
HAL Id: hal-04736668
https://hal.science/hal-04736668v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ANR POSEIDON Deliverable D3.2 - Cell-free MIMO:
Channel estimation, acquisition and MU precoding and

detection - preliminary version
Chaima Beldi, Didier Le Ruyet, Hmaied Shaiek, Rafik Zayani, Jean-Baptiste

Doré

To cite this version:
Chaima Beldi, Didier Le Ruyet, Hmaied Shaiek, Rafik Zayani, Jean-Baptiste Doré. ANR POSEIDON
Deliverable D3.2 - Cell-free MIMO: Channel estimation, acquisition and MU precoding and detection
- preliminary version. CEDRIC Lab/CNAM; CEA LETI. 2024. �hal-04736668�

https://hal.science/hal-04736668v1
https://hal.archives-ouvertes.fr


Grant ANR-22-CE25-0015

Deliverable D3.2
Cell-free MIMO: Channel estimation, ac-
quisition and MU precoding and de-
tection - preliminary version

Delivery date 12/10/2024
Version 3.2
Editor CNAM
Authors Chaima Beldi (CNAM), Hmaied Shaiek (CNAM), Didier Le Ruyet (CNAM), Rafik

Zayani (CEA), Jean-Baptiste Doré (CEA)
Dissemination Public
Keywords Cell-free massive MIMO, Hardware impairment, CSI, CSI compression

History

Version Date Modification Authors
1.0 12/10/2024 First version Chaima Beldi (CNAM), Hmaied Shaiek (CNAM),

Didier Le Ruyet (CNAM), Rafik Zayani (CEA),
Jean-Baptiste Doré (CEA)



Del. 3.2 – Cell-free MIMO: Channel estimation, acquisition and MU precoding and detection

Executive summary
The POSEIDON project aims to define solutions for scalable CF-mMIMO operating in the sub-7 GHz frequency
bands (where the available spectral resources are scarce) to overcome various challenges (coverage, capacity, en-
vironmental sustainability. . . ). In particular, scalable CF-mMIMO architectures must be able to handle i) the dramatic
increase in wireless traffic demand, which is caused by the exponential growth of connected wireless devices, and ii)
the emerging services/applications requiring huge data traffic (e.g., high-quality video calls, holographic communi-
cations and Internet of Things/mMTC). Moreover, as an additional target, POSEIDON will propose architectures that
may contribute in the roadmap for the necessary transition to greener solutions and infrastructures. With the ICT
sector’s power consumption increasing exponentially through the different generations of radio mobile networks, a
tenfold increase of the power consumption for the wireless access is expected over the next decade. Thus, power
consumption is among the critical key performance indicators (KPIs) to be optimized in 6G networks. To this end,
POSEIDON will provide solutions to satisfy the expected 6G’s requirements with ever-increasingly ubiquitous and
reliable wireless connectivity while at the same time steadily addressing the crucial reduction of the ecological im-
pact of cellular infrastructures. The project will focus on lower layers, physical and access, of CF-mMIMO where the
consequences of these aforementioned objectives are direct and challenging. WP3 is dedicated to the development
of signal processing solutions that enhance energy efficiency, spectral efficiency, and scalability in CF-mMIMO sys-
tems. These solutions will be based on realistic propagation and hardware impairment models from WP1, ensuring
that the outcomes are practical. Special attention is given to distributed and scalable aspects of these architectures.
This first version of this deliverable explores several areas of CF-mMIMO system development:

• Channel Estimation Errors and Non-linearity: Addressing the inaccuracy of channel estimation and its
effects on system efficiency. A detailed analysis of CSI imperfections, such as channel estimation errors and
the influence of hardware impairments like non-linear power amplifiers, is provided. Additionally, precoding
schemes for downlink data transmission are analyzed to improve performance in the presence of limited
feedback.

• State-of-the-Art CSI Compression: Different approaches for CSI compression are explored, such as quan-
tization based, compressed sensing, dimensionality reduction techniques, and deep learning-based meth-
ods. These techniques are crucial for enhancing the feedback efficiency and computational scalability of
CF-mMIMO systems, particularly in large-scale deployments. In the next version of this deliverable, we will
implement one of these approaches specifically within the cell-free massive MIMO context, providing practical
insights into their real-world application.

• Energy-Efficient Precoding in CF-mMIMO-OFDM: A focus on local precoding techniques, specifically tai-
lored to deal with hardware imperfections and to improve energy efficiency in OFDM-based CF-mMIMO sys-
tems. Two key precoding strategies, full-pilot zero-forcing (FZF) and regularized zero-forcing (RZF), are con-
sidered to enhance performance under hardware impairments (HWI), particularly power amplifier distortions.

Dissemination: Public 2
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1 Introduction

1.1 General introduction
The demand for reliable and high-speed wireless connectivity has surged in both personal and professional envi-
ronments, placing significant pressure on existing communication networks. This growing need is largely fueled by
data-intensive applications such as high-definition video streaming, virtual and augmented reality, and the prolifera-
tion of the Internet of Things (IoT). These applications require communication systems that not only offer seamless
connectivity but also demonstrate high efficiency and reliability. Addressing these evolving requirements is crucial
for future wireless networks, particularly in the context of the 5G and beyond ecosystems.

In response to this need, the POSEIDON project represents a pivotal initiative aimed at advancing cell-free
massive multiple-input multiple-output (CF-mMIMO) technology in the sub-7 GHz frequency bands. CF-mMIMO
systems offer a revolutionary approach to wireless communication by utilizing a network of distributed antennas
that work cooperatively to enhance system performance. Unlike conventional cellular networks that rely on fixed
base stations and are limited by the boundaries of individual cells, CF-mMIMO systems eliminate cell boundaries,
enabling continuous and widespread coverage. This architecture minimizes issues such as inter-cell interference
and variations in signal quality, resulting in more efficient and robust communication.

However, the implementation of CF-mMIMO systems presents significant challenges. Key among these are the
issues related to imperfect Channel State Information (CSI), hardware impairments, and the limitations of feedback
systems. These factors can introduce inefficiencies and degrade overall system performance if not adequately
addressed. The complexities of managing distributed antennas, ensuring accurate CSI, and overcoming hardware
limitations require advanced signal processing solutions.

In this context, WP3 of the POSEIDON project focuses on developing signal processing techniques to enable
energy-efficient and spectrally efficient CF-mMIMO systems. This first version of this deliverable marks an explo-
ration of such solutions.

In the first chapter, we examine how inaccuracies in channel estimation can impact system efficiency and provide
a comprehensive analysis of the effects of these imperfections. Additionally, we investigate the challenges posed
by non-linear power amplifiers and constrained feedback mechanisms, both of which can negatively influence the
performance of CF-mMIMO systems.

In the second chapter, we provide a thorough review of the state-of-the-art approaches proposed in the literature,
focusing on those addressing the problem of CSI compression in the context of massive MIMO. While many of these
approaches have not yet been implemented specifically in cell-free systems, they offer valuable insights that can
inspire solutions for CF-mMIMO. By exploring these methods, we aim to draw inspiration from the MIMO context
and adapt on of these strategies to address the unique challenges posed by cell-free architectures.

Finally, we present an energy-efficient downlink transmission scheme for CF-mMIMO-OFDM based system.
Two precoding techniques are considered : local full-pilot zero-forcing and local regularized zero-forcing. In this
work we will give a description of the system model and provide a first analysis as well as simulations results.

1.2 Notations
The notations used in this deliverable are listed as follows:

• Lowercase boldface letters (e.g. x) stand for column vectors,

• Bold lowercase letters with a superscript (.)t (e.g. xt ) denotes row vectors,

• Bold uppercase letters (e.g. X) denotes matrices,

• The˘marks time-domain variables over the paper,

• We denote by matrix transpose, matrix conjugate transpose, matrix pseudo-inverse and trace of a matrix by
XT ,XH , X† and tr(X), respectively,

• For a M×N-dimensional matrix X = {xmn},

Dissemination: Public 5
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• We use xn to designate the n-th column, and xt
m to designate the m-th row,

• The N ×N identity matrix and the M×N all-zeros matrix are denoted by IN and 0M×N , respectively,

• We use ∥x∥2 and ∥x∥∞ to denote l2-norm and l∞-norm of vector x, respectively,

• X = diag{x1, ...,xK} denotes a diagonal matrix with elements {xi},

• the cardinality and complement of set Ξ is |Ξ| and Ξc, respectively,

• E [.] stands for the expectation operator and j denotes
√
−1.

Dissemination: Public 6
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2 Performance Analysis of CF-mMIMO systems with imperfect channel
CSI

2.1 Introduction
The CF-mMIMO system has the potential to significantly enhance wireless connectivity by using numerous dis-
tributed antennas and advanced signal processing to improve efficiency and performance. However, real-world
implementations face challenges such as imperfect Channel State Information (CSI), non-linear hardware issues,
and limited feedback mechanisms, all of which can affect performance. In this initial version of the deliverable, we
closely examine these challenges. We start by explaining the system model to provide a basic understanding of
CF-mMIMO. Next, we discuss the precoding schemes used for downlink transmissions and describe two different
cooperation strategies among the Access Points (APs). We then look at how errors in channel estimation impact
efficiency and provide a detailed analysis of these imperfections. Finally, we explore the effects of non-linear power
amplifier issues and limited feedback on system performance.

2.2 System Model
We consider a CF-mMIMO network consisting of P single antenna UEs and M APs, each equipped with K antennas
as shown in Fig.1. The total number of antennas in the coverage area is denoted as N, where N = MK.
The CPU controls all the APs over fronthaul links, providing the signaling needed for synchronization and coherent
joint reception and transmission to the UEs. The channel from the m-th AP to the p-th UE is denoted by hp,m ∈CK×1.
We use the correlated channel Rayleigh fading model to describe the spatial correlations of each channel with
hp,m ∼ NC(0K , Rp,m) where Rp,m ∈ CK×K is the spatial correlation matrix. The complex Gaussian distribution
represents the small-scale fading of objects within the propagation environment, whereas the positive semi-definite
correlation matrix Rp,m accounts for the large-scale effects.

Since the geographical coverage area of the CF-mMIMO network can be large, it must be designed to be in
a way that the computational capability and fronthaul capacity of existing APs remain sufficient as more UEs are
being introduced to the network. We consider so an implementation of CF-mMIMO that is inspired by the guidelines
for the Dynamic Cooperation Clustering (DCC) framework [2].

With this implementation, the p-th UE is exclusively served by the APs whose indices belong to the ordered set
Mp = {mp,1,mp,2 . . . ,mp,Qp} where Qp = |Mp|.

For the DL, the received signal at the p-th UE can be written as:

rp =
M

∑
m=1

hH
p,mxm +bp, (1)

Figure 1: CF-mMIMO network with numerous distributed APs linked to CPU [12].

Dissemination: Public 7
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where bp ∼ NC(0, σ2
dl) is the receiver noise with noise variance σ2

dl and xm ∈ CK×1 denotes the signal sent by the
m-th AP which consists of a precoded superposition of the signals designed for the different UEs belonging to Dm,
where Dm denotes the set of UEs served by the m-th AP. This signal can be expressed as:

xm = ∑
i∈Dm

wi,mχi, (2)

where χi is the complex transmit symbol for the i-th UE, and wim ∈ CK×1 is the precoding vector that the m-th AP
assigns to i-th UE. Finally, by substituting the transmitted signal in (2) into (1), the received DL signal at the p-th UE
becomes:

rp =
M

∑
m=1

hH
p,m

(
∑

i∈Dm

wi,mχi

)
+bp. (3)

2.3 Downlink data transmission
In this section, we introduce two precoding strategies designed for both centralized and distributed scenarios.

2.3.1 Precoding vectors for DL data transmission

We need first to compute for the p-th UE, the designated precoding vector wp =
w̄p√

E{∥w̄p∥2}
[2], where w̄p ∈CNp is

the precoding vector that describes the spatial directivity of the DL transmission.

Centralized precoding In this scenario, the CPU utilizes the combined channel estimates from the APs serving
the p-th UE whose indices are part of the set Mp. These estimates are denoted as ĥp = [ĥT

p,mp,1
. . . ĥT

p,mp,Qp
]T ∈

CNp×1, where Np = Qp×K represents the total number of antennas dedicated to serving the p-th UE. The Partially-
Minimum Mean Square Error (P-MMSE) precoding vector can be calculated using the following expression:

w̄P−MMSE
p ≜ [w̄T

p,mp,1
. . . w̄T

p,mp,Qp
]T (4)

= pdl
p

(
∑

i∈Pp

pdl
i ĥiĥH

i +σ
2
dlINp

)−1

ĥp,

where Pp represents the set of UEs that are partially served by the same APs as the p-th UE and pdl
p is the total

transmit power allocated to the p-th UE.
The vector w̄P−MMSE

p is divided into Qp vectors that are subsequently used in the computation of the received
signal given by equation (3).

Distributed precoding Under this processing, the selected AP m computes locally the precoding vectors asso-
ciated to the user p ∈ Dm on the basis of their local channel estimates { ĥi,m, i ∈ Dm }.

We propose in this work to implement a Local Precoding - Minimum Mean Square (LP-MMSE) scheme. This
precoding vector associated to the p-th user and m-th AP can be expressed in the following manner:

w̄LP−MMSE
p,m = pdl

p

(
∑

i∈Dm

pdl
i ĥi,mĥH

i,m +σ
2
dlIK

)−1

ĥp,m. (5)

It’s important to highlight that for each UE p, we calculate only w̄LP−MMSE
p,m at the APs m ∈ Mp.

2.4 Effect of imperfect CSI on spectral efficiency
In this section, we analyze the channel estimation erro (CEE) impact on the spectral efficiency (SE) of our DL
transmission scenario.
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2.4.1 Channel Estimation Error Model
In practice, channel estimation is imperfect and cannot perfectly capture the actual channel conditions [5,13]. The
estimated channel ĥp,m between UE p and AP m, for p = 1, . . . ,P and m = 1, . . . ,M, differs from the real channel
hp,m due to estimation errors.

To account for these imperfections, we model the reconstructed channel at each AP as:

ĥp,m = hp,m + ε, (6)

where ε ∼ NC(0, σ2
e IK) is the channel estimation error, assumed to follow a complex Gaussian distribution with

zero mean and variance σ2
e [13]. Here, σe represents the standard deviation of the channel estimation error.

Next, the precoding vectors are computed based on the reconstructed channel ĥp,m. Since the channel estimates
are imperfect, the resulting precoding vectors differ from those calculated using perfect channel information.

As a result, both the central and distributed precoding schemes must adapt to these imperfections, as the
computed precoding vectors directly depend on the instantaneous channel estimates ĥp,m in each coherence block.

2.4.2 Spectral efficiency in DL transmission considering CEE
To evaluate the effects of CEE, we derive the SE expression. The DL SE depends on the normalized precoding
vectors of all UEs [2], which in fact are being computed using imperfect channel estimates ĥp,m = hp,m + ε , and as
such the SE is given by:

SE(CEE)
p = E

{
log2(1+SINR(CEE)

p )
}
, (7)

where SINR(CEE)
p is given by

SINR(CEE)
p =

pdl
p |hH

p wp|2

∑i∈Dm,i̸=p pdl
i |hH

p wi|2 +σ2
dl
. (8)

2.5 Impact of non-linear power amplifier distortion on spectral efficiency
In this section, we investigate how the distortion introduced by non-linear power amplifiers PA affects the SE in the
DL transmission scenario.

2.5.1 Modeling the power amplifier non linearity
Non-linear PAs introduce distortions to the signals they amplify. This distortion can be especially problematic when
operating the PAs close to saturation level, which is recommended to improve the energy efficiency of the overall
system [30]. Therefore, our aim is to model this distortion and investigate its impact on the system performance. To
begin let’s write the transmitted signal from the mth AP,

um = f (xm), (9)

where xm is the precoded signal and f (.) represents the non-linear characteristic function the PA used at the mth

AP’s RF chains. A PA is commonly modelled by its input/output characteristics. These characteristics are expressed
as Amplitude to Amplitude (AM/AM) and Amplitude to Phase (AM/PM) conversions. They describe, respectively,
the relationship between the magnitude and phase of the output signal as function of the input signal amplitude.
The signal at the output of the non-linear circuit is given by:

um = Fa (|xm|)exp( j (arg(xm)+Fp (| xm |))) , (10)

where arg(xm) is the phase of the complex signal xm, and Fa(.), Fp(.) represent respectively the AM/AM and AM/PM
conversion characteristics of the PA. It’s worth mentioning that the previous equation assumes identical conversion
characteristics over all the PAs used in the mth AP radio frequency (RF) chains. Various mathematical models
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are utilized in the literature to describe the conversion characteristics of the PAs [34]. In this work, we considered
a polynomial model from [33]. This polynomial model, exhibiting both AM/AM and AM/PM distortion, has been
established by measurements on a real 4GHz PA with 1W maximal output power.

In practice, to avoid or reduce the effects of non-linearity, the PA is operated at a certain input power level,
characterized by its Input Back-Off (IBO) from its 1dB compression point. In this work, we will adopt the following
definition of IBO:

IBO = 10log10

(
P1 dB

Pmoy

)
, (11)

where P1dB represents the input power at the 1dB compression point, and Pmoy = E{|xm|2} is the average power of
the input signal.

2.5.2 Signal model in the presence of non-linear power amplifier distortion
In this subsection, we model the non-linearity of the power amplifier using the Bussgang theorem [4]. According to
this theorem, if the input signal im of a memory-less non-linear function follows a Gaussian distribution, the resulting
output of the amplification device can be expressed as a scaled version of the input signal along with an additional
distortion component. Crucially, this distortion component is statistically independent from the input signal. This
condition, on the input signal, is satisfied for multi-carrier-based transmissions. Therefore, at the output of the m-th
AP RF chains, we have:

um = αmim +η
AP(m)
dis , (12)

where:

• αm = diag(αm(1), . . . ,αm(K)) ∈ CK×K is the collective vector of the complex gain of the K antennas of the
m-th AP.

• η
AP(m)
dis ∼ NC(0K , σ2

disIK) is a centered noise, uncorrelated with im, with variance equal to σ2
dis.

We remind that for the sake of simplicity, and without loss of generality, we have assumed that the RF chains of
any AP exhibit identical PAs conversion characteristics. Therefore the complex gain αm(k) and the corresponding
noise η

AP(m)
dis (k) are identical ove the K RF chains of the mth AP. To achieve a specified IBO value in dB [34], the

input PA signal, xm, is weighted by a gain δ and becomes:

im = δxm = δ ∑
i∈Dm

wi,mχi. (13)

where δ =
√

P1 dB

10
IBO
10 Pmoy

. We remind that for a multi-carrier-base transmission, we can approximate the distribution

of xm as Gaussian random process. Consequently, we can apply the Bussgang theorem [34] to the signals at the
PA outputs and write:

um = δαm ∑
i∈Dm

wi,mχi +η
AP(m)
dis . (14)

So, we can express the received signal at a UE p with both centralized and distributed operation modes as follows:

yp =
M

∑
m=1

hH
p,mη

AP(m)
dis (15)

+δ

M

∑
m=1

hH
p,m

(
αm ∑

i∈Dm,i ̸=p
wi,mχi

)
+bp. (16)
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2.5.3 Analytical calculation of αm and σ2
dis

Analytically, the complex gain of the k-th antenna of the m-th AP αm(k) can be computed by the following equation [3]:

αm(k) =
1
2
E
[

∂S(rk)

∂ rk
+

S(rk)

rk

]
, (17)

where rk = |um(k)|, for k = 1 . . .K is the magnitude of the signal to be amplified, S(rk) = Fa(rk)exp( jFp(rk)) repre-
sents the complex envelope of the amplified signal. The variance σ2

dis(k) of the non-linear distortion can be also
computed analytically by [3]:

σ
2
dis(k) = E

{
|S(rk)|2

}
−|αm(k)|2E{r2

k}. (18)

The analytical computation of the non-linear distortion (NLD) parameters αm(k) and σ2
dis(k) depends on the com-

plexity of the expression of S(.). A generalized approach for computing these parameters for any measured of
modelled PA have been proposed in [3]. This approach, based on a polynomial approximation of S(.), have been
applied to compute the NLD parameters corresponding to the 3GPP PA model considered in our work.

2.5.4 Spectral efficiency expression considering the non-linear power amplifier distor-
tion

Assuming perfect channel estimation, to gain insight into the effect of the non-linear PA distortions on the perfor-
mance of the CF-mMIMO systems, we derive the expression of DL SE, given by :

SE(NLPA)
p = E

{
log2(1+SINR(NLPA)

p )
}
. (19)

where SINR(NLPA)
p is given by

SINR(NLPA)
p =

pdl
p |δhH

p α pwp|2

∑i∈Dm,i ̸=p pdl
i |δhH

p α pwi|2 +E
{∣∣hH

p ηdist
∣∣2}+σ2

dl

. (20)

with ηdist =

[
η

AP(mp,1)
T

dist . . .η
AP(mp,Qp )

T

dist

]T

∈CNp×1 is the collective vector of distortions originating from the amplifiers

of all the APs served the UE p and α p = diag(αmp,1 , . . . ,αmp,Qp
) ∈ CNp×Np is the collective vector of the complex

gain of all the APs serving the UE p.

2.6 Impact of limited feedback on spectral efficiency
When channel reciprocity cannot be fully utilized, whether in TDD or FDD systems, CSI must be estimated at the
UE level and then transmitted to the APs via feedback links. CSI can be represented as the product of Channel
Quality Information (CQI) and Channel Direction Information (CDI). In [38], the authors evaluated the performance
of a non-scalable CF-mMIMO system with limited feedback. They designed codebooks for both CDI and CQI and
assessed the downlink performance of the system using Maximum Ratio Transmission (MRT) precoding. In this
work, we assume that CQI is perfectly known at the APs, while only the CDI is quantized using two approaches:
Random Vector Quantization (RVQ) [29] and optimized Vector Quantization (VQ). The RVQ method generates
vectors independently from a uniform distribution on the complex unit sphere, whereas the optimized VQ codebooks
are constructed using the Lloyd algorithm [23, 25]. Unlike [38], we will examine a scalable CF-mMIMO system
and evaluate the spectral efficiency (SE) of downlink transmissions with both centralized and distributed precoding
strategies under limited feedback conditions. We will carefully consider how the number of feedback bits affects
system performance.
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2.6.1 Random Vector Quantization of the channel direction information
RVQ is a simple approach to evaluate the effects of quantization of the channel direction information (CDI), gpm. In
RVQ, the codebook is composed of Q = 2B quantization vectors that are independently chosen from the isotropic
distribution on the K dimensional complex unit sphere [38]. Here, B is the number of feedback bits.

We decompose the channel vector hpm into two parts namely the channel quality information CQI ||hpm|| and
the normalized channel vector or Channel Direction Vector (CDI) g as follows:

gpm =
hpm

||hpm||
(21)

The quantized CDI ĝpm is determined as the one minimizing the chordal distance between the quantization
vectors of the codebook and the CDI gpm.

Let us define the square chordal distance Z, between gpm and ĝpm, as follows:

Z = d2(gpm, ĝpm)

= 1−|gH
pmĝpm|2 (22)

Z is a random variable within the interval [0,1]. Let us denote p(z) and F(z) as the probability density function and
the cumulative distribution function of Z. In [25], the authors have introduced an upper bound on F(z) for quantized
feedback scheme assuming that the regions associated to each codeword do not overlap:

F(z)≤ F̃(z) =

{
QzK−1 if 0 ≤ z < Q− 1

K−1

1 if z ≥ Q− 1
K−1

(23)

The associated power density function (pdf) p̃(z) is given by:

p̃(z) =

{
Q(K −1)zK−2 if 0 ≤ z < Q− 1

K−1

0 if z ≥ Q− 1
K−1

(24)

This pdf can be obtained from a Beta distribution Beta(x,α,β ) with α = K −1,β = 1 and performing a change
of support. A simple approach to generate ĝpm from gpm for a given realization Z is to first generate a vector s such
as d2(s,o) = Z where o = [1 0 . . .0]T . The vector s can be obtained as follows [11]:

s =
[√

1−Z
s̃

]
(25)

where s̃ is a (K −1)×1 random unit norm vector.
Then we can obtain the vector ĝpm by multiplying s by the rotation matrix Urot as follows:

ĝpm = Urots (26)

where Urot is the complex Householder matrix given by [6]:

Urot = IK − 1
uHo

uuH (27)

with u = o−gpm

2.6.2 Optimized vector quantization of the channel direction information
In the quantized feedback scheme, the vector fopt is taken from a set or codebook of the precoding vectors F =
{f1, f2, . . . , fQ} where Q = 2B and B is the number of feedback bits. The challenge is to design the codebook
F in order to maximize a performance criterion such as the bit error rate or the system capacity. To measure the
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average distortion due to quantization, we define the distortion function. For the Multiple Input Single Output (MISO)
transmission, we have:

G(F ) = Eh
[
1−|gH

pmfopt |2
]

(28)

The codebook F can be seen as a collection of lines in the Euclidean space CK . fi can be seen as the coordi-
nates of a point situated at the surface of an hypersphere with a unit radius centered at the origin. Mathematically,
fi is a point in the Grassman manifold or Grassmanian space G(K,1). For i.i.d. channels, the construction of the
set F should maximize the angular separation between the two closest lines [25] [23]. This problem is called the
Grassmannian line packing problem. The codebook design is formulated as follows:

min
F

G(F ) subject to ||fi||2 = 1 ∀i (29)

This problem can be seen as a Vector Quantization (VQ) problem [26] with source input g∼ uniform(OK), codebook
F and distortion metric d(g, fi). This VQ problem is also known as a spherical vector quantization problem and can
be efficiently solved using the Lloyd algorithm [26].

2.6.3 Channel reconstruction at APs
We assume that the APs have perfect CQI. On the other hand, the APs and UEs are using the same CDI codebook.
After perfect channel estimation each user sends the index of the codebook to the AP that is able to retrieve the
corresponding channel from the codebook based on this index.

ĝpm = arg min
fi∈F

d2(gpm, fi) (30)

The reconstructed CSI obtained through the limited rate feedback is consequently given as follows:

ĥpm = ||hpm||ĝpm (31)

2.7 Simulation Results
First, we assess the performance of the proposed precoding techniques and examine the impact of CEE and the
distortions caused by the non-linearity of PA on the SE under various scenarios. Drawing inspiration from [2], we
construct a simulation environment where 100 access points (APs), each equipped with 4 antennas, and 100 single-
antenna user equipments (UEs) are uniformly distributed across a 2×2 square kilometer area. By employing the
wrap-around technique, we approximate a large network characterized by a density of 100 antennas per square
kilometer and 25 UEs per square kilometer. Other simulation parameters include a bandwidth of 20 MHz, σ2

dl =
−94 dBm and pdl

p = 1 W for downlink transmission power. The curves presented are the result of independently
sorted 1000 channel realizations conducted independently for each configuration.

To evaluate the CEE, we vary the variance of the CEE σ2
e ∈ {0,10−2,10−1}. Fig. 2 depicts the achievable

downlink spectral efficiency (DL SE) of the CF-mMIMO system with imperfect channel estimation, where P-MMSE
and LP-MMSE are adopted for DL transmission, respectively.

A primary observation is that the LP-MMSE precoding provides smaller SE compared to the centralized scheme,
P-MMSE. Further observations will demonstrate that the former is more robust against estimation error. It is clear
that the presence of CEE degrades the performance of the system with both schemes. A small performance
degradation in the SE is noted when σ2

e is very small compared to performance with perfect channel estimation
(i.e., σ2

e = 0). However, the performance gap is larger for P-MMSE and shrinks for LP-MMSE. When increasing
the severity of the errors from σ2

e = 10−2 to σ2
e = 10−1, the performance is severely degraded by 2.748 bit/s/Hz for

P-MMSE and 1.22 bit/s/Hz for LP-MMSE for only 50% of the UEs.
Furthermore, the degradation of the average DL SE is depicted in Fig. 3. It is observed that LP-MMSE precoding

is more robust to estimation noise than P-MMSE. This is because LP-MMSE precoding can take advantage of the
spatial diversity available in a cell-free network. By using multiple APs to precode the signal, it can better adapt to
variations and noise in the channel between the APs and the UEs. Moreover, LP-MMSE precoding operates on
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Figure 2: DL SE per UE with P-MMSE, LP-MMSE precoding with perfect and imperfect channel estimation when
σ2

e =0, 0.01, 0.1).
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Figure 3: Average SE for DL transmission versus different values of σ2
e .

the entire transmit signal, which includes multiple data streams. In contrast, P-MMSE precoding considers only the
transmit signal for each UE and applies power constraints to the transmit signal at each AP independently.

Next, we investigate the impact of distortions induced by the PA non-linearities. As explained in Section 2.2, the
PA model used in our work is derived from polynomial modeling based on real measurements of a 1 W PA operating
in a 4 GHz frequency band. This model exhibits both AM/AM and AM/PM distortion, as shown in Fig. 4.

Fig. 5 illustrates the Cumulative Distribution Function (CDF) of the achievable per-user SE with LP-MMSE and
P-MMSE precoders for various values of input back-off (IBO).

Notably, lower IBO values, such as IBO= 2 dB, correspond to curves shifted towards the left, indicating a higher
probability of observing lower SE values due to increased non-linear distortion. Conversely, higher IBO values
result in curves shifting towards the right, corresponding to a higher probability of achieving better SE performance.
Comparing these results with those in Fig. 2, we can conclude that for an IBO value of 8 dB, we achieve performance
comparable to the perfect CSI case (σ2

e = 0).
Fig. 6 illustrates the average DL SE across varying IBO values, ranging from 4 to 8 dB. An interesting pattern

emerges from IBO = 7 dB, where we see a floor of ∼ 3.3 bit/s/Hz and ∼ 4.2 bit/s/Hz for LP-MMSE and P-MMSE
precoding structures, respectively, corresponding to the performances achieved in the perfect CSI case (σ2

e = 0).
This behavior is linked to the power amplifier working point. As we increase IBO, we move away from the amplifier’s
1 dB compression point and work within the linear region. This amplification region helps reducing the distortion
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Figure 4: AM/AM and AM/PM characteristics of the 3GPP PA model [33].
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Figure 5: DL SE per UE with P-MMSE, LP-MMSE precoding considering non-linear PA operating at IBO =
2,4,6,8dB.

caused by the amplifier while sacrificing the energy efficiency of the CF-mMIMO.
Additionally, when comparing the two different precoding schemes, LP-MMSE and P-MMSE, we observe a

difference in how they handle amplifier distortion. LP-MMSE suffers more from distortion, with a noticeable drop in
SE from 3.3 bit/s/Hz to 1.9 bit/s/Hz as IBO decreases from 8 to 4 dB. In contrast, P-MMSE maintains a consistently
higher SE across different IBO values.

In summary, the dynamics observed in Fig. 6 underscore not only the crucial role of IBO settings in SE optimiza-
tion but also highlight the differential impact of power amplifier non-linearity across various precoding schemes.

Next, we evaluate the performance of the proposed precoding schemes and observe the effects of the number
of feedback bits on the DL SE. Fig. 7 shows the CDF of the achievable per-user SE with LP-MMSE and P-MMSE
precoders considering RVQ for CSI with B ∈ {4,8,10,16} bits and perfect CSI. The solid lines represent outcomes
achieved through the application of distributed LP-MMSE precoding. In contrast, the dashed lines illustrate results
obtained in a centralized scenario, utilizing the P-MMSE precoding technique.
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Figure 7: CDF of the DL SE per UE using P-MMSE and LP-MMSE precoders, when varying the number of feedback
bits.

It can be seen from Fig. 7 that the system performance improves as the number of feedback bits increases. It is
also worth noting that the gap between the two precoders grows with the number of bits. When B = 16, the system
SE reaches 2.38 bit/s/Hz with P-MMSE and 2.06 bit/s/Hz with LP-MMSE, for 60% of UEs. Additionally, the results
gradually converge towards the perfect scenario as B increases.

Fig. 8 illustrates the evolution of average DL SE as a function of the number of quantization bits B using RVQ
codebooks. The number of bits B considered in the analysis ranges from 4 to 32. As seen in this figure, the DL SE,
when using the LP-MMSE precoding scheme, outperforms that of the P-MMSE scheme for values of B between 4
and 8 bits. However, beyond B = 8, this trend reverses with higher values of B, where P-MMSE precoding exhibits
superior performance as expected. For perfect CSI, average SEs of 3.9 bit/s/Hz and 4.5 bit/s/Hz can be achieved
with LP-MMSE and P-MMSE precoders, respectively. Thus, it can be inferred that when B = 32, the achieved
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Figure 8: Average of DL SE with quantized feedback for B ranging from 4 up to 32 bits.

Figure 9: Performance comparison of the mean DL SE using both the RVQ and the optimized VQ codebooks for
B ∈ [3,4,5,6,7,8,9].

.

average SEs are close to those achieved in the perfect CSI cases.
Fig. 9 provides a performance comparison of the mean DL SE using both RVQ and optimized VQ codebooks

for B ranging from 3 to 9 bits. We observe that the use of optimized codebooks improves the performance of both
centralized and distributed precoding schemes. For instance, with B = 4, there is an increase of 0.44 bit/s/Hz for P-
MMSE and 0.18 bit/s/Hz for LP-MMSE. Furthermore, it is clear that when using optimized VQ, P-MMSE outperforms
LP-MMSE, which is not the case with RVQ. This is because with the RVQ approach, the codebooks are randomly
generated, whereas in the optimized approach, the code words are designed to maximize system capacity.
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3 CSI compression in the CF-mMIMO context

3.1 State of the Art on Channel State Information Compression in Massive MIMO
Context

In the context of Massive MIMO and Cell-Free systems, CSI plays a crucial role in enabling high SE and reliable
communication. However, the massive amount of CSI generated by large-scale antenna arrays introduces signif-
icant challenges in terms of feedback overhead and computational complexity. Efficient compression of CSI is,
therefore, essential to ensure system scalability and performance. Over the years, various approaches have been
proposed in the literature, each addressing the CSI compression problem from different perspectives.

3.1.1 Quantization-Based Approaches
Quantization remains one of the fundamental methods for CSI compression, aiming to reduce the precision of CSI
data while minimizing the loss of information. Early methods such as Scalar Quantization (SQ) focus on individually
quantizing each element of the CSI matrix, which, while simple, may lead to substantial quantization errors. As
a refinement, Vector Quantization (VQ) considers the entire CSI vector for quantization, leading to more efficient
compression [35]. Specifically, Lloyd-Max Quantization has been widely used, where an iterative algorithm is em-
ployed to optimize the quantization levels according to the distribution of the CSI data. This method is beneficial for
reducing quantization noise and improving the quality of the reconstructed CSI [31]. Moreover, Non-Uniform Quan-
tization techniques have been introduced to adapt the quantization steps to the variance of the CSI data, which is
particularly effective in scenarios with heterogeneous channel conditions [40].

3.1.2 Compressed Sensing (CS) Techniques
Compressed Sensing (CS) has gained significant traction as a method for CSI compression, particularly due to
its ability to exploit the inherent sparsity in high-dimensional CSI data. CS-based methods reduce the number
of required measurements for accurate CSI reconstruction, thereby alleviating the feedback burden in massive
MIMO systems. In [17], a CS-based CSI Feedback Scheme was proposed that leverages the sparsity of CSI
in the angular domain, significantly reducing the amount of data that needs to be transmitted back to the base
station. Another notable approach is the Distributed Compressed Sensing (DCS), which extends the traditional CS
framework to exploit both intra- and inter-antenna correlations in distributed antenna systems. DCS offers improved
compression efficiency and reconstruction accuracy by considering the collective sparsity of the CSI across multiple
antennas [10].

3.1.3 Dimensionality Reduction Techniques
To further reduce the dimensionality of the CSI data, techniques such as Principal Component Analysis (PCA) and
Singular Value Decomposition (SVD) have been employed. PCA works by identifying the principal components of
the CSI matrix, which represent the directions of maximum variance, and projecting the CSI onto these components.
This reduces the size of the CSI matrix, thereby lowering the feedback overhead [27]. However, the challenge lies in
selecting an appropriate number of principal components to avoid losing critical information. SVD decomposes the
CSI matrix into a set of singular values and corresponding vectors, and by truncating the smaller singular values,
the CSI can be compressed [27]. SVD is particularly effective in reducing the dimensionality of CSI while preserving
most of the channel’s energy, making it a valuable tool in MIMO systems where channel prediction and estimation
are critical.

3.1.4 Deep Learning-Based Approaches
The advent of deep learning has opened new avenues for CSI compression. Autoencoders, a type of neural network
designed for unsupervised learning, have been applied to compress CSI by encoding it into a low-dimensional latent
space and then decoding it back to reconstruct the original CSI [37]. This approach leverages the ability of neural
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networks to capture complex patterns in the data, leading to efficient compression. Recurrent Neural Networks
(RNNs), known for their ability to handle sequential data, have also been used for CSI compression in time-varying
channels [24]. RNNs can model temporal correlations in the CSI data, enabling them to predict future CSI based
on past observations. This reduces the need for frequent CSI feedback, making them highly effective in dynamic
wireless environments. Autoencoders and other advanced neural network models, such as Convolutional Neural
Networks (CNNs) [21], have also been employed to capture complex spatial correlations in the CSI matrix. This
approach takes advantage of the spatial structure in the CSI, leading to more efficient compression compared to
traditional methods. Furthermore, hybrid models combining autoencoders with techniques like compressed sensing
or quantization have been proposed to further improve the efficiency and accuracy of CSI compression in Massive
MIMO systems [9].
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4 Local PAPR-Aware Precoding for Energy-Efficient Cell-Free Massive
MIMO-OFDM Systems

4.1 Introduction
In this work, we present an energy-efficient downlink transmission scheme adequate to the emerging CF-mMIMO-
OFDM technology. In this first deliverable we give a description of the system model, first analysis as well as
simulations results.

4.2 System, Channel and hardware impairment models

4.2.1 System Model
In this section, we study an OFDM based cell-free massive MIMO downlink system operating in time division duplex
(TDD) mode. Let there be L APs, each equipped with M antennas, serving coherently K single-antenna users,
where LM ≫ K. We assume that all the users and the APs are randomly located in a geographic area, as shown
in Fig. 10. Frequency-selective channels are considered and the K UEs are arbitrary distributed in the coverage
area. An OFDM modulator is implemented at each antenna branch where the total number of subcarrier is MFFT ,
which is the IFFT/FFT size, while the number of used subcarrier is N ≤ MFFT .

The TDD mode separates the downlink (DL) and uplink (UL) transmissions (see Fig. 11) with the assumption of
perfect channel reciprocity which can be assured by accurate calibration methods [36]. Moreover, the transmission
of a TDD frame in OFDM based CF-mMIMO is performed within the coherence interval and the physical resource
block (RB) width is smaller than the coherence bandwidth.

To be compliant with the 5G NR standard, let us consider a radio frame whose time-frequency resource is
divided into Nrb resource blocks. Each RB comprises Nsc = N/Nrb consecutive subcarriers. We note by (t,n)l,m the
resource unit (RU), which represents the smallest time-frequency resource of the n-th subcarrier of the t-th OFDM
symbol corresponding to the m-th antenna of the l-th AP.

Here, the TDD frame contains Nc OFDM symbols that fits the shortest coherence interval of all the users. It
corresponds to the transmission of τc =NscNc RUs per RB, where τp of them are used as pilots which are distributed
among the UL payload transmission, as shown by Fig. 11. These pilot data will serve to estimate MK frequency-
domain channels, per RB, at each AP. Consequently, we leave ND = NscNc − τp for payload data, in samples per
RB, that will be split between DL and UL transmissions as ξ ND and (1−ξ )ND, respectively, where 0 < ξ < 1.

One of the major drawbacks of OFDM is related to the fact that its time-domain signal has very high amplitude
fluctuations, making it power-hungry as well as very sensitive to hardware impairments, like PA saturation. These
fluctuations are characterized by the peak-to-average power ratio (PAPR) [19] [20], which is defined as the ratio of
the highest signal peak power and its average power value. Then, the PAPR, corresponding to the signal at antenna
m of AP l, can be given by

PAPR(at
l,m) =

max
0≤t≤ON−1

[
|al,m(t)|2

]
E
{
|al,m(t)|2

} , (32)

where at
l,m =

[
al,m(0), ...,al,m(ON −1)

]
and O denotes the oversampling factor.

4.2.2 Local MMSE Channel estimation

We denote by hl,k,n ∈CM×1 the frequency-domain channel response between the AP l and the user k on the n-th sub-
carrier, where n= 0, ...,N−1. The channels are modeled using independent Rayleigh fading, i.e., hl,k,n ∼ C N (0,βl,kIM),
where βl,k is the large-scale fading coefficient between AP l and UE k, which is antennas and subcarriers indepen-
dent.

Note that we consider block-fading channels, which are constant during a time-frequency interval, known as the
coherence interval, and varies independently between coherence intervals. Besides, we assume that the large-

Dissemination: Public 20



Del. 3.2 – Cell-free MIMO: Channel estimation, acquisition and MU precoding and detection

Figure 10: System model of the OFDM based CF-mMIMO with segmented fronthaul: M transmit antennas at the
AP, K independent single-antenna terminals. The serial fronthaul, which interconnects the APs, is highlighted in
blue.

scale fading coefficients vary slowly, in range of several coherence intervals. It is therefore obvious to consider that
the channel gains are known a-priori at each AP and are used to estimate the current channel responses.

The channel estimation is performed locally at each AP to preserve the network scalability. In this investigation,
we adopt the minimum mean square error (MMSE) channel estimation method and the pilot-to-precoder mapping
strategy inspired from the work in [15]. Hence, the frequency-domain channel estimate between the l-th AP and
the k-th UE, corresponding to the n′-th RB can be given by

ĥn′,l,k = cl,kH̄n′,leik , (33)

where

• cl,k is a frequency independent scalar, which is defined as [18]

cl,k ≜

√
ηu

k βl,k

τp ∑t∈Pk
ηu

t βl,t +1
(34)

• H̄n′,l =Yn′,l ∈CM×τp denotes the corresponding full-rank matrix of the frequency-domain channel estimates,
where Yn′,l represents the frequency-domain pilot signal received at the l-th AP on the n′-th RB.
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Figure 11: A radio frame with Nc time-domain OFDM symbols and N subcarriers in frequency-domain that are
grouped into Nrb RBs. The time-frequency resource grid of a single RB with Nsb subcarriers is shown. The UL
training, UL payload and DL payload are also shown.

• eik is the ik-th column of Iτp ,

Note that the channel estimates and estimation errors, corresponding to the n′-th RB, which are denoted by ĥn′,l,k
and h̃n′,l,k =hn′,l,k−ĥn′,l,k, are independent and distributed as ĥn′,l,k ∼C N

(
0,γl,kIM

)
, h̃n′,l,k ∼C N

(
0,
(
βl,k − γl,k

)
IM
)
,

where

γl,k ≜
ηu

k τpβ 2
l,k

τp ∑t∈Pk
ηu

t βl,t +1
(35)

Note that γl,k, which is the mean-square of the channel estimate between the AP l and the UE k, is antenna and
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frequency independent.
Remark 1 (Per-RB to per-subcarrier channel mapping) The channels at AP l are estimated per-RB and are

assumed to be identical for RUs within one RB. Then, each AP can effectively construct τp channel coefficients
per-subcarrier n as

ĥn,l,k = ĥn′,l,k for n ∈ RBn′, (36)
we can also write

H̄n,l = H̄n′,l for n ∈ RBn′. (37)

4.2.3 Hardware Impairment Model
In the case of OFDM based CF-mMIMO, the modulated signals {at

l,m,∀m} are fed, towards a given antenna, through
a transmit radio-frequency (RF) chain. This RF chain is commonly nonlinear due to hardware impairments, which
are dominated by nonlinear power amplifiers (PAs). These latter can be characterized by amplitude-to-amplitude
(AM/AM) and amplitude-to-phase (AM/PM) conversions. According to the modified Rapp model [28] which has the
advantage of exhibiting greater simplicity and accuracy than other models, AM/AM and AM/PM conversions of the
solid state power amplifier (SSPA) can be represented as follow:

FA(ρ) =
Gρ(

1+
∣∣∣ Gρ

Vsat

∣∣∣2p
) 1

2p
, FP(ρ) =

Aρq(
1+
(

ρ

B

)q) , (38)

Where ρ is a modulus of the input signal, G is PA gain in linear region, Vsat is PA saturation at the output, p is
the smoothness factor that controls the nonlinearity and A, B and q are fitting parameters. The output of the PA can
be expressed as :

z = FA(ρ)exp j(φ+FP(ρ)), (39)
where φ is the phase of the input signal. Figure 12 depicts amplitude and phase distortions caused by PA models as
modified Rapp or simple clipping for G = 16, V sat = 1.9, p = 1.1,A =−345,B = 0.17,q = 4. Note that in the clipping
model there is no phase distortion i.e. no AM/PM distortion is modelled. In modified Rapp, which resembles more
closely to realistic PAs, both amplitude (AM/AM) and phase (AM/PM) distortions are modelled.

Let us consider the resulting transmit signal at a given transmit antenna (UE/AP side) can be written as

z = f(a) (40)

where f(.) represents the nonlinear operation which is assumed to be memoryless and identical over all antennas
of all APs/UEs, for the sake of simplicity. Specifically, the nonlinear behavior of the PA can be modeled by the
following full-rank polynomial

z(t) =
I

∑
i=1

λia(t)|a(t)|i−1, (41)

where λ1, ...,λI are complex-valued model parameters that capture both amplitude-to-amplitude (AM/AM) and
amplitude-to-phase (AM/PM) conversions.

According to the Bussgang theorem [32], the time-domain OFDM signal at the output of the nonlinear function
can be expressed by the unique decomposition as

z = K0a+d, (42)

where K0 is a complex gain which is frequency independent and d is a zero mean noise and with σ2
d variance,

which is uncorrelated with a. This latter is not Gaussian, but at the receiver side, after the OFDM demodulation, it
becomes Gaussian [8].

Note that these hardware impairments (HWI) parameters, K0 and σ2
d , can be computed analytically, letting us

to be able to develop closed-form expressions to evaluate the in-band performance of CF-mMIMO-OFDM systems
[7]. The closed-form expressions for the NLD parameters in terms of the model PA parameters {λi} are given in
equations (43) and (44), where σ is the standard deviation of the PA input signal. Readers interested in details
about computing these equations can refer to [7].
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Figure 12: Power Amplifier AM/AM and AM/PM distortions for clipping (only AM/AM distortion) and modified Rapp
model (including both AM/AM and AM/PM distortions) [28].

K0 = λ1 +

√
π

8

I

∑
i=2, i even

(i+1)λiσ
i−1

i−2
2

∏
i′=0

(2i′+1)+
1
2

I

∑
i=3, i odd

(i+1)λi(
√

2σ)i−1(
i−1

2
)! (43)

σ
2
d =

I

∑
i=1

|λi|2 2i
σ

2ii!−2 |K0|2 σ
2 +

√
4π

2

I

∑
i,l=1,i̸=l, (i+l) odd

ℜ[λiλ
∗
l ]σ

i+l

i+l−1
2

∏
i′=0

(2i′+1)

+2
I

∑
i,l=1,i ̸=l, (i+l) even

ℜ[λiλ
∗
l ](

√
2σ)i+l(

i+ l
2

)!,

(44)
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4.3 Downlink CF-mMIMO-OFDM under HWI

4.3.1 Downlink CF-mMIMO-OFDM Data Transmission
Local Precoding schemes Precoding is needed to be performed at each AP in order to remove the multi-user
interference (MUI) at receivers. In CF-mMIMO, the local nature of the implemented precoders is crucial to preserve
system scalability. To stress this aspect, we use the terminology local precoding.

The signal vectors sn,∀n, can be linearly precoded, at the l-th AP, as

xl,n = Wl,nPlsn, (45)

where:

• xl,n ∈CM×1 denotes the precoded vector that contains samples to be transmitted over the the n-th subcarrier
through the M antennas of AP l,

• Wl,n ∈ CM×K is the precoding matrix corresponding to the n-th subcarrier at the l-th AP,

• Pl ∈CK×K , which is frequency independent, represents a diagonal matrix whose elements √
ηl,k,k = 1, ...,K

are the normalized transmit powers allocated to the K UEs.

To be compliant with the existing literature, we consider max-min fairness power control that consists in maxi-
mizing the lowest user’s downlink SE. Then, the normalized transmit power (normalized by the noise power σ2

b ) at
each AP l, denoted by ∥xl,n∥2 = ∑

K
k=1 ηl,k,∀n has to be constrained as ∑

K
k=1 ηl,k ≤ ηmax

l , where ηmax
l represents the

maximum sum power at the input of the different PAs at each AP. It can be written as

η
max
l =

1
σ2

b

M(Vsat/G)2

IBO
, (46)

where the IBO denotes the input back-off which represents the PA input power level relative to input saturation
power, Vsat is PA amplitude saturation level, G is the PA linear gain and (Vsat/G)2

IBO represents the maximum power at
the input of each PA [22] [39].

The power control optimization problem can be formulated as follows [15] [14]

maximize
{ηl,k≥0}

min
k

SINRk,n (47)

s.t.
K

∑
k=1

ηl,k ≤ η
max
l , ∀l

where SINRk,n denotes the signal-to-interference plus noise ratio (SINR) for user k at subcarrier n.
For the sake of self-containment, we consider, in this paper, the distributed power control policy where the power

control coefficients are given in [15] as

ηl,k =
γl,k

∑
K
i=1 γl,i

η
max
l , ∀l,∀k (48)

Inspired by [15] [14] that study local precoding schemes in the downlink, we will consider the following linear
precoders in frequency-domain of our OFDM based CF-mMIMO: (i) local full-pilot zero-forcing (FZF) and (ii) local
regularized zero-forcing (RZF). Here, the precoding vector employed by the l-th AP towards the k-th UE on subcarrier
n, denoted by wl,n,ik ∈ CM×1, is given by

wl,n,ik =



H̄l,n

(
H̄H

l,nH̄l,n

)−1
eik√

E
{
∥H̄l,n

(
H̄H

l,nH̄l,n

)−1
eik∥

2
} =

√
(M− τp)ρl,kH̄l,n

(
H̄H

l,nH̄l,n

)−1
eik , for local FZF

Ĥl,n

(
ĤH

l,nĤl,n+P−1
l

)−1
ek√

E
{
∥Ĥl,n

(
ĤH

l,nĤl,n+P−1
l

)−1
ek∥2

} , for local RZF
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where:

• ρl,k, which is the mean square of H̄l,neik , can be defined as ρl,k = γl,k/c2
l,k [15],

• Ĥl,n ∈ CM×K is the matrix of the channel estimates between the AP l and the K users on the subcarrier n,
which can be collected as Ĥl,n =

[
ĥl,n,1, ..., ĥl,n,K

]
,

• Pl ∈ RK×K is a diagonal regularization matrix,

• eik is the k-th column of IK , i.e, taking the k-th column of Ĥl,n

(
ĤH

l,nĤl,n

)−1
.

Remark 2.1: It is worth mentioning that any AP can design the different aforementioned precoders by only using
its local CSI. Exceptionally for the local FZF, it works only when M ≥ τp +1 as explained in [15] and [14].

Received signal The frequency-domain received signal at UE k and subcarrier n can be given by

yk,n =
L

∑
l=1

hH
l,k,nzl,n +bk,n (49)

=
L

∑
l=1

hH
l,k,nK0xl,n +

L

∑
l=1

hH
l,k,ndl,n +bk,n,

where zl,n ∈CM×1 denotes the frequency-domain amplified signal transmitted by AP l on subcarrier n, dl,n ∈CM×1

is the frequency-domain version of hardware-related noise, K0 is the M ×M diagonal matrix whose elements are
equal to K0 and bk,n ∼ C N (0,1) is an i.i.d. Gaussian noise.

By plugging (45) in (49), yk,n can be expanded as

yk,n =
L

∑
l=1

hH
l,k,nK0Wl,nPlsn +

L

∑
l=1

hH
l,k,ndl,n +bk,n (50)

=
L

∑
l=1

√
ηl,khH

l,k,nK0wl,n,ksk,n︸ ︷︷ ︸
Desired signal

+
L

∑
l=1

K

∑
t ̸=k

√
ηl,thH

l,k,nK0wl,n,it st,n︸ ︷︷ ︸
Multi-user interference

+
L

∑
l=1

hH
l,k,ndl,n︸ ︷︷ ︸
HWI

+ bk,n︸︷︷︸
Noise

4.3.2 Downlink Spectral Efficiency
The per-RB and per-user SE in the downlink can be computed using [16] as

SEk = ξ

(
1−

τp

NscNc

)
Nsc∆ f log2

(
1+SINRk,n

)
, (51)

with the effective signal-to-interference-plus-noise ratio (SINR) of UE k at subcarrier n is given by

SINRk,n =

∣∣∣∑L
l=1

√
ηl,kE

{
hH

l,k,nK0wl,n,k

}∣∣∣2
∑

K
t=1 E

{∣∣∣∑L
l=1

√
ηl,thH

l,k,nK0wl,n,it

∣∣∣2}−
∣∣∣∑L

l=1
√

ηl,kE
{

hH
l,k,nK0wl,n,k

}∣∣∣2 +E
{∣∣∣∑L

l=1 hH
l,k,ndl,n

∣∣∣2}+1
(52)

Note that this SE expression is valid for all precoding schemes presented in (4.3.1) and analytical expressions
concerning the FZF scheme can be written as stated in Corollary 2.1. Note that a closed-form expression for the
local RZF is intractable and only results, performed by Monte-Carlo (MC) simulations, are presented regarding this
latter precoding scheme.
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Corollary 2.1: The per-user downlink SE (bit/s) is obtained for FZF precoding as in equation (51), where the
SINRk,n can be expressed as given by

SINRk,n =
(M− τp)|K0|2

(
∑

L
l=1

√
ηl,kγl,k

)2

(M− τp)|K0|2 ∑t∈Pk\{k}
(
∑

L
l=1

√
ηl,tγl,k

)2
+ |K0|2 ∑

L
l=1 ∑

K
t=1 ηl,t(βl,k − γl,k)+Ψk,n +1

(53)

where Ψk,n denotes the NLD variance that can be expressed as

Ψk,n = E


∣∣∣∣∣ L

∑
l=1

hH
l,k,ndl,n

∣∣∣∣∣
2
 (54)

=
L

∑
l=1

L

∑
l′=1

M

∑
m=1

M

∑
m′=1

E
{

h∗l,k,n,mdl,n,md∗
l′,n,m′hl′,k,n,m′

}
Note that Ψk,n depends on both intra-user and inter-user nonlinear distortions, which can not be eliminated by

using conventional transmit precoding techniques. Moreover, the behavior of this NLD depends on many param-
eters, such as number of users, number of pilots, number of APs, number antennas per-AP, precoding scheme,
channel estimation, pilot contamination and essentially the adopted PA and its operating point.

In order to derive a closed-from expression for the SINR of the k-th user at the n-th subcarrier, we have to
compute the terms in (54). Note that due to the possibility of NLD correlation, the latter are not necessary null even
when l ̸= l′ and m ̸= m′. But, it is still possible to have closed-form expressions, for Ψk,n, for some scenarios as
stated in Lemma 2.1, corresponding to FZF precoding.

Lemma 2.1 (NL OFDM based CF-mMIMO with local FZF precoding): With FZF precoding, when τp → M, Ψk
can be expressed as

Ψ
FZF
k =

M
σ2

b

L

∑
l=1

βl,kσ
2
d , (55)

and achievable SE for the k-th UE can be defined as stated in Theorem 2.1.
Theorem 2.1: In OFDM based CF-mMIMO adopting nonlinear PA and FZF precoding (τp → M), the downlink

capacity of the k-th UE is lower bounded by the expression given by equation (56),

SEk = χNsc∆ f log2

1+
(M− τp)|K0|2

(
∑

L
l=1

√
ηl,kγl,k

)2

(M− τp)|K0|2 ∑t∈Pk\{k}
(
∑

L
l=1

√
ηl,tγl,k

)2
+ |K0|2 ∑

L
l=1 ∑

K
t=1 ηl,t(βl,k − γl,k)+ΨFZF

k +1

 (56)

where χ = ξ

(
1− τp

NscNc

)
, which denotes the percentage of DL payload data. We recall that closed-form expression

for σ2
d is given in (44).

4.4 Simulation results
This section provides numerical results to evaluate the performance of OFDM based cell-free massive MIMO in
terms of DL SE, in presence of nonlinear power amplifiers.

4.4.1 Simulation Scenario
Let us introduce the considered CF-mMIMO-OFDM system setup. We assume that the L APs and the K UEs are
independently and uniformly distributed within an area of size D×D squared meters, which is wrapped around at
the edges to avoid boundary effects.

We consider an uncoded OFDM with IFFT/FFT of N = 256 and use a spectral map Ξ, in which Na = |Ξ|= 248
subcarriers are used for data transmission and Ngb = |Ξc| = 4 are used as guard-band at each side. Thus N =
Na +2Ngb = 256. It is worth mentioning that a 4-oversampling factor is considered in the time-domain to evaluate
the PAPR accurately. Note that we consider an OFDM radio frame of duration 1 ms (corresponding to the channel
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Table 1: Simulation settings.

Description Value Description Value
D (simulation area) 1000×1000m2 AP/UE distribution ind. unif. rand.
Carrier frequency 2 GHz AP/UE antenna height 10/1.5 m
Sbc bandwidth (∆ f ) 15 kHz Coherence bandwidth 180 kHz
Coherence time 1 ms τd (RUs) 168
ξ 0.5 σsh 4 dB
σ2

b −92 dBm Bandwidth 15.36 MHz
ηu

k ∀ k 100 mW Pc 0.1 W
P0 0.1 W Pbt 0.25 W/(Gbits/s)

coherence time), which consists of 14 OFDM symbols. From the frequency-domain perspective, each RB contains
Nrb = 12 subcarriers with 15 kHz of bandwidth each.

The large-scale fading coefficients {βl,k} are modeled as [15]

βl,k = PLl,k.10
σshzl,k

10 , (57)

where PLl,k denotes the path-loss and 10
σshzl,k

10 models log-normal shadow fading with standard deviation σsh and
zl,k ∼ N (0,1). Note that, in this investigation, we consider the 3GPP Urban Microcell path-loss model, which is
given by equation (58) when assuming a 2 GHz carrier frequency [15] [1].

PLl,k [dB] =−30.5−36.7log10

(
dl,k

1 m

)
, (58)

where dl,k denotes the distance between the l-th AP and the k-th UE including AP and UE’s heights.
The simulation settings are reported in Table 1. Note that the PA characteristics are modeled by the memoryless

modified Rapp model (see chapter 2), defined by the 3GPP in [28], with parameters G = 16, Vsat = 1.9, p = 1.1,
A =−345, B = 0.17 and q = 4. Its corresponding complex-valued polynomial model parameters, which capture the
AM/AM and AM/PM conversions, can be computed as in [7].

Finally, random pilot assignment is adopted for simplicity. So, each UE randomly select a pilot sequence from
a predefined set of τp ≤ K orthogonal pilot sequences of length τp samples.

4.4.2 Performance Evaluation
To evaluate the performance of the considered CF-mMIMO-OFDM system, we adopt the cumulative density function
(CDF) of the SE, which corresponds to the SE values collected over different random realizations of the AP/UE
locations for 500 network snapshots.

CF-mMIMO-OFDM Downlink under PA nonlinearity Fig. 13(a) shows the CDFs of the SEs achieved by the
CF-mMIMO-OFDM adopting the local FZF precoding scheme and running under PA non-linearity. Both results
achieved with ideal PA (black curve) and non-linear PA (with different values of IBO) are presented.

First, one can observe that the results obtained in closed-form (solid curves) and by Monte-Carlo simulations
(markers) are in good match, which numerically validates our derived closed-form expression in equation (56) for
three IBO values. Second, we can see the significant impact of the PA non-linearity on the SE performance,
especially for high percentiles. This can be explained by the fact that the PA distortion is beam-formed towards UEs
with good channel conditions, since the control power scheme boosts the energy towards these UEs.

In Fig. 13(b), the CDFs of SEs achieved by the local RZF are given. One can clearly note the higher sensitivity
of the local RZF precoding scheme to the PA non-linearity compared with the FZF one. It is clearer now that only
UEs with good channels (i.e., upper SE percentiles) are impacted.
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Figure 13: CDFs of DL per-RB SE achieved by local FZF and RZF precoding schemes: L = 200, M = 16, K = 20,
τp = 15, power control is based on (48). Solid curves denote analytical results obtained in closed-form (equation
(56)) while markers indicate the results obtained by MC Simulations.

We also observe the following findings when comparing the two precoding schemes: in linear case (Ideal PA),
we see that that the RZF performs better than FZF, for low and high percentiles. The reason is that RZF can
support the interference better by taking into account channel estimation error and pilot contamination, thanks to
the regularization matrix. Moreover, it is clear that RZF is more sensitive than FZF against the nonlinear distortions,
especially at high SE percentiles. This is related to the fact that the RZF boosts power towards UEs with good
channel conditions, leading to high NLD power towards this UEs. Moreover, FZF still has worse performance at low
SE percentiles because it uses all the DoFs to suppress interference towards all the available orthogonal directions,
resulting in a small array gain M − τp. Besides, it would be better to cancel only interference towards UEs (< τp)
with good channel gains and increase the array gain M− τp.

It shall be noted that RZF can be improved by taking into account the NLD power in computing the regularization
matrices {Pl}, which is out of scope of this paper. The reason is because we aim to show the relevance of our
proposed PAPR reduction algorithm in improving the performance of this traditional RZF.
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Figure 14: Median DL per-RB SE, achieved by FZF and RZF precoders, averaged over several large-scale fading
realizations, L = 200, M = 16, K = 20, IBO = 3dB. Only results obtained by MC simulations are provided.
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Effect of the number of pilots (τp) The implementation versatility of RZF versus the limitation of FZF is shown
in Fig. 14. When M is fixed, RZF precoding can be performed by any number of pilots τp, while FZF constraints the
number of orthogonal pilots, such that τp < M has to be verified (else the FZF inverse peudo-matrix is not defined).

For instance, Fig. 14 shows the ability of RZF to achieve much higher SEs in the operation regime in which
FZF cannot be implemented. Moreover, from these results, we observe a loss in the performance of the FZF when
τp goes from 12 to 15. In linear case, it gets lower from 842 to 718 kbps/user. Such degradation is caused by
decreasing the array gain M−τp when τp tends to M. Therefore, it is not necessary to cancel interference towards
all the available orthogonal directions for high array gain purpose. In nonlinear case, FZF performs better than RZF
in its implementable operation regime, else it does not. For τp = 12, FZF offers a SE gain of 57% for an IBO of 3dB.
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5 Conclusions
The deliverable explores various key challenges and solutions related to CF-mMIMO systems, particularly focusing
on aspects of channel state information (CSI), energy efficiency (EE), and hardware impairments (HWI) across
multiple chapters.

The first chapter analyzes the impact of imperfect CSI on the performance of CF-mMIMO systems, particularly
in downlink data transmission. The study reveals that channel estimation errors (CEE), non-linear power amplifier
distortions, and limited feedback mechanisms degrade spectral efficiency (SE). Simulations show that local pre-
coding (LP-MMSE) is more robust against CSI imperfections compared to centralized precoding (P-MMSE), though
it has slightly lower SE under perfect conditions. As channel estimation errors increase, both precoding schemes
suffer, but P-MMSE is more sensitive to these errors than LP-MMSE. In this chapter, we examined also the impact of
limited feedback on system performance, particularly with quantized feedback bits. The results show that increasing
the number of feedback bits improves SE, but the performance gain diminishes beyond a certain number of bits.
Optimized vector quantization (VQ) outperforms random vector quantization (RVQ) in terms of SE, especially when
the feedback bit budget is constrained. The findings emphasize the importance of designing efficient feedback
mechanisms to balance overhead and performance in CF-mMIMO systems.

The second chapter reviews state-of-the-art approaches to CSI compression in Massive MIMO systems. Effi-
cient CSI compression is crucial for reducing feedback overhead and computational complexity, which are significant
challenges in large-scale antenna systems. The chapter examines various techniques and notes that while many
compression methods have been developed for traditional Massive MIMO systems, adapting these methods to cell-
free architectures presents a major challenge. The findings emphasize the need to balance compression efficiency
while maintaining high performance levels, particularly as CF-mMIMO systems evolve. Future work will likely focus
on refining these techniques to better address the distributed nature of cell-free networks.

In the last chapter, an energy-efficient downlink transmission scheme for CF-mMIMO-OFDM based system has
been proposed and studied. We have derived the spectral efficiency of downlink CF-mMIMO-OFDM under hardware
impairment considering local full-pilot zero-forcing and local regularized zero-forcing. As preliminary results, we
have shown that in the case of ideal power amplifier, the local regularized zero-forcing performs better than the
local full-pilot zero-forcing. In presence of power amplifier with non-linearity,local RZF is more sensitive than local
FZF against the nonlinear distortions at high spectral efficiency percentiles. Regarding the effect of the number
of pilots, RZF precoding can be performed using any number of pilots while FZF requires that the pilots remain
orthogonal.
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