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Abstract

Absolute accuracy of industrial robot is required for most of indus-
trial applications. However, positioning errors of several millimeters
are induced by many factors. Hybrid calibration, combining analyti-
cal model and learning-based regression, can compensate for most of
the positioning error, including payload effects. However, when the
payload changes, hybrid calibration has to be performed again. In
this paper, hybrid calibration is applied on an industrial robot in
two different sub-workspaces, with two different payloads. The results
of this method have been compared to other calibration approaches,
and highlight that hybrid calibration provides a higher final accuracy.
Moreover, two data-efficient and pragmatic approaches are proposed,
to address the issue of changing payload. Both methods are based
on hybrid calibration. The first one uses previously-acquired knowl-
edge to drastically reduce the number of measurements necessary to
update a trained learning model with another payload. The second
one uses a model trained separately for two different payloads and
interpolates the outputs to compensate for new payloads without any
additional measurement. The datasets used are available at: https:
//doi.org/10.57745/DWUC0H. The methods have been experimentally
validated using a compensation algorithm and compared to other
approaches, and show that the positioning error can be reduced by 95%.

Keywords: robot’s accuracy, hybrid calibration, artificial neural network,
industrial manipulators
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2 Hybrid calibration of industrial robot considering payload variation

1 Introduction

In the context of industry 4.0, the use for industrial robots evolved from
traditional pick-and-place applications to more complex operations such as
machining, drilling and assembly. To meet the requirements of those tasks,
robots must be accurate. However, industrial robots are known to have good
repeatability but poor absolute accuracy. For tasks requiring high accuracy,
robots are usually programmed using online teaching methods. With the grow-
ing demand for digital twins, robots are more and more programmed off-line.
However, the effectively reached cartesian position of the end-effector can
deviate from the expected one because of various factors. Among these fac-
tors, there are geometric errors, coming from manufacturing and assembly
tolerances of the robot’s parts; robot’s link compliance; backlash, compliance
in robot’s joints and thermal effects. In the literature, calibration methods
are proposed to reduce the positioning error, through four steps: modeling,
measurement of the end-effector’s position, identification of the model’s param-
eters, compensation of the positioning error. Calibration methods can be
classified in two categories: model-based and model-less calibration [1].

Model-based calibration relies on an accurate physical model of the phenom-
ena that reduce a robot’s positioning accuracy. The most known model-based
calibration method is the geometric calibration. It is based on the identification
of the geometric parameters (i.e. position and orientation of each joint with
regard to the previous one) [2–4]. This model can be enhanced with stiffness
identification, which enables self-mass and payload compensation. The com-
pliant behavior of industrial robots can be modeled by a linear torsion spring
on each joint of the robot. This model is known as the Virtual Joint Method
(VJM). In [5], the effect of joint stiffness on the positioning error was mod-
eled by implicitly linearizing the relationship between torque applied and axis
deformation. Thus, stiffness identification requires either torque measurement
on each joint or torque estimation thanks to the mass model of the robot. In
[6], authors proposed a method to identify joint stiffness based on the mass
model (i.e. mass and center of gravity of each link) of the robot. In [7], the
joint stiffness of an industrial robot are identified using a global identification
method; while in [8], each stiffness was identified individually. Later, in [9],
authors identified the stiffness of a collaborative robot using its torque sensors.
In [10], stiffness of each axis of an ABB IRB 1600 was identified using a Laser
Tracker and a loaded double ball bar system.

The previously described methods that deal with payload effect compen-
sation present drawbacks. First, they are only valid in specific conditions, e.g.
static positioning with relatively small payload variation, due to the non-linear
relationship between torque applied and axis deformation [11, 12]. Second,
they are difficult to apply in practice, as they require either the mass model of
the robot or torque sensor on each joint, which are rarely available. In addi-
tion to VJM, other methods exist to compensate for the compliant behavior
of industrial robots. In [13], a Matrix Structural Analysis (MSA) method was
proposed. It extended the VJM in that each axis can deflect in any of the six
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possible directions (displacement or rotation). However, the number of param-
eters to identify is significantly higher, depending on the degrees of freedom
of the composing element [14]. Finally, Finite Elements Analysis methods are
very effective for payload compensation [15–17], nonetheless they require to
have an accurate CAD model of the robot, which is not the case for most of
industrial robots.

Model-less calibration relies on a ”blackbox” model used to compensate for
positioning error. As Artificial Neural Networks (ANNs) are known to be an
effective tool for complex regressions, they are often used for positioning error
compensation. In [18], authors showed in simulation that ANNs were able to
compensate for kinematics error of a 2 degrees of freedom robot. In [19], a
method based on an ANN was proposed. The ANN predicts the angular offset
to apply to each one of the joints in function of the desired cartesian position.
The method had been tested in simulation and showed a significant reduction
of the positioning error. In [20], authors showed that only a few amount of
data is required to train an ANN for error compensation in a small area. In
[21], a BP-neural networks was used to directly predict the position of the end-
effector, given a joint position, for a robotic poly-articulated arm coordinate
measuring machines.

Recently, hybrid calibration methods were presented in the literature. The
principle of these methods is to combine model-based calibration for some
well-known errors, such as geometric errors and/or joints compliance, and to
approximate the residual errors with model-less calibration. In [22], authors
identified the geometric parameters of a PA-10 robot and used an ANN to
predict the angular offset to apply, given a joint position, so that the desired
cartesian position is reached accurately. In [23, 24], authors used an ANN to
predict the difference between real measurements and an advanced model of
the robot, with geometric parameters and stiffness identification. The method
was tested on a HH800 robot to compensate for only robot’s self-mass (i.e. no
payload). In [25], authors trained an ANN for error prediction using massive
measurements, made possible by the automation of the measurement process
with a trajectory that keeps the contact between the laser tracker and the
reflector. In [26], authors showed that hybrid calibration can reduce the posi-
tioning error for a 5-bar parallel robot. They optimized the training phase of
the neural network to reduce the number of data required using a Levenberg-
Marquardt combined with accelerated particle swarm for weights optimization.
In [27], authors improved the positioning and the orientation accuracy of an
industrial robot using ANN and geometric parameters identification across the
whole workspace of the robot, by using massive data. In [28], an hybrid cali-
bration method also based on geometric parameters identification and artificial
neural network was proposed for payload compensation. As the payload was
an entry neuron of the ANN, it had to be trained with 5 different payloads,
leading to a complex and time-consuming experimental process.

One current concern in industry is the data-efficiency of measurement and
calibration processes. To meet this specification, several researches focused
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on optimal planning of model-based calibration experiments, using observabil-
ity indices (for geometric calibration [22, 29, 30] or elastostatic calibration
[31, 32]). These methods focus on carefully choosing the training data, to max-
imize their contribution in the fitting process. On the other hand, fine-tuning
and transfer learning are commonly used methods in machine learning applied
to robotics, in order to limit the number of measurements needed. The general
idea is to first train machine learning models using simulation data, and com-
plete the training on a few real data. These methods are known as sim-to-real
transfer learning. In [33], an Adaptive Domain Adversarial Neural Network
with Dual-Regressions model was trained to compensate for deflection caused
by the robot’s payload. It was first trained with simulated data, generated with
a common VJM with identified stiffness. Then, training is completed using
a few real data. Sim-to-real transfer learning requires an estimation of some
parameters (e.g. axis stiffness in [33], friction and center-of-mass of links in
[34]), which are rarely publicly available, and hence involves model parameters
identification through measurements beforehand.

In our previous work [35], the interest of hybrid calibration methods have
been experimentally shown on a collaborative robot, the KUKA iiwa. A com-
parison between model-based, model-less and hybrid calibration have been
made. The workspace has been divided into sub-workspaces, leading to a light
ANN architecture. Moreover, since the robot handled a 5kg payload during
the measurements, it has been shown that hybrid calibration methods can
compensate for errors due to the payload and the joints compliance.

In this paper, the method described in [35] have been applied to a tradi-
tional industrial robot, the KUKA KR300, and extended to tackle the issue
of a changing payload with two pragmatic and data-efficient approaches. The
main objective is to propose methods that allow a fast and data-efficient recon-
figuration of existing calibration models, while maintaining a high level of
accuracy. The first method adapts, in a real-to-real transfer learning fashion,
an existing hybrid model to a new payload using only a few measurement,
making the experimental measurement process faster. The second method uses
a model previously trained for two different payloads and interpolates the out-
puts to compensate for new payloads, so that no additional measurements are
necessary. Compared to state-of-the-art methods, the ones presented hereafter
focus on updating an existing and in-use hybrid model to a new environment,
here a new payload, with minimum time, material, data, and experimental
setup complexity. In this way, the proposed methods match the main con-
cerns of robots end-users, that are fast reconfigurability and accuracy. Besides,
contrary to most of state-of-the-art methods for robotic calibration, the ones
developed in this paper require only a position measurement device, i.e. no
torque sensors, CAD model or mass model of the robot are needed. Hence, the
proposed methods are suitable for any industrial manipulator. Experimental
validations have been carried out on a traditional industrial robot, a KUKA
KR300, and the performances of the proposed hybrid calibration approaches
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have been discussed and compared to the one from [35], obtained on a smaller,
more compliant robot, a KUKA iiwa.

The hybrid calibration method is composed of two steps: first, global geo-
metric parameters identification compensates for the geometric errors; second,
an ANN is used for residual error approximation. The principle of the hybrid
calibration is summarized in Figure 1: to compensate for any positioning error,
the nominal Inverse Kinematics (IK) function is replaced by a compensation
algorithm that relies on both a more accurate model than the nominal forward
kinematics one, and an ANN that is to approximate the residual positioning
error. In Section 2, the hybrid calibration method is presented, experimentally
tested and compared to both model-based and model-less calibration methods.
Moreover, the method has been tested while the robot handled two differ-
ent payloads P1 = 4kg and P2 = 120kg, in two different sub-workspaces, to
assess the effectiveness of the method in various sub-workspaces with various
payloads. This leads to four different measurements configurations for ANN’s
training, then to four different set of weights. The hybrid’s model final accu-
racy is close to the robot’s repeatability, similarly than in [35]. However, if the
payload changes, the hybrid model is no longer valid, since the ANN’s have
been trained for a specific payload. For such scenarios, instead of applying the
complete hybrid calibration method described previously, two novel methods
based on hybrid models are proposed in Section 3. These two methods have
been evaluated in simulation and compared to other approaches, and exper-
imentally validated using the compensation algorithm in Section 4. Finally,
Section 5 concludes.

2 Hybrid calibration

Calibration methods consist in using a compensation algorithm to reduce the
positioning error through a modeling of the sources of errors. This algorithm
will be presented in Section 4. The hybrid model proposed in this paper relies
on a global identification of the geometric parameters and an artificial neural
network for residual error approximation in local sub-workspaces. Measure-
ments have been made in two different sub-workspaces, denoted S1 and S2,
with two different payloads P1 = 4kg and P2 = 120kg.

2.1 Geometric model of the robot

The geometric model used is the DH-model [36], in which four parameters
(α, a, r, θ) are used to describe the transformation between two consecutive
joints. The DH parametrization of the KR300 is depicted in Figure 2, and its
nominal geometric parameters are presented in Tab.1.

The geometric parameters of the robot are gathered in a vector denoted ξ.
The transformation matrix between joint i− 1 and i is:

T i
i−1 = Rot(−−→xi−1, αi) · Trans(−−→xi−1, ai) ·
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(a) Off-line programming without calibration using nominal Inverse Kinematics

(b) Off-line programming with hybrid calibration using compensation algorithm

Fig. 1: Hybrid calibration principle

Rot(−→zi , θi) · Trans(−→zi , ri) (1)

where −−→xi−1 and −→zi are defined accordingly to [37], and depicted on Figure 2.
The cartesian position of the end-effectorX is given by the serial multiplication
of these transformation matrices over all axes for a given joint position θ. For
an n-axes robot, the forward kinematics (FK) is:

X = FK(ξ, θ) = Tn
0 (ξ, θ) =

n∏
i=1

T i
i−1 (2)

However, since the nominal geometric parameters ξnominal are inaccu-
rate (due to manufacturing and assembly tolerances), they must be identified
through geometric calibration [38]. To obtain the identified geometric param-
eters ξidentified, the generalized Jacobian matrix, denoted Jξ, is computed.
After having measured a set of cartesian positions xi, measured, the theoreti-
cal cartesian position xi, th is computed from the commanded joint positions
θi, using Eq.(2). Then, ∆ξ = Jξ\∆x, where ∆x = xmeasured − xth is numeri-
cally computed iteratively, until ∆x no longer evolves. The identified geometric
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Fig. 2: DH parametrization of the KR300

Table 1: DH model of the KR300 robot (nomi-
nal geometric parameters)

Joint a (mm) α (°) d (mm) θ (°)

1 0 0 675 −θ1
2 350 -90 0 θ2
3 1150 0 0 θ3 - 90
4 -41 -90 1000 −θ4
5 0 90 0 θ5
6 0 -90 240 −θ6 + 180

parameters are then:
ξidentified = ξnominal +∆ξ (3)

and ξidentified have been obtained from 60 measurements made across the
whole workspace of the robot. Identified geometric parameters are shown in
Tab.2.

2.2 Artificial neural network for residual error
compensation

The geometric model described previously does not take into account other
phenomena that produce positioning errors, such as joints compliance, thermal
effects, kinematic errors in gearboxes etc. As ANNs are known to be an effec-
tive tool for complex regression, they are used for approximating the residual
positioning error.
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The proposed ANN’s architecture is summarized in Figure 3. It takes as
input the joint position of the robot, and has to predict the difference between
the associated measured cartesian position and the theoretical cartesian posi-
tion, given by the analytical model (i.e. Eq.(2) with ξidentified). The chosen
architecture is similar to the one described in [25]: the ANN has an entry layer
of 6 neurons (as the robot has 6 joints), two hidden layers of 80 and 40 neu-
rons, with respectively tanh and elu activation function, and an output layer
of 3 neurons with no activation function. Weights are initialized with the Glo-
rot initializer [39], and optimized using adam optimizer, with a learning rate
of 0.001. The loss function is the Mean Squared Error (MSE). The datasets
are composed of 1100 joint positions and their associated measured positioning
error. Datasets are randomly split into 1000 data for training and 100 data for
model validation. The neural network has been trained over 100 epochs. ANN’s
hyper-parameters tuning have been performed empirically without observing
any significant variation of the model’s accuracy. Moreover, hyper-parameters
tuning have been performed with a grid-search method in [25], where only the
training time have been significantly impacted. The architecture used in this
paper is trained within a minute on a common laptop.

In this paper, the robot’s workspace has been divided into sub-workspaces,
and in each sub-workspace, the robot have been calibrated for two different
payloads. ANN’s training in a specific sub-workspace S with a payload P leads
to a corresponding set of weights denoted wP, S .

2.3 Experimental setup for measurements

To get all the required data for the identification of the geometric param-
eters and the training of the neural network, different measurement devices
could be used, such as 3d camera [40], Laser Scanners [41] or Laser Trackers
[9, 25, 27]. In this paper, a Laser Tracker API T3 and a Spherical Mounted
Reflector (SMR) have been used. Its accuracy is 0.015mm + 0.005mm/m,
and the repeatability of the robot is 0.06mm (according to the manufacturer).
The described calibration method have been performed in two different sub-
workspaces, with two different payloads P1 = 4kg and P2 = 120kg for each.
Consequently, there is one dataset for the global identification of the geomet-
ric parameters (made up of 60 points) and four datasets for ANN’s training
(made up of 1100 points each). The datasets are publicly available1.

The robot configuration during the measurements of the datasets is
depicted in Figure 4 for both sub-workspaces, and the measurement sets are
represented in Figure 5. S1 is located between x = 1200, y = −500, z =
1450 mm and x = 1600, y = 500, z = 1900 mm in the robot’s base frame,
while S2 is located between x = −250, y = 1050, z = 1000 mm and
x = 300, y = 1400, z = 1600 mm. Both sub-workspaces have a comparable
volume. The choice of working with several sub-workspaces has been made for
a fast reconfiguration of the experimental process. Concretely, for industrial

1https://doi.org/10.57745/DWUC0H

https://doi.org/10.57745/DWUC0H
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Table 2: DH Model of the KR300 robot (iden-
tified geometric parameters)

Joint a (mm) α (°) d (mm) θ (°)

1 -0.164 0.0008 675.14 −θ1 + 0.0250
2 349.63 -89.9987 0.29 θ2 + 0.2043
3 1150.50 0.0183 0 1 θ3 - 90.0461
4 -41.23 -90.0072 999.91 −θ4 - 0.0006
5 0.06 90.0073 0.03 θ5 + 0.0027
6 0.05 -90.0169 240.09 −θ6 + 179.928

1This parameter cannot be identified because of a loss of
rank in the generalized Jacobian, as explained in [42]

Fig. 3: Architecture of the used ANN

deployment of the proposed methods, sub-workspaces can be defined wher-
ever the robot has to perform accurately. The robot has been warmed up
during three hours before measurements, to avoid any unexpected intern ther-
mal variation during the process, as advised in [43]. After training this ANN
separetely in both sub-workspaces with both payloads, four different sets of
weights wP1, S1 ; wP1, S2 ; wP2, S1 and wP2, S2 are obtained. Depending on the
sub-workspace in which the task is performed, and the payload, the corre-
sponding set of weights can be dynamically loaded. Recording dataset required
approximately 2.5 hours for each. In addition, setting up the Laser Tracker
takes 30 minutes.

2.4 Evaluation of the model’s accuracy

Before any experimental validation using the compensation algorithm, the
model is evaluated in forward kinematics, using 100 measurements. After geo-
metric parameters identification and ANN’s training, the theoretical cartesian
position given by the model from the commanded joint position is compared to
the measured one. Four different models have been evaluated and compared,
in the two sub-workspaces S1 and S2 and with the two payloads P1 = 4kg and
P2 = 120kg:



Springer Nature 2021 LATEX template

10 Hybrid calibration of industrial robot considering payload variation

(a) Robot in S1 (b) Robot in S2

Fig. 4: Configuration of the robot during the measurements.

Fig. 5: Measurements repartition for geometric parameters identification
(blue) and ANN’s training (green)

• Nominal Geometric Parameters (NGP) : raw accuracy of the robot

X = FK(ξnominal,Θ) (4)

• Identified Geometric Parameters (IGP) : model-based calibration

X = FK(ξidentified,Θ) (5)
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Table 3: Accuracy of models (4) to (7) in the four different conditions of
measurement for the KR300

Sub-workspace 1 Sub-workspace 2

Mass P1 Mass P2 Mass P1 Mass P2

Method
Mean
error

Max
error

Mean
error

Max
error

Mean
error

Max
error

Mean
error

Max
error

NGP 4.230 5.125 4.554 5.67 2.831 3.975 3.090 4.43
IGP 0.399 0.57 0.189 0.381 0.299 0.408 0.483 0.611
NGP + ANN 0.083 0.155 0.09 0.204 0.084 0.261 0.124 0.401
IGP + ANN 0.078 0.199 0.083 0.17 0.058 0.125 0.071 0.217

• NGP + ANN : model-less calibration

X = FK(ξnominal,Θ) +ANN(Θ) (6)

• IGP + ANN : hybrid calibration

X = FK(ξidentified,Θ) +ANN(Θ) (7)

Tab 3 summarizes the results and Figure 6 shows the error distribution for
each calibration method. For readability purposes, only the positioning error
distribution for payload P1 are depicted, as the distributions are very similar
for payload P2. Figure 6 shows that calibration of industrial robot is necessary
for off-line programming, as the positioning error without any compensation is
high and widely distributed. Geometric calibration allows a significant reduc-
tion of the mean error and tightens the error distribution. Black-box modeling
reduces further the mean error. However, the best results are consistently
obtained with hybrid calibration the mean and the max error are the lowest,
and the error distribution is the tightest around the mean. This can be seen
on Tab.3. Hybrid calibration methods can reduce the mean positioning error
by at least 97%, leading to a mean error close to the robot’s repeatability
(0.06mm according to the manufacturer) after calibration. Moreover, com-
paring Tab.3 and Tab.4 (Tab.4 summarizes the results obtained in a previous
works [35] for a KUKA iiwa robot), the accuracy of the hybrid model is very
similar for both robots, despite their differences: the KR300 is bigger (reach
of 2500mm, compared to 820mm for the iiwa), stiffer [7, 9], and has a better
repeatability (0.06mm versus 0.15mm for the iiwa). A study on the required
number of data for both model (6) and (7) have been made. Figure 7 shows
that hybrid calibration converges faster than model-less calibration, in every
measurement configuration.

Since the experimental setup and the hybrid model are very similar for both
robots (see Figure 8 and [35]), one can assume that applying the described
hybrid calibration method to any other robot leads to similar results: hybrid
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(a) Sub-workspace S1, payload P1 (b) Sub-workspace S2, payload P1

Fig. 6: Positioning error (mm) distribution (over 100 validations points, with
a bar width of 0.04mm) for models (4) to (7) for payload P1. Vertical black
lines represent the mean error.

Table 4: Accuracy of models (4) to (7) for the
KUKA iiwa [35]

Sub-workspace 1 Sub-workspace 2

Method
Mean
error

Max
error

Mean
error

Max
error

NGP 3.25 4.48 1.95 2.75
IGP 0.96 1.40 1.63 2.05
NGP + ANN 0.094 0.22 0.079 0.185
IGP + ANN 0.091 0.24 0.083 0.175

calibration reduces significantly the positioning error, while being more data-
efficient than model-less calibration, in any sub-workspace with any payload.

3 Payload variation compensation

3.1 Considerations and principle of the proposed methods

In many industrial applications robots must handle different payloads. These
payloads induce torque variations on each joint, depending on the joint con-
figuration, thus causing torsion on each axis, leading to positioning error.
Assuming that the payload has a negligible effect on other sources of errors,
the positioning error ∆X is decomposed as follow:
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(a) Mean error (b) Max error

Fig. 7: Influence of the number of data on the mean (left) and max (right)
positioning error.

∆X = f(∆Xgeometric +∆Xself mass +∆Xgearboxes+

∆Xthermal effects +∆Xresidual) + ∆Xpayload (8)

The effect of the payload is commonly modeled:

∆Xpayload = J ×K−1
Θ × J−1 × P (9)

with J being the kinematic Jacobian, KΘ the stiffness matrix, and P the pay-
load vector expressed in the robot’s base coordinates and applied to the flange.
This model requires the identification of the stiffness of all joints, contained in
KΘ.

However, joint stiffness are difficult to identifiy in practice, as it requires
torque sensors on each joint or the mass model of the robot. Moreover, as joint
stiffness is mostly due to gear drives stiffness, it is known to be non-linearly
dependent on the applied torque [11, 12]. These elements make any analytical
compensation of ∆Xpayload difficult.

The classical hybrid calibration as described in section 2, referred as classi-
cal approach hereafter, requires a full dataset to train the ANN to get a set of
weights adapted to a new payload. For data and time efficiency, as discussed
in 2.3, two novel methods for payload compensation are investigated. The first
one relies on the use of pre-trained weights with an other payload for ANN’s
weights initialization in a real-to-real transfer learning fashion, to minimize
the number of data needed, thus reducing the experimental complexity. The
second method directly interpolates two outputs of an ANN by using two dis-
tinct sets of weights obtained from previous training with different payloads,
under the assumption that the gravity center of the end-effector does not vary
significantly. By this way, a new payload could be handled without any addi-
tional measurement, making the implementation in real industrial scenarios
fast and easy.
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(a) Experimental setup with laser
tracker API III, KUKA iiwa 14R820,
5kg payload and a SMR

(b) Measurement distribution for
geometric parameters identification
(blue) and ANN’s training (green)

Fig. 8: Experimental setup and measurement repartition for the iiwa used in
[35]

3.2 Method 1: using pre-trained weights for initialization

In this method, when dealing with a new payload Pnew, a fast training pro-
cess is done. ANN’s weights are initialized with the ones coming from training
with a previous payload. By this way, the ANN could re-use previously-
acquired knowledge, requiring only few measurements with the new payload
to efficiently train the ANN.

The ANN’s weights obtained with the classical approach in a sub-workspace
S with a payload P is denoted wP, S . As wP1, S1

are already fitting the joint
configuration to the cartesian error accurately for a payload P1, initializing
the ANN for a new payload PNew with wP1, S1

allows the model to start the
learning phase with a lower loss value. Indeed, wP1, S1

is able to compensate
for the first term of ∆X in Eq.(8), and they only need to be updated with few
new data to compensate for ∆Xpayload. This method is depicted in Figure 9.

In practice, after the training leading to wP1, S1
and wP1, S2

, two new set of
weights, denoted wP1→new, S1

and wP1→new, S2
, are initialized with wP1, S1

and
wP1, S2

, respectively. Using ndata << 1000 measurements from the datasets
(Pnew, S1) and (Pnew, S2), the training is done to get new adapted weights.

3.3 Method 2: by interpolation of two ANN’s predictions

This method relies on the interpolation of two predictions coming from two
different set of weights of the ANN, trained in the same sub-workspace with
two different payloads. As the ANN is able to compensate for all non-geometric
errors (according to section 2.4), and according to Eq.(8), if the payload varies,
only ∆Xpayload varies, and all other terms remain constant for a given joint
position. Thus, interpolating the predictions of the ANN is mathematically
equivalent to interpolate ∆Xpayload, as long as the payload vector P in Eq.(9)
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Fig. 9: Illustration of method 1 principle

Fig. 10: Illustration of method 2 principle

evolves linearly, i.e. the gravity center of the end-effector does not vary. For
the new known payload Pnew, the model becomes:

X = FK(ξidentified,Θ) + α×ANNP1
(Θ) + (1− α)×ANNP2

(Θ) (10)

with α = (P2 − Pnew)/(P2 − P1). This method is depicted in Figure 10.
The main advantage of this model is that it does not require any additional

measurements. Moreover, it can be coupled with method 1: first, ANN can be
trained, according to the method described in Section 2, with data measured
while the robot handle a light payload Plight, resulting in a set of weights
wPlight,S . Then, the ANN can be initialized with wPlight,S , and trained with
measurement data while the robot handle a heavy payload Pheavy, so that the
total amount of data required for two training phases is significantly reduced.
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4 Validations of the proposed models

4.1 Evaluation of the proposed methods performances

Before any experimental validation using the compensation algorithm, the
performance and relevance of methods 1 and 2 are assessed. For comparison
purposes, two new datasets of 1100 measurements have been acquired in each
sub-workspaces S = S1 and S = S2 with a new payload PNew = 72kg. For
each sub-workspace, a comparison have been made between:

• the classical approach, i.e. wPnew,S obtained with training on the whole
dataset.

• a non-updated set of weights wP1,S , trained following the classical approach,
to highlight the need for adaptation to new payloads.

• the classical approach if the training is made with the same amount of data
that method 1, to assess its relevance. In practice, comparison is done with
ndata = 15.

• Method 1, as described in section 3.2, applied with 15 training points.
• Method 2, as described in section 3.3, with α = 120−72

120−4 ≃ 0.414.

Results are shown in Tab.5 and Figure 11. First, the results of the classical
approach, trained on the whole dataset, are similar to the ones obtained with
P1 = 4kg and P2 = 120kg, in both sub-workspaces. This is consistent with
the conclusion of Section 2. On Figure 11, the error distribution for method 1
is very similar to the one for classical hybrid calibration described in Section
2, showing the interest of this method for data-efficiency. Moreover, method
1 performs significantly better that the classical approach but using the same
number of data than method 1 (15 training data). This means that, with an
equal number of training data, re-using previously-trained set of weights is
better than initializing new weights with the common Glorot initializer [39].
In both sub-workspaces, methods 1 and 2 perform better than using a model
trained with a different payload (e.g. ANNP1), highlighting the fact that it is
necessary to adapt the model to new payloads. However, methods 2 performs
better in S1 than in S2. This can be explained by the fact that the configuration
of the robot and of the tools in S1 do not entails additional torque due to a
change in the tool’s gravity center position. Indeed, for the three used payloads
P1, P2 and Pnew, the position on the gravity center is along −−−−→zflange. As for
S1, the configuration of the robot makes −−−−→zflange and −−−→zworld co-linear, there
is no lever arm that would induce additional torque, contrary to the robot’s
configuration in S2, where

−−−−→zflange is orthogonal to −−−→zworld. Thus, the relation
between the torque applied on each joint evolves linearly with the payload
in S1, while in S2 it depends on both the payload and the gravity center’s
position. In scenarios where it is possible to measure new data with a new
payload, method 1 enables a fast measurement process, with performances
similar to the classical hybrid approach with a much lower number of data.
In situations where no measurement device is available, method 2 performs
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Table 5: Mean and max error of different models for a new payload
Pnew = 72 kg in both sub-workspaces S = S1 and S = S2

Sub-workspace 1 Sub-workspace 2

Method
Mean
error

Max
error

Mean
error

Max
error

ANN(wPNew, S) (classical approach) 0.077 0.173 0.059 0.132
ANN(wP1, S) 0.256 0.375 0.410 0.587
ANN(wPNew, S) (15 training points) 0.110 0.253 0.109 0.253
Method 1 0.081 0.152 0.077 0.144
Method 2 0.147 0.228 0.256 0.359

better than using a non-updated set of weights, but may be performing less
well than classical approach due to a displacement of the tool’s gravity center.

4.2 Experimental validation using compensation
algorithm

4.2.1 Compensation algorithm

The proposed approaches are tested using the compensation algorithm men-
tioned before. Indeed, in most of industrial scenarios, robots are programmed
with cartesian coordinates, and the robot’s controller converts them to joint
position. As the models take as input joint positions to return cartesian coor-
dinates, a compensation algorithm is used instead of the nominal inverse
kinematics model. The compensation algorithm supplants the nominal IK
model, as depicted in Figure 1. The algorithm is described in Figure 12.

This algorithm takes as input the desired cartesian position. Through the
nominal inverse kinematics (IK) model, a joint position is deduced. Using the
hybrid model, a theoretically reached cartesian position Xi is computed. The
difference between Xref and Xi (denoted ∆i) is then deduced, and added
to Xref to give an intermediate cartesian position X ′

i. From this cartesian
position, a new joint position is given by the IK, and the previous steps are
repeated until ∆i no longer evolves. Finally, the last computed joint position
reaches the desired cartesian position, according to the model used. This algo-
rithm can be used with any model that can map robot’s joint position to
cartesian position of its end-effector.

4.2.2 Results

Five different evaluations have been carried out in S1, to assess the effectiveness
of the proposed models in real scenarios.

• Classical hybrid approach with payload P1 = 4kg
• Classical hybrid approach with payload P2 = 120kg
• Method 1 (wP1→New, S1

) for Pnew = 72kg
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(a) S1 (b) S2

Fig. 11: Positioning error (mm) distribution (over 100 validations points
extracted from the training sets, with a bar width of 0.01mm) of different
methods for a new payload of 72kg. Vertical black lines represent the mean
error.

Fig. 12: Compensation algorithm based on ANN error prediction.

• Method 2 (using wP1, S1
and wP2, S1

) for a new payload Pnew = 72 kg
• Method 2 (using wP1, S1

and wP2, S1
) for a new payload Pnew = 128 kg

Results of the experimental validations are depicted in Figure 13 and sum-
marized in Tab.6. All the proposed approaches have a similar error distribution,
and are all consistent with the previous results. In practice, ∆n is of the order
of magnitude of 10−4mm, so the output joint position reaches the desired
cartesian position perfectly according to the model used. The slight difference
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between these results and the one presented in Section 4.1 comes from the
robot’s repeatability and the laser tracker’s accuracy. Results show that hybrid
calibration reduces by 97% the positioning error. The proposed methods are
more accurate (final accuracy 0.05 and 0.06mm away from the robot’s repeata-
bility for methods 1 and 2 respectively, while state-of-the-art methods are
0.1-0.3mm away of the considered robot’s repeatability [8, 9, 23]), and require
no specific information or sensors (CAD-model, torque sensors) compared to
state-of-the-art methods. In particular, the proposed methods are able to use
previously acquired knowledge to compensate for new payloads, reducing the
time and effort needed to perform all the measurements. Indeed, four hours of
measurements were necessary for classical approach but only half an hour for
Method 1 (after having applied at least one time the classical approach).

4.3 Discussion

The results presented in Section 4 show that the two proposed methods are
effective for payload effects compensation. Method 1 presents consistent results
in both sub-workspaces in simulation (as shown in Tab.5 and in Figure 11)
and in experimental validation using the compensation algorithm, with only
15 new data. Method 2 does not require any new measurements, and provides
interesting results in S1 and in experimental validation using the compensation
algorithm. However, method 2 relies on the assumption that the gravity center
of the object handled do not vary significantly, or remains on the −−−→zworld axis.
This is not a strong limitations since for many applications, such as machining
or pick-and-place, the tool’s center of gravity is usually located along −−−→zworld.
This limit have been experienced in S2, as shown in Tab.5 and in Figure
11. Moreover, this method could be ineffective for extrapolation to very high
payload, since the relationship between applied torque and axis deformation
is linear up to a certain torque, after which the relationship is still smooth
and could be linearly approximated [11, 12]. Thus, after the linear part of
the relationship between applied torque and axis deformation, the curve could
still be approximated by a piece-wise linear model, hence interpolation of the
output of two ANN trained for different payloads can still be effective for high
payloads.

Hence, the two methods are fast, data-efficient and allows the reconfigura-
bility of existing hybrid calibration models to adapt to new payloads while
keeping a high level of accuracy. Even though method 2 suffers from limita-
tions and hypothesis, it can still be effective for a wide range of application
(e.g. pick-and-place, drilling, machining), without any additional data.

5 Conclusion

In this paper, hybrid calibration methods have been investigated on a tra-
ditional industrial robot, a KUKA KR300, and two methods for payload
variation compensation are proposed. First, it has been shown that hybrid cal-
ibration provides consistently better results than model-based or model-less
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Fig. 13: Positioning error (mm) distribution (over 100 experimental valida-
tion points computed with the compensation algorithm, with a bar width of
0.01mm) of different methods. Vertical black lines represent the mean error.

Payload Method Mean
error

Max
error

P1 = 4kg Classical approach 0.13 0.23
P2 = 120kg Classical approach 0.10 0.19
Pnew = 72kg Method 1 0.08 0.20
Pnew = 72kg Method 2 0.12 0.22
Pnew = 128kg Method 2 0.11 0.19

Table 6: Experimental validation results

calibration. Moreover, the number of data required for ANN’s training is sig-
nificantly reduced with hybrid calibration. Since this study have been carried
out previously on a KUKA iiwa 14R820 (which is smaller and more compli-
ant) with similar conclusions, one can assume that they will be valid for any
industrial robot. For both robots, the mean positioning error is reduced by
95% in two different sub-workspaces.

Moreover, two hybrid calibration approaches are proposed to reduce the
positioning error of industrial robots in scenarios involving payload variations.
In such cases, the hybrid models previously trained are no longer valid. Instead
of starting over a new hybrid calibration process (which is time-consuming),
the two proposed methods re-use former ANNs to speed up the experimental
processes. The first one relies on an efficient initialization of a new set of
weights, using a previously-trained one for another payload. The new weights
can be trained with only a few measurement made with a new payload. The
second method is based on the interpolation of two predictions coming from
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two different set of weights of the ANN, trained in the same sub-workspace
with two different payloads, thus requiring no additional data for new payloads.
Both methods are fast, data-efficient and accurate. Experimental validation
shows that method 1 is able to reduce the mean positioning error from 4.23mm
to 0.08mm with only 15 data, and Method 2 to 0.12mm without any data.
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