execution as an SDC.

Critical SDCs’ probability depends on various ViT charac-
teristics, such as weight values, accuracy, and activation layers.
Despite the high accuracy and significant data redundancy of
ViTs, Critical SDCs can still occur, as shown in Figure 3. This
is especially evident in the case of large models like EVA2 and
ViT-L, which exhibit a Critical SDC FIT rate of 3.95 and 1.77
for the baseline unprotected models, respectively. Models with
many identity connections and linear operations, like EVA2,
can have a higher criticality than other models due to the ease
with which errors can propagate between the layers. On the
other hand, the SwinV2 model has the lowest Critical SDC
FIT rate, i.e., 0.87 FIT. SwinV2’s patches are organized using
a ”shifted window” that slides through the input, creating
overlapped patches, which add more redundancies to the
represented data, leading to a more reliable model. Although
the Critical FIT rate is low for some models like SwinV2,
Critical SDCs can still be extremely dangerous in safety-
critical applications.

Figure 3 also shows the effectiveness of the MaxiMals
approach. As per the evaluation of various ViT models, the
Critical SDC FIT rate of the unprotected versions is always
higher than the ones protected by MaxiMals. On average, the
Critical SDC FIT rate of unprotected models is 1.99 and the
ones protected by MaxiMals have an average of 0.49.

Finally, Table IV presents the percentage of the Critical

TABLE IV: Critical SDC percentage for the Base ViTs and
ViTs hardened with MaxiMals.

Critical SDC %
Base Model MaxiMals Baseline/MaxiMals

ViT L 8.47% 4.69% 1.81×
ViT H 6.45% 3.64% 1.77×
EVA2 37.21% 0.00% 3.24×*
SwinV2 25.00% 4.76% 5.25×
MaxViT 6.59% 0.93% 7.05×
*For the MaxiMals value, we consider the maximum error bar value

SDCs for each configuration tested. The proposed approach
drastically reduced the Critical SDC percentages, with mini-
mum observed values of 0.93% for MaxViT. This efficiency of
MaxiMals on MaxViT is attributed to the number of Identity
layers (384 Identity layers over 1097 layers), allowing the
filtering of corrupted values at a higher frequency. During the
beam experiment campaign, no Critical SDC was observed for
EVA2. Consequently, the maximum error bar for the EVA2
Critical SDC was calculated based on Quinn and Tompkins’
approach for zero failures [18].

VI. CONCLUSIONS

We conducted a thorough analysis to understand how tran-
sient errors induced by neutrons can impact ViT models.
Although ViT models are known for their high accuracy, they
are resource-intensive and have high SDC and DUE rates. Our
evaluation of the most basic operations of ViT has shown that
the effects of transient faults on MLP, Attention, and Block can
compromise the computation, leading to large values, NaN/Inf,
and significantly reduce the model accuracy. To address this
issue, we have developed a fault tolerance approach called
MaxiMals, designed explicitly for ViT models. Our approach
reduces Critical SDCs and improves fault tolerance for com-
plex ViT models.
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