
HAL Id: hal-04736437
https://hal.science/hal-04736437v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Nonlinear broadband time-domain admittance boundary
condition for duct acoustics. Application to perforated

plate liners
Daher Diab, Didier Dragna, Edouard Salze, Marie-Annick Galland

To cite this version:
Daher Diab, Didier Dragna, Edouard Salze, Marie-Annick Galland. Nonlinear broadband time-domain
admittance boundary condition for duct acoustics. Application to perforated plate liners. Journal of
Sound and Vibration, 2022, 528, pp.116892. �10.1016/j.jsv.2022.116892�. �hal-04736437�

https://hal.science/hal-04736437v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

© 2022 pub
https://creat

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022460X22001328
Manuscript_3613d6a568d1898da96c7f90c4dda106
Nonlinear broadband time-domain admittance boundary condition for duct
acoustics. Application to perforated plate liners.

Daher Diab, Didier Dragna, Edouard Salze, Marie-Annick Galland

Univ Lyon, Ecole Centrale de Lyon, CNRS, Univ Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130,
Ecully, France

Abstract

The behavior of perforated plates at high excitation level is generally modelled by a surface

impedance that depends on the rms velocity in the perforations. A time-domain admittance bound-

ary condition (TDABC) is developed to account for this variation using a multipole model. Two

formulations are considered, based on the interpolation either of the admittance or of the multipole

coefficients from a data set of reference values. These TDABC are implemented in a finite-difference

time-domain solver of the linearized Euler equations and are validated by comparison with experi-

mental results on an impedance tube. Application to a two-dimensional lined duct corresponding

to the reference geometry of the NASA Grazing Incidence Tube is then performed. The spatial

variation of the perforated plate liner impedance is highlighted and it is shown that assuming a

uniform impedance can lead to an unacceptable prediction of the liner attenuation. These results

are confirmed both for a harmonic or broadband excitation.

Key words: Nonlinear admittance, perforated panel, time-domain simulation, time-domain

admittance boundary condition, spatially-varying admittance

1. Introduction

Acoustic liners are widely used for noise reduction in several industrial applications such as

nacelles of aircraft engines, exhaust ducts or air ventilation systems. Among them, the perforated

plate (PP) liner is probably the most employed, because of its simplicity, its efficiency and its ap-

plicability to extreme environmental conditions (temperature and pressure) where porous materials

cannot be used. It is made of a perforated plate, mounted on a honeycomb cavity attached to the

system frame. This liner behaves as a resonator. As such, PP liners provide a significant acoustic
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attenuation, but only near the resonant frequencies that depend mainly on the cavity depth.

Starting from Sivian [1], it has been noted that the perforated plate excited by an acoustic

wave with a large amplitude exhibits a nonlinear behavior. More precisely, the measured acoustic

impedance was shown to depend on the rms velocity in the perforation. This behavior is associated

to the flow separation that occurs at the perforation edges for a sufficiently large amplitude of

the velocity in the perforation. This induces generation of vortices and conversion of acoustic

energy into vortical energy, which results in an increase of the plate resistance. Even for moderate

SPL (around 110-120 dB), at which sound propagation remains a linear process, perforated plates

can exhibit a nonlinear behavior. In ducted systems, such as engine nacelles, the sound pressure

level (SPL) can be much higher. In such conditions, the nonlinear response of PP liners must be

accounted for.

Detailed direct numerical simulations of the flow in a perforated liner excited by an acoustic

wave with a large amplitude have been already performed [2, 3]. Due to their high computational

cost, they are however limited to simple configurations. For predicting the sound attenuation

brought by a whole panel, it is more suitable to rely on numerical simulations in which the acoustic

behavior of the perforated liner is modeled.

To do so, the most common approach is to employ a surface impedance model of the perforated

plate liner, that includes nonlinear effects. It should be noted that the concept of surface impedance

is strictly valid in the linear regime. It can be extended for a sinusoidal excitation in the nonlinear

regime without difficulty, as long as the harmonic distortion remains limited. In the other cases,

especially for a broadband excitation, the surface impedance in the nonlinear regime has to be used

carefully. Several semi-empirical models for surface impedance of perforated plate liners [4–9] have

been proposed. In most of them, based on measurements reported in the literature (among others

Refs. [10, 11]), the nonlinear correction consists in an increase of the resistance and a decrease

of the orifice end correction, with the amplitude of the acoustic velocity in the orifice. Recently,

Laly et al. [12] have extended in the nonlinear regime the model developed by Atalla and Sgard

[13] based on an equivalent fluid approach to represent perforated panels: the resistivity and the

tortuosity of the equivalent fluid depends on the geometrical properties of the perforated plate as

well as the amplitude of the acoustic velocity in the perforation. An other approach proposed by

Cummings [14] is to directly relate the pressure jump at the perforated plate and the velocity in

the perforation through a nonlinear differential equation in the time-domain.

Nevertheless, there are few attempts to account for nonlinear models of PP liners in numerical
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simulations of sound propagation in lined ducts. One can refer to Eversman [15] or, more recently,

to Roncen et al. [16], that use frequency-domain approaches to investigate the effect of nonlinearity

on liner performance in a flow duct. While frequency-domain methods can still be used for a high-

level harmonic excitation, time-domain methods are the natural approach to account for nonlinear

effects. In the time-domain, the impedance boundary condition translates into a convolution, whose

direct numerical evaluation is time-consuming [17]. A vast literature thus aimed at proposing

time-domain impedance or admittance boundary conditions (TDIBC or TDABC) in the linear

regime (e.g. [17–21]). Among the proposed approaches, TDIBC based on the multipole model has

attracted lot of attention [19, 22–24], as it can be used to represent surface impedance models of

generic liners and as it allows for an efficient numerical implementation. In particular, Dragna

et al. [25] and Troian et al. [24] proposed the auxiliary differential equation (ADE) method, in

which the calculation of the convolution is reduced to the time integration of additional first-order

partial differential equations. This is especially well-suited for high-order methods. Recently, Shur

et al. [26] extended this TDIBC based on the multipole model in the nonlinear regime.

The objectives of the paper are to propose and evaluate formulations of the TDIBC for the

multipole model in the nonlinear regime and to exemplify sound propagation along a lined duct

in high sound pressure environment. The impedance model proposed by Laly et al. [12] is used

as the reference model for the perforated panel. Two approaches for the TDIBC in the nonlinear

regime are considered. In the first one, based on Shur et al. [26], the impedance is interpolated

as a function of the rms velocity in the orifice. In the second one, the poles and coefficients

of the multipole model are directly interpolated as a function of the rms velocity in the orifice.

The two approaches are validated against a one-dimensional (1D) impedance tube configuration,

first for numerical experiments and then for measurements performed for three perforated plates.

Application to a two-dimensional (2D) lined duct is then performed. The evolution of the liner

attenuation with the excitation level is studied. The spatial variation of the surface impedance

along the liner is analyzed. Finally, it is investigated whether or not accounting for the spatial

variations of the impedance is important for accurately predicting the liner attenuation.

This paper is organized as follows. Section 2 presents the acoustic impedance model of Laly

et al. [12] for predicting the response of perforated panels at high level of excitation. In Sec. 3,

the numerical model that solves the linearized Euler equations in the time-domain using finite

difference techniques is described. The time domain admittance boundary condition based on the

multipole model is first presented in the linear regime. The two extensions of the TDABC in the
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nonlinear regime are then introduced. The validation of the proposed approach is performed in

Sec. 4. Application to a 2D lined duct is then investigated in Sec. 5. Concluding remarks are finally

given in Sec. 6.

2. Impedance model of perforated plates in the nonlinear regime

Throughout the paper, the time-dependence convention e−jωt is used, where ω denotes the an-

gular frequency, j the imaginary complex number (j2 = −1) and t the time. The air is characterized

by its density (ρ0 = 1.211 kg m−3), its dynamic viscosity (η = 1.84 × 10−5 kg m−1 s−1) and the

corresponding sound speed (c0 = 340 m s−1). The geometry of the perforated plate is described by

its thickness h, the perforation radius r and the percentage open area (POA) ϕ.

Atalla and Sgard [13] modelled the perforated panel in the linear regime by an equivalent

fluid model following the Johnson-Allard approach [27]. The normalized acoustic impedance of a

perforated panel backed by an air cavity of depth D is

ZL =
−jωα∞h
c0ϕ


1− σϕ

jωρ0α∞

√
1− 4jωρ0ηα

2
∞

ϕ2σ2Λ2


− coth(jk0D), (1)

where k0 = ω/c0 is the wave number in air. The parameters of the equivalent fluid are related

to the PP geometry. Thus, the viscous characteristic length Λ is equal to the perforation radius

(Λ = r). The flow resistivity σ is given by σ = 8η
ϕr2

in the case of cylindrical orifices. The tortuosity

α∞ is a function of the correction length ε, that accounts for sound radiation effects at the end of

the perforations through α∞ = 1 + 2ε
h . The correction length is related to the POA and the radius

of perforation. Following Laly et al. [12], it can be written:

ε = Ψ0.48
√
πr2

[
8∑

n=0

an (
√
ϕ)n
]
, (2)

where 0.48
√
πr2 is the correction length for a single circular orifice, the sum over the coefficients

an is an approximation of the Fok function that accounts for orifice interaction effects [11] and Ψ

is a constant. The coefficients an are given by a0 = 1, a1 = −1.4092, a2 = 0, a3 = 0.33818, a4 = 0,

a5 = 0.06793, a6 = −0.02287, a7 = 0.003015 and a8 = −0.01614 [11] and Ψ is set to 4/3. Note that

the Fok function and the empirical constant Ψ are not present in the original model proposed by

Atalla and Sgard [13], but are introduced here for coherence with the nonlinear model.

Laly et al. [12] proposed an extension of the model in Eq. (1) to characterize the acoustic

response of perforated plates in the nonlinear regime. The impedance model of a PP backed by an
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air layer has the same form as in the linear regime:

ZNL =
−jωh

c0ϕ
α∞NL

(
1− σNLϕ

jωρ0α∞NL

√
1− 4jωρ0ηα2

∞NL

ϕ2σ2NLΛ2

)
− coth(jk0D), (3)

except that the flow resistivity σNL and the tortuosity α∞NL now depend on the rms velocity in the

orifice vrms. The flow resistivity of the PP in the nonlinear regime is modelled via a Forchheimer-

type law. It is thus equal to its value in the linear regime plus a nonlinear correction:

σNL = σ +
βρ0(1− ϕ2)

πhϕC2
D

√
2vrms, (4)

where CD is the discharge coefficient, that depends on the perforation geometry, the edge sharpness

among others and that vary between 0.6 and 0.8 and β is a coefficient. Thereafter, the values used

in Laly et al. [12], i.e. CD = 0.76 and β = 1.6, are employed. The tortuosity α∞NL in the nonlinear

regime is defined as in the linear regime by

α∞NL = 1 +
2εNL

h
. (5)

Following Maa [5], the correction length εNL is modified to account for the nonlinear effects with

εNL = ε

(
1 +

√
2vrms

ϕc0

)−1
. (6)

The tortuosity thus decreases with the increase of the acoustic velocity in the perforation.

The model proposed by Laly et al. [12] is more accurate for micro-perforated liners (r ≤ 0.5

mm) than for macro-perforated liners and for a POA range from 1 % to 5 % [28].

In this work, results are exemplified for three PP absorbers, whose photo is shown in Fig. 1.

Their geometrical characteristics are given in Table 1. The PPs #1 and #2 correspond to micro-

perforated plates, with perforation radius below 0.5 mm and POA in the order of 1%. PP#3 has

a larger perforation radius and is in between a micro- and macro-perforated plate.

PP#1 PP#2 PP#3

Plate thickness (mm) 1 1 1

Perforation radius (mm) 0.25 0.25 1

Perforation ratio (%) 1.5 1 1.5

Table 1: Geometric parameters of the PPs absorber.

5
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PP#1

PP#3

PP#2

Figure 1: Photo of the three perforated plates considered.

3. Time-domain numerical model

3.1. Geometrical configuration

An impedance tube, schematized in Fig. 2, is considered as a canonical problem to evaluate time-

domain impedance boundary conditions in the nonlinear regime. It is treated as a one-dimensional

problem. Denoting by x the spatial variable, the domain of interest is limited to 0 ≤ x ≤ L. The

PP liner is located at x = L and an incident wave pi(t) is travelling towards the liner.

𝑥1

𝑠

𝑙

Incident wave

𝑥2

𝑍

𝐿

𝑥
𝑜

Figure 2: Schematic for the one-dimensional configuration, corresponding to an impedance tube.

3.2. Equations and numerical methods

For acoustic perturbations of sufficiently small amplitude, sound propagation is governed by

the linearized Euler equations (LEE). For a homogeneous medium at rest, they write:




∂u

∂t
+

1

ρ0

∂p

∂x
= 0

∂p

∂t
+ ρ0c

2
0

∂u

∂x
= 0,

(7)
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where u and p are the acoustic velocity and pressure, respectively.

The LEE are solved using high-order finite-difference time-domain methods. The spatial deriva-

tives are calculated using optimized 4th-order finite differences schemes over 11 points [29, 30]. Time

integration is performed using an optimized 6-stage 4th-order Runge-Kutta algorithm [31]. In order

to avoid numerical instabilities and to remove grid-to-grid oscillations, optimized selective filters

[30, 32] are applied after each time iteration.

The incident wave pi(t) is prescribed using the method of characteristics. The incoming and

outgoing characteristics in the computational domain at the boundary x = 0, denoted by qi and

qo, respectively, are given by:

qi(t) =
1

2
(p(x = 0, t) + Z0u(x = 0, t)) qo(t) =

1

2
(p(x = 0, t)− Z0u(x = 0, t)), (8)

with Z0 = ρ0c0. To force the incident wave and avoid reflections at the boundary, the method

consists in determining the outgoing characteristic from the numerical solution and imposing the

incoming characteristic to qi(t) = pi(t), after each stage of the Runge-Kutta algorithm. The

pressure and the velocity at the boundary are then corrected with the relations:

p(x = 0, t) = qi(t) + qo(t) u(x = 0, t) =
qi(t)− qo(t)

Z0
(9)

Finally, all variables are initialized to zero at time t = 0.

3.3. Time-domain admittance boundary condition (TDABC) in the linear regime

Before discussing its extension for the nonlinear regime, the time-domain admittance boundary

condition proposed by Troian et al. [24] for the linear regime is briefly summarized. Implementation

on the admittance rather than on the impedance was preferred, as numerical instabilities were

observed for some liners in the latter case. Note that implementations based on the reflection

coefficient have been also proposed [19] and seem to offer better stability properties [33]. Denoting

by Y (ω) the normalized surface admittance, the admittance boundary condition is defined in the

frequency domain by Z0Un(ω) = Y (ω)P (ω), with Un = U ·n where P (ω) and U(ω) are the Fourier

transforms of the acoustic pressure and velocity on the PP surface, respectively, and n is the normal

unit vector pointing into the liner surface.

The time domain admittance boundary condition (TDABC) is obtained from the translation of

the frequency domain boundary condition, yielding the convolution Z0un(t) = [y ∗ p](t), where y(t)

is the surface admittance in the time domain. To avoid the tedious calculation of the convolution

7
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integral, Troian et al. [24] proposed to express the broadband admittance model Y (ω) as a multipole

model:

Y (ω) = Y∞ +

P∑

k=1

Ak
λk − jω

, (10)

where λk are the poles of the admittance and P denotes their number. Note that the poles and the

associated coefficients Ak are either real or come as complex conjugate pairs. Finally, the coefficient

Y∞ is real-valued.

The analytical surface admittance of the PP is obtained from Eq. (1) with Y (ω) = [ZL(ω)]−1

and is approximated by a multipole model in the form of Eq. (10). To do so, the poles and the

coefficients of the broadband admittance are determined using the vector fitting (VF) algorithm [34]

in the frequency band of interest. The VF algorithm allows the multipole model to have stable

poles. The passivity of the multipole model (Re[Y (ω)] ≥ 0 for ω > 0) is however not guaranteed and

has to be checked for all frequencies and for each set of coefficients obtained with the VF algorithm.

In particular, it was observed that the real part of the multipole model can be negative at very

low frequencies for PP liners. Generally, this issue can be overcome by increasing the number of

poles. This solution might however not be worthwhile because we usually want to keep the number

of poles as small as possible to reduce the computational cost. As the minimum of Re[Y ] denoted

by Y− generally remains small (Y− in the order of −10−3), an alternative to enforce passivity is to

add −Y− to Y∞ so that Re[Y ]≥0 over the frequency band of interest.

With the multipole form, the surface admittance in the time domain has a closed-form expres-

sion, that greatly simplifies the expression of the convolution. After some calculation detailed in

Ref. [24], the time-domain admittance boundary condition (TDABC) finally relates the acoustic

velocity and pressure on the liner surface with the expression:

Z0un(t) = Y∞p(t) +

P∑

k=1

Akφk(t), (11)

where the new temporal functions φk(t), called accumulator in Reymen et al. [22], verify the system

of ordinary differential equations (ODE):

dφk
dt

+ λkφk(t) = p(t) (12)

This system is numerically solved using the same time scheme as for the LEE presented in Eq. (7).

Equations (11) and (12) constitute the TDABC.

Note that the formulation of the TDABC presented in this section is an alternative to that

8
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proposed in Ref. [24], as there is no explicit distinction between the real poles and the pairs of

complex conjugate poles. As a consequence, the accumulators φk are complex-valued.

3.4. Extension of the TDABC in the nonlinear regime

Some remarks are first made on nonlinear impedance models. Surface impedance is rigorously

defined in the linear regime. For a harmonic excitation, a surface impedance that depends on the

excitation amplitude seems relevant, as long as the harmonic distortion is negligible. For other types

of excitation, the concept of nonlinear surface impedance is somewhat empirical. A straightforward

extension of the impedance model proposed by Laly et al. [12] for broadband stationary signal is

to consider that the main information on the velocity in the perforations governing the nonlinear

effects remains its overall amplitude rather than any specific frequency-dependent information.

Such approach has been employed by Eversman [15] for propagation of multiple tones inside a

lined duct using a frequency-domain finite element method. Therefore, the impedance model in

Eq. (3) can be used as is for a broadband stationary excitation.1 Despite its simplicity, recent

comparisons [35] have shown an excellent agreement between predictions using this approach and

measurements with an impedance tube for a white noise excitation.

The rest of the study is thus limited to stationary signals. For non-stationary signals, such

as transient signals, other models than frequency-based surface impedance models might be bet-

ter suited to represent the acoustic response of perforated plates in the nonlinear regime. Thus,

Cummings [14] propose nonlinear differential equations in the time-domain, that directly relate the

velocity in the perforation and the pressure jump through the perforated plate. These equations are

obtained from simplification of the fluid mechanics equations and do not include all physical effects

considered in the surface impedance model, such as the effects of the interaction between holes

of the perforates on the end correction length or the reduction of the end correction length with

the increase of the orifice velocity. Comparisons were however performed for a transmitted pulse

through a perforated plate between measurements in an impedance tube and numerical predictions

and were promising. Implementation of such nonlinear models of perforated plates for time-domain

simulations in a lined duct has been done in Monteghetti et al. [33].

The implementation of the nonlinear TDABC in the time-domain numerical model is now

1Other nonlinear surface impedance models are based on the rms acoustic pressure on the liner rather than the

rms velocity in the perforations, as considered by Shur et al. [26]. The numerical methods presented subsequently

can be also employed similarly.
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presented. It is based on the recent work of Shur et al. [26] that has extended the TDABC of

Troian et al. [24] in the nonlinear regime. To do so, a quasi-steady approach is employed. The

idea is that the rms velocity on the liner has to be determined from the numerical solution. As

the solution is however advanced in time starting from some initial conditions, a transient period

is necessarily present. Thus, a time-varying evaluation of vrms, denoted by ṽrms(t), is determined

and the surface admittance is dynamically modified to Y (ω, ṽrms), until steady-state is reached.

Second, to account for the variation of the admittance with both ω and vrms, two approaches are

investigated. They are both based on the approximation of the admittance by a multipole model

for some reference values of vrms, that allows for the use of the ADE method. In the first approach

proposed by Shur et al. [26], the admittance is determined for a given vrms by interpolation. This

method was shown to be accurate and efficient. One of its drawback is that compared to the linear

regime, the number of poles significantly increases and is globally proportional to the number

of reference values of vrms chosen for the interpolation. This first approach, referred to as the

interpolation of the admittance (IA) method is detailed in Sec. 3.4.1. We propose a second approach,

in which, the multipole coefficients, rather than directly the admittance, are calculated for a given

vrms by interpolation. Once the coefficients are known, the admittance is easily deduced. This

approach, referred to as the interpolation of the admittance parameters (IAP) method is presented

in Sec. 3.4.2.

3.4.1. Interpolation of the admittance (IA)

The method based on the interpolation of the admittance is first presented. Following Shur

et al. [26], we define a set of reference values for the rms velocity v
(l)
rms, l = 1, 2, ..., N . This set

covers the expected range of variation of vrms and has to be adapted according to the problem

under consideration. At each of these reference values v
(l)
rms, the frequency-dependent admittance

Y (ω, v
(l)
rms) = [ZNL(ω, v

(l)
rms)]−1 (see Eq. (3)) is approximated by a multipole model

Y (l)(ω) = Y (ω, v(l)rms) = Y (l)
∞ +

P (l)∑

k=1

A
(l)
k

λ
(l)
k − jω

, (13)

where the same notation than in Eq. (10) is employed. The poles and coefficients of the admittances

(Y
(l)
∞ , A

(l)
k and λ

(l)
k ) are determined for the reference values v

(l)
rms using the VF algorithm. Note that

the number of real poles and pairs of complex conjugate poles can vary depending on the rms

velocity. Then, for any vrms value in the range [v
(1)
rms, v

(N)
rms ], the admittance of the perforated panel

(Y (ω, vrms)) is calculated using a linear combination of the individual admittances at each of these

10
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reference values v
(l)
rms

Y (ω, vrms) =
N∑

l=1

σl(vrms)Y
(l)(ω)

N∑

l=1

σl = 1, (14)

where σl are the weights, that provide information about the rms velocity in the perforation.

As done by Shur et al. [26], the weights are obtained by linear interpolation between the defined

reference values v
(l)
rms. Thus, for vrms belonging into the range v

(l−1)
rms ≤ vrms ≤ v(l)rms, the weights are

calculated as follows: 



σl =
vrms − v(l−1)rms

v
(l)
rms − v(l−1)rms

σl−1 = 1− σl

σk = 0 for k < (l − 1) and k > l

(15)

In the case where vrms is outside the range of the reference values (vrms ≤ v(1)rms or vrms ≥ v(N)
rms ), the

admittance is set to the admittance at the corresponding end value of the velocity range, i.e. all

the weights are equal to zero, except the weight of the end value which is equal to 1. Note that the

linear interpolation is not a requirement of the method and that higher-order interpolation could

be used.

It remains to evaluate vrms from the numerical solution. To do so, the rms velocity is estimated

at a given time t with the relation

ṽ2rms(t) =
1

t

∫ t

0
v2(t′)dt′, (16)

where v(t) is the velocity fluctuation in the orifice. Due to the conservation of the acoustic flow rate,

it is equal to the ratio of the acoustic normal velocity on the liner to the POA, i.e. v(t) = un(t)/ϕ.

Taking the time derivative of the above equation leads to the differential equation:

d(tṽ2rms)

dt
=
u2n(t)

ϕ2
, (17)

that is integrated in time with the time-marching scheme to obtain ṽrms(t). In practice, a simpler

approach is employed. The value of ṽrms at the time iteration n is calculated from its value at

iteration n− 1 using the recursive expression:

ṽ2rms(n∆t) =

(
1− 1

n

)
ṽ2rms[(n− 1)∆t] +

1

n

u2n(n∆t)

ϕ2
, (18)

with ∆t the time step. This expression can be obtained by integrating Eq. (17) between two

consecutive time steps and by assuming that un is constant over a time step.

11
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Therefore, the nonlinear extension of the TDABC in Eq. (11) with the IA method is rewritten

as follows

Z0un(t) =

N∑

l=1

σl(ṽrms)


Y (l)
∞ p(t) +

P (l)∑

k=1

A
(l)
k φ

(l)
k (t)


 , (19)

where the accumulators φk(t) are obtained by integrating the ODE:

dφ
(l)
k

dt
+ λ

(l)
k φ

(l)
k (t) = p(t) (20)

and ṽrms by integrating Eq. (17).
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Figure 3: Real and imaginary parts of the admittance for a frequency of (a) f = 2000 Hz and (b) f = 3000 Hz as

a function of the rms velocity in the perforation for PP#1 absorber with a cavity depth of 10 mm calculated with

Eq. (3) (solid line) and by linear interpolation (dotted line). The vertical lines at vrms = 0, 2, 4, 6, 8, 10, 12 and

14 m s−1 show the reference values used for the interpolation.

In order to choose the set of reference values v
(l)
rms, the evolution of the admittance with the

rms velocity in the perforation is investigated. Figure 3 shows the normalized admittance (solid

line) as a function of vrms for PP#1 with a cavity depth of 10 mm and for two frequencies (2000

and 3000 Hz). It is seen that the nonlinear behavior is strongly dependent on the frequency: the

variation with vrms is significant for 2000 Hz, which is close to the resonant frequency of the PP

liner, but limited for 3000 Hz. In addition, the admittance is not varying simply with vrms. In

order to use linear interpolation, it is necessary to choose a sufficiently small step between two

consecutive reference values to represent correctly the variations of Y with vrms. The dotted line

thus corresponds to a linear interpolation using a step of 2 m s−1. With this step, the interpolated

admittance shows a good agreement with the exact admittance.

Fig. 4 shows the comparison between the exact admittance model and its approximation with

12



268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
the IA method for three rms velocities (4, 5, and 6 m s−1). This velocity range is chosen because the

error in Fig. 3 is maximum in this range. Note that vrms = 4 and 6 m s−1 are considered as reference

values in the IA method: for these two rms velocities, the exact admittance is approximated by

a multipole model using the VF algorithm. The approximation is performed for 200 Hz < f <

4000 Hz using two poles, which is seen to be sufficient to accurately represent the variation of Y

over the entire frequency range of interest. For the intermediate rms velocity vrms = 5 m s−1,

the admittance in the IA method is obtained by linear interpolation from the multipole models at

vrms = 4 and 6 m s−1. Here also, a close agreement with the exact admittance is observed.

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

5 m s
-1 6 m s

-1

4 m s
-1

0 1000 2000 3000 4000
-0.4

-0.2
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Figure 4: (a) Real and (b) imaginary parts of the admittance of PP#1 absorber with a cavity depth of 10 mm as a

function of the frequency for three rms velocities: exact calculation (solid blue line) and approximation with the IA

method (dotted red line).

In accordance with the discussion around Fig. 3, we have chosen the set of reference values for

the rms velocity v
(l)
rms = 2, 4, 6, 8, 10 and 12 m s−1 with N = 6. For each reference value, the

admittance is fitted over the frequency range 200 - 4000 Hz by a multipole model using the VF

algorithm with two poles. The number of real poles and of pairs of complex conjugate poles for

the reference values is indicated in Tab. 2 for the three PPs absorber. The related incident sound

pressure levels (SPL) is also indicated. It represents the SPL of the incident wave, that generates

the corresponding rms velocity in the perforation. It is estimated from the relation derived by

Ingard [36] that expresses the rms incident pressure pi,rms as a function of vrms:

pi,rms =
ρ0c

2
0

2

ϕvrms

c0

(
1 +

1− ϕ2

ϕ

√
2 vrms

c0

)
(21)

This expression is valid only at the resonant frequency of the PP, for which the velocity in the

perforation is maximum for a given incident SPL. To reach the same value of vrms at frequencies
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PP#1, PP#3

Cavity depth (mm) 10 30

Reference rms

velocity (m s−1)
2 4 6 8 10 12 2 4 6 8 10 12

Incident SPL (dB) 114 122 128 132 135 138 114 122 128 132 135 13

Poles

number

real 0 0 0 0 0 0 0 0 0 0 0 0

complex

conjugate pair
1 1 1 1 1 1 1 1 1 1 1 1

PP#2

Cavity depth (mm) 10 30

Reference rms

velocity (m s−1)
2 4 6 8 10 12 2 4 6 8 10 12

Incident SPL (dB) 112 121 127 131 134.5 137.5 112 121 127 131 134.5 137

Poles

number

real 0 0 0 0 0 0 0 0 0 0 2 2

complex

conjugate pair
1 1 1 1 1 1 1 1 1 1 0 0

Table 2: Number of real poles and pairs of complex conjugate poles for the reference values v
(l)
rms and for the three

PPs absorbers.

different from the resonant frequency, a larger incident SPL is necessary. Therefore, the SPL

indicated in Tab. 2 has to be interpreted as the minimum incident SPL generating the corresponding

value of the velocity in the perforation. For information, the poles and coefficients of the multipole

model used for the IA method are indicated in Tab. A.4 in Appendix A for PP#1 with the cavity

depths of 10 and 30 mm.

The main disadvantage of this method can be brought to light. For vrms outside the range of

the reference values, it is not possible to evaluate correctly the admittance. The range covered

by the reference values has thus to be broadened considerably to avoid such cases. In addition,

to represent accurately the variation of the admittance with vrms, the step between two successive

reference values should be sufficiently small. Therefore, the number of reference values and, hence,

of poles can be significant with the IA method, which can lead to an increase in the computational

cost. For PP liners, the admittance can be approximated over a broad range of frequencies using

few poles: the cost of the IA method is thus moderate. For other types of liner, this can become a

shortcoming of the IA method.
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3.4.2. Interpolation of the admittance parameters (IAP)

In this section, a new approach to account for the nonlinear effects on the admittance is pro-

posed. To do so, the admittance is still written as a multipole model, as in Eq. (10), but the

coefficients and the poles are allowed to vary with vrms. This gives:

Y (ω, vrms) = Y∞(vrms) +
P∑

k=1

Ak(vrms)

λk(vrms)− jω
. (22)

It is then necessary to calculate the poles and coefficients of the multipole model as a function

of vrms. To do so, one idea could be to couple the VF algorithm and the time-domain numerical

model, so that the poles and the coefficients of the admittance are determined dynamically as the

value of ṽrms changes. This would however require to run the VF algorithm after each iteration (or

after each step of the Runge-Kutta algorithm). Even if the VF algorithm usually takes few tenths

of a second to run, this would add complexity and computational cost to the approach. Especially

for multi-dimensional problems, it would be necessary to run the VF algorithm for each grid point

on the liner. A more efficient strategy is to have an approximate analytical expression giving the

evolution of the poles and coefficients of Y with vrms. In this work, the multipole coefficients

(real and imaginary parts, separately) are approximated by a rational function with quadratic

polynomials. For example, one has:

Y∞(vrms) =
Y n,0
∞ + Y n,1

∞ vrms + Y n,2
∞ v2rms

1 + Y d,1
∞ vrms + Y d,2

∞ v2rms

, (23)

where Y n,0
∞ , Y n,1

∞ , Y n,2
∞ , Y d,1

∞ and Y d,2
∞ are constants. A similar expression holds for Re[Ak(vrms)],

Im[Ak(vrms)], Re[λk(vrms)], and Im[λk(vrms)]. The rational function approximation is determined

using the curve fitting toolbox of MATLAB (with data points obtained with the VF algorithm

for 0 ≤ vrms ≤ 12 m s−1 with a step of 1 m s−1). Other approaches, such as the VF algorithm,

could also have been employed. As an example, the poles and coefficients of the multipole function

are plotted as a function of vrms in Fig. 5 along with their rational function approximation for

PP#1 with a cavity depth of 10 mm. The constants of the rational function approximation for

the multipole coefficients are given in Appendix A in Tab. A.5 for PP#1 liner with the two cavity

depths of 10 and 30 mm.

With the expression of the admittance in Eq. (22), the nonlinear extension of the TDABC in

Eq. (11) with the IAP method is defined as follows:

Z0un(t) = Y∞(ṽrms)p(t) +

P∑

k=1

Ak(ṽrms)φk(t), (24)
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Figure 5: Coefficients of the multipole model as a function of the rms velocity vrms (blue circle symbols) and their

approximation (red solid lines) using a rational function (PP#1 for a cavity depth of 10 mm).

where the function φk is governed by the ODE:

dφk
dt

+ λk(ṽrms)φk(t) = p(t) (25)

and ṽrms is determined from Eq. (17).

The IAP method is simpler to implement than the IA method. One difficulty is that, while in

the VF algorithm, the total number of poles can be chosen, it is not possible to set their type (real

poles or pair of complex conjugate poles). Therefore, a pair of complex conjugate poles can switch

to two real poles for a given value of vrms and inversely. Thus, the number of each type of poles

is constant in all cases considered for rms velocities in the perforations between 0 and 12 m s−1,

except for PP#2 with a cavity depth of 30 mm for which it changes from 10 m s−1 (see Tab. 2). As

a consequence, the variation of the poles and coefficients Ak and λk with vrms is discontinuous when

the poles type changes. A simple method to handle this issue with the IAP method is to define

the poles and coefficients Ak and λk as piecewise rational functions of vrms with a different set of

coefficients for velocities for which the poles are real and for velocities for which the poles come

as complex conjugate pairs. This approach has been tested for the impedance tube configuration,

detailed in Sec. 4. It was shown to be effective but induced a longer transient before convergence.

Results are not shown for conciseness. Because this issue was only noticed for PP#2 with a cavity

depth of 30 mm and for a large velocity in the perforations, further investigation is left for future

work.
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4. 1D validation

The present section aims to verify that the proposed methods in Sec. 3.4 allow for an accurate

representation of the surface impedance in the nonlinear regime. For that, the one-dimensional

configuration corresponding to an impedance tube is considered, as shown in Fig. 2. Numerical

experiments are first presented in Sec. 4.2 and comparisons to measurements are then performed

in Sec. 4.3. The MATLAB codes employed for the numerical experiments with the IAP method

are available in the supplementary material.

4.1. Numerical parameters

The computational domain (0 ≤ x ≤ L) is discretized by 101 points with a uniform spatial step

∆x = 0.0085 m. The total simulation time is tmax = 0.3 s. The CFL (Courant-Fridrichs-Lewy)

number is set to 0.5, which gives a time step ∆t = 1.25× 10−5 s.

Numerical simulations are carried out for two types of incident waves, namely a harmonic and

a broadband wave. For the former case, the incident wave is pi(t) =
√

2 pi,rms sin(2πft), where

pi,rms is the rms value. For the latter case, the incident wave is pi(t) = pi,rms s(t), where s(t) is

a broadband stationary signal of unitary rms value. The incident SPL is also used thereafter to

characterize the excitation and is defined by:

SPLi = 20 log10

(
pi,rms

pref

)
(26)

with the reference pressure set to pref = 2× 10−5 Pa.

The two-microphone method is employed to estimate the surface impedance of the PP liner

(Z) for both the numerical simulations and the experiments. The normalized surface impedance

is determined from the frequency response function H12 between two microphones at positions x1

and x2

Z = −j
sin[k0(l − s)]−H12 sin(k0l)

H12 cos(k0l)− cos[k0(l − s)]
, (27)

where l = L−x1 and s = |x1−x2|. For the numerical simulations, the frequency response function

H12 is obtained directly by the ratio of the Fourier transforms of the time pressure signals at

positions x1 and x2, in the case of harmonic excitation and by the ratio of the cross power spectral

density of the time pressure signals at positions x1 and x2 to the power spectral density at x2, in

the case of broadband excitation.
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Figure 6: Time-variation of the estimated rms velocity in the perforation ṽrms for PP#1 absorber with a cavity depth

of 30 mm and for two incident SPL: (a) SPLi = 110 dB and (b) SPLi = 130 dB.

4.2. Numerical experiment

4.2.1. Harmonic excitation

The case of a harmonic excitation is first treated. Simulations are performed for incident waves

with the same SPL and with frequencies between 200 and 4000 Hz, in steps of 100 Hz. At the

initial time t = 0, all variables are set to zero, including ṽrms. Once the incident wave impinges

on the liner, ṽrms increases. This modifies the surface impedance which in turn induces a variation

of the acoustic field and of ṽrms. This process repeats itself until a steady-state is obtained. This

can be checked by looking at the convergence of ṽrms, i.e. when the difference between the values

of ṽrms at two successive iterations becomes sufficiently small (≈ 10−3 m s−1). Figure 6 shows the

time-variation of the estimated rms velocity for four frequencies (500, 1000, 2000, 3000 Hz) at two

incident SPL (110 and 130 dB) using PP#1. It is seen that ṽrms monotonously increases with time

and that convergence is reached from t = 0.2 s for all cases. In addition, it can be noted that the

rms velocity strongly depends on the frequency.

Figure 7 shows the rms velocity as a function of the frequency for PP#1 absorber for two

cavity depths and for several incident SPL. The maximum of velocity is obtained near the resonant

frequency and the latter is slightly shifted towards the high frequencies with the increase of the

incident SPL. The variations of the rms velocity with the frequency for the two other absorbers

PP#2 and PP#3 are similar but they are not shown for conciseness.

The real and imaginary parts of the admittance estimated from the numerical simulation with

the IA and IAP methods are shown in Figs. 8 and 9 for PP#1 and PP#3 with two cavity depths and

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
0 1000 2000 3000 4000
0

2

4

6

8

10

12

0 1000 2000 3000 4000
0

2

4

6

8

10

12

Figure 7: Variation of the rms velocity in the perforation with the frequency for several incident SPL and for PP#1

with two cavity depths: (a) D = 10 mm and (b) D = 30 mm.
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Figure 8: Admittance for PP#1 absorber with a cavity depth of (a) D = 10 mm and (b) D = 30 mm: calculated

with the analytical model in Eq. (3) (blue solid) and determined from the numerical solution using the IAP (red

dashed) and the IA (black dash-dotted) methods. A harmonic excitation is used.
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Figure 9: Admittance for PP#3 absorber with a cavity depth of (a) D = 10 mm and (b) D = 30 mm: calculated

with the analytical model in Eq. (3) (blue solid) and determined from the numerical solution using the IAP (red

dashed) and the IA (black dash-dotted) methods. A harmonic excitation is used.

for several incident SPL. It is seen that the surface admittance is significantly different depending

on the incident SPL: in particular, increasing the incident SPL tends to flatten the curves. The

corresponding analytical admittances calculated from Eq. (3) are also plotted in Figs. 8 and 9. Note

that the rms velocity in the perforations determined from the numerical solution is used as input

data for the analytical admittance model. For both IA and IAP methods, the numerical results

are in good agreement with the analytical results over the entire frequency range for the reference

values as well as for the intermediate values of the velocity. This shows that both methods allow

for an accurate representation of the nonlinear admittance in the time domain.

4.2.2. Broadband excitation

In this section, the case of a broadband excitation is studied. A white noise filtered using

a Butterworth bandpass filter with lower and upper cutoff frequencies of 200 Hz and 4000 Hz,

respectively, is employed.

The admittance determined from the numerical solution using the two methods IA and IAP is

shown in Figs. 10 and 11 for PP#1 and #3 with two cavity depths and for three incident SPL.

The dependence of the surface admittance in the nonlinear regime with the characteristics of the

incident signal can be first noticed by comparing these two figures with Figs. 8 and 9. Indeed, the

surface admittance for the harmonic excitation is significantly different from that for the broadband

excitation, despite that the incident SPL on the liner is the same. In particular, for PP#3 (Figs. 9

and 11), the admittance amplitude for the broadband excitation is almost two times larger than

for the harmonic excitation.
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Figure 10: Admittance for PP#1 absorber with a cavity depth of (a) D = 10 mm and (b) D = 30 mm: calculated

with the analytical model in Eq. (3) (blue solid) and determined from the numerical solution using the IAP (red

dashed) and the IA (black dash-dotted) methods. A broadband excitation is used.
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Figure 11: Admittance for PP#3 absorber with a cavity depth of (a) D = 10 mm and (b) D = 30 mm: calculated

with the analytical model in Eq. (3) (blue solid) and determined from the numerical solution using the IAP (red

dashed) and the IA (black dash-dotted) methods. A broadband excitation is used.
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Second, the analytical admittance in Eq. (3) is also plotted in Figs. 10 and 11. Here as well, the

rms velocity in the perforations deduced from the numerical simulation is used for the calculation

of the analytical admittance. As a reminder, vrms is a single value for the broadband admittance

spectrum. As an example, for PP#1 absorber with a cavity depth of 10 mm, vrms is equal to 1.8, 5

and 9.6 m s−1 for incident SPL of 120, 130 and 138 dB, respectively. For the three incident sound

pressure levels of 120, 130 and 138 dB, the predicted real and imaginary parts of the admittance

are in good agreement with the analytical results for both PPs absorber with two cavity depths

of 10 and 30 mm. The comparison is more favorable to the IAP method than to the IA method,

which may be due to the low-order interpolation used in the IA method.

4.3. Experimental validation

As a last check, numerical results with the nonlinear TDABC are compared to experimental

results.

𝐷ℎ

Sample

Air
Cavity

Movable 
piston

Micro 1

𝑠

𝑙

𝑃𝑖

𝑃𝑟

Loudspeaker

Micro 2

Power amplifier
B&K - Type 2718

Conditioning amplifier
B&K - Type 2690

PC

Figure 12: Schematic diagram of the impedance tube for measuring the surface admittance of a sample by using the

two-microphone transfer-function method.

The measurements were performed using a B&K Type 4206 impedance tube kit, as illustrated

in Fig. 12. The tube has a circular cross-section, with an inner diameter of 3 cm, yielding a cut-off

frequency around 6400 Hz. The sample plate is located at the right hand side of the tube. An air

cavity of depth D is created behind the plate by a movable piston which is used as a rigid backing

wall. Two sets of measurements were made, considering a harmonic excitation and a broadband

excitation. For harmonic excitation, acoustic waves were generated by a loudspeaker mounted at
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the left hand side of the tube. For broadband excitation, the loudpspeaker of the impedance tube

kit was replaced by a JBL 2447H compression driver. The acoustic sources were powered by a

B&K power amplifier type 2718. Pressure signals were measured using two flush-mounted 1/4”

microphones (B&K type 4187), associated to two B&K type 2670 preamplifiers, a conditioning

amplifier type 2690, and National Instrument 9250 front-end. An amplitude and phase calibration

method was used to correct the transfer function between the two measurement channels.

The two-microphone method [37], as described in Sec. 4.1, was used to determine the surface

impedance of the PP sample. The distance between the sample and the microphone 1 is l = 55 mm

and the two microphones were separated by a distance s = 20 mm.

4.3.1. Harmonic excitation

The measurements were carried out for the three PP absorbers described in Sec. 2 using a

harmonic excitation over a frequency range between 500 and 4000 Hz in steps of 50 Hz. Two levels

of excitation, corresponding to two different gains of the power amplifier, were considered. In the

first case, denoted as the low SPL case, the amplifier gain was set to ensure that the SPL inside

the tube was sufficiently small to be in the linear regime, while maintaining a good signal-to-noise

ratio for all frequencies. In the second case, denoted as the high SPL case, the amplifier gain was

increased to its maximum, while ensuring negligible harmonic distortion.

In the literature, measurements to characterize perforated plates at high SPL are rather per-

formed by keeping the same level of the incident wave on the plate (see, e.g., Refs. [12, 38]), as done

in the numerical experiments in Sec. 4.2.1. As we are mostly interested in validating the numerical

model proposed in Sec. 3, this was not deemed necessary in this study.

A quantitative information on the acoustic excitation of the PP plate can be determined from

the measurements. To do so, the acoustic pressure and velocity in the tube are expressed under

the plane wave hypothesis as

P (x, ω) = Pi(ω)e jk0x + Pr(ω)e− jk0x U(x, ω) =
1

Z0

[
Pi(ω)e jk0x − Pr(ω)e− jk0x

]
(28)

where Pi and Pr represent the amplitude of the incident and reflected pressure waves in the tube,

respectively. They can be determined thanks to the two-microphone method, with the relations:

Pi = jP (x1)
e− jk0x2 −H12 e− jk0x1

2 sin(k0s)
Pr = −jP (x1)

e jk0x2 −H12 e jk0x1

2 sin(k0s)
. (29)

Fig. 13 shows the amplitude of the incident wave |Pi| for PP#1 absorber with a cavity depth of

30 mm as a function of the driving frequency for the low and the high SPL cases. Although it can be
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Figure 13: Measured amplitude of the incident acoustic pressure for PP#1 absorber with a cavity depth of 30 mm

for (a) low and (b) high SPL cases.

expected that the amplitude of the acoustic wave generated by the loudspeaker is constant over the

entire frequency range, the amplitude of the incident wave greatly varies with the frequency. The

incident pressure is maximal for some frequencies; this could be related to the resonant frequencies

of the tube. For the low SPL case, |Pi| is below 9 Pa for all frequencies corresponding to incident

SPL below 110 dB. For the high SPL case, |Pi| reaches a maximum of 122 Pa for f = 2850 Hz,

corresponding to an incident SPL of about 133 dB.
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Figure 14: Rms amplitude of the velocity in the perforations for a harmonic excitation determined from the exper-

iments and from the numerical simulation for PP#1 absorber with a cavity depth of 30 mm for the (a) low and

(b) high SPL cases.

The numerical simulations are performed using the IAP method for the TDABC. In addition

to the nonlinear surface admittance model of the PP liner, the amplitude of the incident wave has

to be prescribed. It is set to the value determined in the experiments, i.e. pi,rms = |Pi|/
√

2.
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Figure 15: Surface admittance of PP#1 absorber with a cavity depth of 30 mm for a harmonic excitation for the

(a) low and (b) high SPL cases: measured (black dash-dotted) and determined from the analytical model in Eq. (3)

(blue solid) and from the numerical solution (red dashed).
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Figure 16: Surface admittance of PP#2 absorber with a cavity depth of 30 mm for a harmonic excitation for the

(a) low and (b) high SPL cases: measured (black dash-dotted) and determined from the analytical model in Eq. (3)

(blue solid) and from the numerical solution (red dashed).

The comparison between the experimental and numerical results is now presented. The rms

amplitude of the velocity in the perforations is shown in Fig. 14 both for the experiments and for the

numerical solution and for PP#1 with a cavity depth of 30 mm. Note that the experimental value

of vrms is determined from the pressure measurements with the two microphones using Eq. (28),

which yields vrms = |U(x = L)|/(
√

2ϕ). An excellent agreement is seen at both low and high

SPL. In addition, the frequency of the peaks observed in Fig. 14 is in accordance with those of the

incident pressure amplitude in Fig. 13.
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The experimental admittances obtained for PP#1 and #2 are shown in Figs. 15 and 16, re-

spectively, along with those determined from the numerical models for the two levels of excitation.

Both are determined with the two-microphone method using Eq. (27). The analytical admittance

obtained with the Laly model using the rms velocity in the perforations determined from the

measurements is also plotted. A good agreement is obtained between the measurements and the

numerical and analytical models, especially for the high SPL case. We can also note the difference

in the real and imaginary parts of the admittance between the low and the high SPL cases, due to

the nonlinear effect. In addition, the abrupt variations of the surface admittance observed for the

high SPL case are due to the corresponding variations of the incident pressure with the frequency.

4.3.2. Broadband excitation

The measurements were repeated for the three PPs absorbers using a white noise signal as

the excitation signal and for several levels of excitation. Results are exemplified below for PP#1

absorber with a cavity depth of 30 mm. The comparisons for PP#2 and PP#3 both with a cavity

depth of 30 mm are shown in Appendix B.
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Figure 17: One-sided power spectral densities of (a) the incident pressure and (b) the velocity in the perforations for

PP#1 absorber with a cavity depth of 30 mm. A broadband excitation is used.

Information on the incident pressure has to be obtained from the experiments for the numerical

simulations. With this aim, the power spectral density of the incident pressure Sii is calculated

from those of the pressure at the two microphones based on Eq. (29). For comparison purpose,

the power spectral density of the velocity in the perforations Svv iss also calculated on the basis

of Eq. (28). Only the part of the spectra below the tube cutoff frequency, i.e. for f < 6400 Hz,

is considered. The power spectral densities are shown in Fig. 17. The spectrum of the incident
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pressure is not flat in the experiments, probably due to the resonances of the impedance tube, as

already noticed for the harmonic excitation in Sec. 4.3.1. This is also the case for the spectrum

of the velocity in the perforations. Note that the variations of Svv with the frequency is slighly

different from that of Sii. The rms values of the incident pressure and velocity in the perforations

are then estimated by integrating the corresponding power spectral density from 100 Hz up to

6400 Hz.
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Figure 18: Surface admittance of PP#1 absorber with a cavity depth of 30 mm for a broadband excitation and for

three incident SPL (a) 76.4 dB, (b) 126.4 dB and (c) 133.1 dB: measured (black dash-dotted) and determined from

the analytical model in Eq. (3) (blue solid) and from the numerical solution (red dashed).

The numerical simulations are carried out using the IAP method for the TDABC. The incident

pressure signal is a random signal, built so that its power spectral density is equal to the one

measured. It induces in particular that the rms value of the incident pressure is the same in the

simulations and in the experiments.
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Figure 19: Absorption coefficient of PP#1 absorber with a cavity depth of 30 mm for a broadband excitation and for

three incident SPL (a) 76.4 dB, (b) 126.4 dB and (c) 133.1 dB: measured (black dash-dotted) and determined from

the analytical model in Eq. (3) (blue solid) and from the numerical solution (red dashed).

Fig. 18 shows the surface admittance determined from the measurements for three incident

SPL: 76.4 dB in (a), corresponding to the linear regime, and 126.4 dB and 133.1 dB in (b) and

(c), respectively, corresponding to the nonlinear regime. The variations of the surface admittance
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with the incident SPL are similar to those observed in Sec. 4.2.2: the amplitude of the real and

imaginary parts of Y decreases and the peak of Re[Y ] widens with the increase of the incident

SPL. The surface admittance deduced from the numerical simulations is also plotted in Fig. 18.

While the match is not perfect with the measurements, a close agreement is noted. In particular,

the evolution of the admittance with the incident SPL is well reproduced. Finally, the analytical

model in Eq. (3) is also represented using the rms velocity in the perforations determined from the

numerical simulations as input.

As an additional comparison, the corresponding absorption coefficients α are plotted in Fig. 19

for the three incident SPL. The impact of the incident SPL on the measured absorption coefficient

is noticeable: the absorption bandwidth broadens and the maximum of α reduces with the increase

of the incident SPL. Some ripples are seen in Figs. 19 (b) and (c) near 1800 Hz in the experimental

curves; they are related to a lack of coherence due to low values of pressure at the microphones

in this frequency range. The absorption coefficient determined from the numerical and analytical

models are in good agreement with the measured one. While the curves of α are not superimposed,

the numerical simulations capture especially the evolution of the absorption coefficient with the

increase of the incident SPL.

Finally, the rms amplitude of the velocity in the perforations deduced from the experiments

and from the numerical simulations is reported in Tab. 3 for several incident SPL. It is observed

that vrms is noticeably well predicted from the numerical simulations.

Incident SPL (dB) 76.4 86.2 96.7 106.0 116.2 126.4 133.1

vrms (m s−1)
exp. 1.24×10−2 3.69×10−2 1.21×10−1 3.56×10−1 1.14 3.37 6.44

num. 1.49×10−2 4.86×10−2 1.60×10−1 4.54×10−1 1.35 3.56 6.36

Table 3: Rms amplitude of the velocity in the perforations for PP#1 absorber with a cavity depth of 30 mm for a

broadband excitation: values deduced from the experiments and from the numerical simulations.

5. Application to a 2D lined duct

This section is concerned with a two-dimensional (2D) lined duct, which is representative of

industrial applications. The objectives are to evaluate the numerical model including the nonlinear

TDABC in this situation as well as to analyze the impact of nonlinear TDABC on sound propaga-

tion and attenuation in a 2D lined duct. In particular, the nonlinear admittance model of PP liners

depends on the velocity in the perforations. It is expected that this quantity varies significantly
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along the treatment and, as a consequence, that it is also the case for the surface admittance.

Most of the existing methods for predicting sound propagation in a duct however consider a treat-

ment with a uniform admittance. It is therefore worthwhile to investigate whether accounting for

the spatial variations of the admittance at high excitation level is important for predicting the

transmission loss in a lined duct.

5.1. Numerical configuration

A 2D lined duct of size L×H = 0.812 m× 0.0508 m is considered, as shown in Fig. 20. The liner

of length 0.406 m is located on the duct lower wall from x = L1 = 0.203 m to x = L2 = 0.609 m.

The other duct walls are rigid. This geometry corresponds to that of the Grazing Incidence Tube

of NASA (see, e.g., Ref. [39]), which is one of the well-known duct facility for evaluating liner

efficiency. There is no flow and the sound speed and air density are constant.

𝑥

Anechoic

termination

𝑥 = 0 𝑥 = 𝐿1 𝑥 = 𝐿2 𝑥 = 𝐿

𝐻
Liner, 𝑍

Incident wave

Figure 20: Schematic of the 2D lined duct.

All the results presented in this section are obtained for the PP#1 absorber with a cavity depth

of 10 mm. The frequency range of interest is between 200 Hz and 3000 Hz, which respects the

cut-off frequency (around 3.35 kHz) of the duct. Two types of incident pressure waveforms, i.e.

harmonic and broadband, are considered. The broadband signal is obtained by filtering a white

noise signal using a Butterworth bandpass filter with lower and upper cutoff frequencies set to

200 Hz and 3000 Hz, respectively.

The 2D LEEs are solved using the numerical methods presented for the 1D case in Sec. 3.2.

At the boundary x = 0, an incident plane wave propagating along the x-direction is generated

using the method of characteristics, as described in Sec. 3.2. At x = L, a non-reflecting boundary

condition is applied, using also the method of characteristics: the idea is the same, except that the

incoming characteristic variable into the computational domain at the interface is set to zero so

that no reflected waves are generated at the boundary. Finally, the normal velocity is set to zero

on the duct rigid walls and the TDABC is applied along the lined section using the interpolation

of the admittance parameters (IAP) approach presented in Sec. 3.4.2.
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The mesh is uniform in the x-direction with a size ∆x = 1.1× 10−3 m. Along the z-direction,

the mesh size is progressively reduced towards the liner walls with a stretching factor of 0.99. It is

equal to ∆z = 1.1× 10−3 m at the duct axis and ∆z = 8.19× 10−4 m on the walls. The time step

is set to ∆t = 2× 10−6 s, which yields a CFL number of 0.84. The total simulation time is 0.02 s

for the harmonic excitation. It is increased to 0.35 s for the broadband excitation to get a longer

signal in order to improve spectral resolution.

5.2. Harmonic excitation

5.2.1. Effect of the incident SPL

Results are first considered for several incident SPL and for a driving frequency of 1600 Hz,

which is close to the resonant frequency of the liner. The contours of the SPL are depicted in Fig. 21

for four incident SPL. The reference for the SPL calculation is chosen here as the rms amplitude of

the incident wave to ease the comparison between the results. The SPL maps are globally similar

in the rigid section for x < L1. For the incident SPL of 120 and 130 dB, differences from the case

of an incident SPL equal to 80 dB can already be seen. The isolines above the liner are noticeably

modified, especially the slope on the liner. The SPL in the exit section (x > L2) also depends on

the incident SPL. Finally, for the largest incident SPL of 140 dB, strong alteration of the SPL map

is observed.

Figure 21: SPL (20 log10(prms/pi,rms)) in dB for an incident SPL of: (a) 80 dB, (b) 120 dB, (c) 130 dB and (d) 140 dB

with a harmonic excitation at f = 1600 Hz. The liner location is indicated by the black thick horizontal line. Isolines

are plotted every 5 dB in black lines.
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Figure 22: Variation along the liner of the rms velocity for three incident SPL of 120, 130 and 140 dB with a harmonic

excitation at f = 1600 Hz.

In order to analyze the evolution of the acoustic field with the incident SPL, the properties

of the liner are investigated. Fig. 22 shows the variation of the rms velocity in the perforations

along the liner for three incident SPL of 120, 130 and 140 dB. The effect of the liner is reflected by

the reduction of vrms along the liner. It decreases almost linearly for the incident SPL of 130 and

140 dB. For 120 dB, it decreases also linearly at the beginning of the liner but less rapidly from

x = 0.4 m.
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Figure 23: Variation along the liner of the real (a) and imaginary (b) parts of the impedance for four incident SPL of

80 dB (magenta dashed lines), 120 dB (blue solid lines), 130 dB (red dashed lines) and 140 dB (black dashed-dotted

lines) with a harmonic excitation at f = 1600 Hz.

The corresponding spatial variation of the surface impedance is depicted in Fig. 23 for four

incident SPL. For the smallest incident SPL (80 dB), the real and imaginary parts of the impedance

are constant along the liner and equal to the values in the linear regime. As the SPL increases,
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large spatial variations of the impedance are noticed. In more details, the impedance is seen to

vary at the beginning of the liner before reaching almost the impedance value in the linear regime.

Thus, the resistance is almost equal to that in the linear regime from x = 0.4 m for an incident SPL

of 120 dB and from x = 0.55 m for an incident SPL of 130 dB. For the largest SPL (140 dB), this is

however not the case and the impedance remains different from that in the linear regime along the

whole liner. The spatial variations of the impedance echo the recent studies of Lafont et al. [40] and

Chen et al. [41], in which impedance eduction of PP liners in high SPL environments was performed

from measurements or numerical simulations. In order to improve comparisons with the reference

results, a spatially-varying impedance function (linear or piecewise linear) was used. This was also

discussed in detail by Roncen et al. [16]. The authors proposed an iterative strategy based on a

frequency-domain solver of the linearized Euler equations for two objectives: first, for prediction of

the acoustic field in a duct lined with a perforate plane liner accounting for the spatial variations

of the surface impedance and second, for eduction of a spatially-varying surface impedance at high

excitation level from measurements.
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Figure 24: Variation along the wall opposite to the liner of the SPL for three incident SPL of 120, 130 and 140 dB

with a harmonic excitation at f = 1600 Hz.

The evolution of the SPL along the wall opposite to the liner is plotted in Fig. 24 for three

incident SPL. It is seen that the SPL varies in a similar manner for the three incident SPL: it is

approximately constant in the rigid sections and decreases almost linearly in the lined section. The

attenuation due to the liner however depends significantly on the incident SPL: it is quite similar

for incident SPL of 120 dB and 130 dB, with a value of 36 dB and 33 dB, respectively, but suffers

a dramatic reduction to 18 dB for an incident SPL of 140 dB.
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Figure 25: Transmission loss versus frequency for a harmonic excitation with incident SPL of 120, 130 and 140 dB.

In order to characterize the variation of the attenuation with the driving frequency, the trans-

mission loss (TL) is determined from the numerical solution. The plane wave mode is the only

propagating mode in the rigid sections, as the driving frequencies are below the duct cutoff fre-

quency. Thus, the transmission loss can be calculated with:

TL = 20 log10

(
pi,rms

pt,rms

)
(30)

where pt,rms is the rms value of the transmitted wave amplitude in the exit section. As an anechoic

termination is considered, pt,rms is simply calculated from the acoustic pressure at a point sufficiently

far from the liner. The transmission loss is shown for three incident SPL in Fig. 25. It is seen that

increasing the incident SPL tends to widen the TL peak and reduce its amplitude. The TL peak is

observed near the resonant frequency of the liner and is shifted towards higher frequencies with the

increase of the incident SPL. Note that the TL peak is not at the resonant frequency of the liner

because the optimal impedance at grazing incidence and for a liner of finite length is not equal to

that at normal incidence.

5.2.2. Influence of the impedance spatial variation

An additional study is performed to investigate more precisely the influence of the impedance

modeling on the prediction of sound propagation and attenuation in a lined duct under high level

of excitation. To do so, three models of the liner are considered: first, the reference model with a

spatially-varying nonlinear impedance model that accounts for the variation of vrms along the liner,

i.e. ZNL[ω, vrms(x)], second, a uniform impedance model using the nonlinear impedance model but

for a constant and representative value of vrms and third, the linear impedance model. Simulations
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are performed for an incident SPL of 130 dB.
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Figure 26: Variation along the wall opposite to the liner of the SPL for an incident SPL of 130 dB with a harmonic

excitation at f = 1600 Hz: spatially variable admittance (red dashed line), linear admittance (black dashed-dotted

line) and spatially uniform admittance with vrms = 5 m s−1 (blue solid line)

The SPL variation along the wall opposite to the liner is depicted in Fig. 26 for a frequency of

1600 Hz and for the three liner models. Note that as the rms velocity in the perforations is about

5 m s−1 at the beginning in the liner for this frequency and for the incident SPL of 130 dB using

the nonlinear impedance model (see Fig. 22), this value was chosen to determine the impedance

in the uniform case. It is seen that the SPL prediction is significantly different for the three liner

models. In particular, the SPL for a uniform impedance with vrms = 5 m s−1 is superimposed with

that for a spatially-varying impedance for x < 0.3 m but is then substantially smaller. The results

for the linear model differ from those with the nonlinear model but a better estimation is obtained

in the exit section than with the uniform case for this particular frequency and incident SPL.

Fig. 27 shows the transmission loss as a function of the frequency for the three liner models. The

effect of the SPL on the transmission loss, shown in Fig. 25 discussed in Sec 5.2.1, is here observed

by comparing the TL between the linear and nonlinear impedance model: the TL peak is wider and

shifted towards high frequencies and its amplitude is reduced for the nonlinear impedance model

compared to the linear one. In addition, the TL determined for the spatially-varying impedance

model and for the uniform impedance model dramatically differs; assuming a uniform impedance

leads to an under-prediction of the TL peak amplitude and an over-prediction of the peak width

and of the frequency at the peak.

Two conclusions can be drawn from this example. First, neglecting nonlinear effects on the

response of a perforated plate can lead to a dramatic error on the prediction of the liner attenuation.
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Figure 27: Comparison of the transmission loss for an incident SPL of 130 dB between three cases: spatially variable

admittance (red), linear admittance (black) and spatially uniform admittance with vrms = 5 m s−1 (blue)

Second, the spatial variations of the parameter governing the nonlinear effect on the liner impedance

(here vrms) should be taken into account for an accurate modeling of the liner acoustic properties

and that assuming a constant value for the impedance at high SPL might be a rough approximation.

5.3. Broadband excitation

Finally, the case of an incident broadband signal is considered for different incident SPL.
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Figure 28: Variation along the liner of the rms velocity for three incident SPL of 120, 130 and 140 dB with a

broadband excitation.

The rms amplitude of the velocity in the perforations is plotted along the liner in Fig. 28.

Compared to the harmonic excitation at f = 1600 Hz for the same incident SPL in Fig. 22, vrms

is in the same order of magnitude and similarly reduces along the liner. However, it decreases at a

lower rate and its value at the beginning of the liner is smaller. For this given liner length, vrms for

the broadband excitation is thus smaller than that for the harmonic excitation in the first part of
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the lined section and larger in the second part.

500 1000 1500 2000 2500 3000

10

20

30

40

50

Figure 29: Transmission loss versus frequency for a broadband excitation with incident SPL of 120, 130 and 140 dB.

Fig. 29 shows the transmission loss in the case of the broadband signal. It is determined with:

TL = 10 log10

(
Sii
Stt

)
(31)

where Sii and Stt are the power spectral densities of the incident and transmitted pressure signal,

respectively. The evolution of the TL for the broadband excitation is similar to that observed for

the harmonic excitation in Fig. 25. Actually, the TL for PP#1 and for the three incident SPL

are, remarkably, almost identical for both types of excitation: thus, the width and amplitude of

the TL peak is similar and it is observed near the same frequencies. While this should be the

case in the linear regime, it is seen that, for this particular liner, the liner attenuation does not

depend significantly on the type of excitation. Some differences in the TL can however be noticed.

For example, the TL at f = 1600 Hz for an incident SPL of 130 dB is equal to 32 dB for a

harmonic excitation but to 36 dB for the broadband excitation. In addition, the maximum of TL is

observed near a frequency of 1600 Hz for the broadband excitation but near 1550 Hz for a harmonic

excitation.

A thorough analysis of the difference in the acoustic propagation along a lined duct depending

on the type of excitation remains to be done and can be the subject of future research.

6. Conclusion

Time-domain admittance boundary conditions in the nonlinear regime were investigated to

model the acoustic behavior of liners under a high excitation level. A particular focus was brought
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on perforated plate liners. The nonlinear model of Laly et al. [12] was employed for that. It

accounts for the variation of the surface admittance with the frequency and the rms velocity in the

perforation.

Two extensions of the TDABC proposed by Troian et al. [24] in the linear regime were con-

sidered. They are both based on a multipole model, so that the TDABC can be evaluated by

integrating ODEs. The variation of the surface admittance with the rms velocity is dealt with

by interpolation from a set of reference values. They however differ on the interpolation process.

The first nonlinear TDABC, referred to as the IA method and proposed by Shur et al. [26], is

based on the direct interpolation of the admittance. The IA method thus requires to determine

a multipole approximation of the surface admittance model for each reference value; the number

of poles of the corresponding nonlinear multipole model is therefore considerably larger than the

linear counterpart. In the second nonlinear TDABC, called the IAP method, interpolation of the

multipole function coefficients is preferred. This allows for a large reduction in the number of poles

compared to the IA method.

The two methods were implemented in a finite-difference time-domain solver of the linearized

Euler equations. Numerical experiments and comparisons with measurements on an impedance

tube configuration were performed for validation and evaluation purposes. Three PP liners were

considered for a harmonic and a broadband excitation. It was shown that the IA and IAP methods

allow both for an accurate and efficient representation of the surface admittance in the nonlinear

regime. Depending on the situation, one of the two methods is preferable. When considering

analytical models for which the admittance varies smoothly with the frequency, a multipole func-

tion with only two poles is sufficient to accurately represent the admittance. Since the IAP has

the smallest computational cost (because of the smallest number of poles), it may be preferred

over the IA method in this case. When considering experimental admittance data, the multipole

representation may require a significantly larger (5 to 8) number of poles in order to achieve ac-

ceptable accuracy. With such number of poles, the IAP approach may well become inaccurate

because of the high sensitivity of the multipole function to the location of the poles and may lead

to non-physical results, such a negative resistance over a given frequency band. Furthermore, the

admittance approximation with a decent accuracy may require using different number of poles

for different reference values of vrms; this is not possible with the current formulation of the IAP

method. For such cases, the IA method may be superior.

Finally, the proposed TDABC was applied to sound propagation along a 2D lined duct under
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high level of excitation. It was exemplified that the spatial variations of the surface impedance are

significant near the resonant frequency of the liner and has to be taken into account for an accurate

prediction of liner attenuation at high SPL.

There are several ways to pursue this study. The simulations have been restricted to a medium

at rest. Future work will consider the effect of a mean flow. Besides, along impedance tube

measurements, it will be interesting to have a detailed acoustic database on a duct lined with a PP

absorber for benchmarking. In addition, the concept of optimal impedance has been developed for

a lined duct with a uniform impedance. It should be extended to the case of a spatially-varying

impedance to be applicable to perforated liners at high level of excitation. Finally, a methodology

to account for extended-reacting liners in time-domain simulations has been recently proposed in

Alomar et al. [42]. In particular, perforated liners with a back cavity were considered by modelling

the perforated plate by an impedance jump. Following the nonlinear TDABC investigated in this

paper, it would be also possible to extend this methodology for perforated liners in the nonlinear

regime.

Appendix A. Coefficients of the nonlinear TDABC

This appendix provides the coefficients of the nonlinear TDABC for the PP#1 absorber with

two cavity depths 10 and 30 mm. The Laly model for this liner is approximated by a single pair

of complex conjugate poles λ1 and λ2 = λ∗1, with A2 = A∗1 over the range of velocities in the

perforations considered in this paper.

For the interpolation of the admittance (IA) method, the poles and the coefficients of the

multipole model (see Eq. (13)) are given for the different reference values of the rms velocity in the

perforations in Tab. A.4.

For the interpolation of the admittance parameters (IAP) method, the poles and the coefficients

(see Eq. (22)) are approximated by a rational function with quadratic polynomials, that can be

written as follows:

X(vrms) =
a+ b vrms + c v2rms

1 + d vrms + e v2rms

. (A.1)

The constants a, b, c, d and e are given for each coefficient of the multipole model in Tab. A.5.

Appendix B. Additional comparisons with impedance tube experiments for broad-

band excitation
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PP#1, Cavity depth of 10 mm

Reference rms
2 4 6 8 10 12

velocity (m s−1)

Re[A1] 1.680e+03 1.840e+03 1.962e+03 2.035e+03 2.085e+03 2.129e+03

Im[A1] 2.827e+02 4.331e+02 6.624e+02 9.044e+02 1.162e+03 1.532e+03

Re[λ1] (s−1) 1.609e+03 2.504e+03 3.675e+03 4.770e+03 5.795e+03 7.029e+03

Im[λ1] (s−1) -1.054e+04 -1.091e+04 -1.096e+04 -1.076e+04 -1.041e+04 -9.776e+03

Y∞ 4.0492e-03 1.7636e-03 7.288e-04 3.7514e-04 2.231e-04 1.315e-04

PP#1, Cavity depth of 30 mm

Reference rms
2 4 6 8 10 12

velocity (m s−1)

Re[A1] 1.552e+03 1.700e+03 1.803e+03 1.861e+03 1.900e+03 1.933e+03

Im[A1] 3.983e+02 6.782e+02 1.115e+03 1.675e+03 2.547e+03 6.661e+03

Re[λ1] (s−1) 1.418e+03 2.290e+03 3.369e+03 4.359e+03 5.280e+03 6.382e+03

Im[λ1] (s−1) -5.771e+03 -5.792e+03 -5.460e+03 -4.849e+03 -3.940e+03 -1.852e+03

Y∞ 4.949e-03 1.723e-03 6.431e-04 3.223e-04 1.921e-04 1.154e-04

Table A.4: Poles and coefficients of the multipole model for the interpolation of the admittance (IA) method.

PP#1, Cavity depth of 10 mm

X Re[A1] Im[A1] Re[λ1] (s−1) Im[λ1] (s−1) Y∞

a 1.430e+03 1.965e+02 9.911e+02 -9.678e+03 2.379e-04

b 5.176e+02 3.294e+01 3.717e+02 -1.054e+03 -5.229e-03

c 1.033e+02 9.665e+00 1.853e+02 4.519e+01 4.199e-02

d 2.746e-01 2.404e-02 2.785e-01 5.174e-02 5.924e-01

e 4.354e-02 9.060e-08 1.431e-03 3.785e-08 3.499e+00

PP#1, Cavity depth of 30 mm

X Re[A1] Im[A1] Re[λ1] (s−1) Im[λ1] (s−1) Y∞

a 1.308e+03 1.738e+02 7.187e+02 -5.398e+03 1.310e-02

b 8.897e+02 8.252e+01 4.897e+02 1.402e+01 -1.615e-03

c 3.224e+02 - 6.832e+00 2.652e+02 2.951e+01 7.271e-05

d 6.127e-01 -1.235e-01 4.883e-01 -3.844e-02 5.355e-02

e 1.517e-01 3.524e-03 8.734e-04 3.995e-09 2.183e-01

Table A.5: Constants of the rational functions used for the coefficients of the multipole model with the interpolation

of the admittance parameters (IAP) method.
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In this appendix, additional comparisons between the impedance tube measurements for a

broadband excitation and corresponding numerical results are presented. The experimental set-up

is described in Sec. 4.3 and the procedure used for the numerical simulations is detailed in Sec. 4.3.2.
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Figure B.30: (top) Surface admittance and (bottom) absorption coefficient of PP#2 absorber with a cavity depth of

30 mm for a broadband excitation and for three incident SPL (a)-(d) 76.8 dB, (b)-(e) 126.5 dB and (c)-(f) 133.4 dB:

measured (black dash-dotted) and determined from the analytical model in Eq. (3) (blue solid) and from the numerical

solution (red dashed).

Fig. B.30 shows the surface admittance and the absorption coefficient for PP#2 with a cavity

depth of 30 mm and for three incident sound pressure levels. The experimental results are quali-

tatively similar to those obtained for PP#1 in Figs. 18 and 19. The increase of the incident sound

pressure level leads to a flattening of the admittance curves and a reduction and a broadening of

the absorption peak. The results obtained with the numerical simulations do not match exactly

the experimental curves, but the evolution of the admittance and the absorption coefficient with

the incident SPL is correctly reproduced. Note also that the numerical results provide a close

agreement with the analytical model.

Corresponding results for PP#3 with a cavity depth of 30 mm are plotted in Fig. B.31. In this

case also, the experimental admittance curves tends to flatten with the increase of the incident SPL.

Nevertheless, the absorption coefficient behaves differently. The absorption coefficient significantly

rises with the increase of the incident SPL from 76.6 dB to 125.3 dB. Then, the peak value decreases

and the absorption peak broadens with a further increase of the incident SPL up to 133.5 dB. The
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Figure B.31: (top) Surface admittance and (bottom) absorption coefficient of PP#3 absorber with a cavity depth of

30 mm for a broadband excitation and for three incident SPL (a)-(d) 76.6 dB, (b)-(e) 125.3 dB and (c)-(f) 133.5 dB:

measured (black dash-dotted) and determined from the analytical model in Eq. (3) (blue solid) and from the numerical

solution (red dashed).

numerical simulations predict the overall evolution of the admittance and the absorption coefficient

with the increase of the incident SPL. Discrepancies are however noticeable for this PP absorber.

For the incident SPL of 125.3 dB, the peak in Re[Y ] is thus predicted at a higher frequency. The

absorption peak is also shifted towards high frequencies with the increase of the SPL, while it is

centered around a frequency independent of the incident SPL in the experiments. In addition, the

results from the analytical model and from the numerical simulations show a close agreement.

Finally, Tab. B.6 indicates the rms amplitude of the velocity in the perforations for PP#2 and

PP#3 with a cavity depth of 30 mm determined from the measurements and from the numerical

simulations. While a decent prediction is noticed, the value of vrms tends to be overestimated in the

numerical simulations, in particular in the linear regime. In the nonlinear regime, the differences

between the values determined from the experiments and the numerical simulations reduce. Thus,

vrms is accurately predicted with an error smaller than 5% for the largest incident SPL.
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PP#2, Cavity depth of 30 mm

Incident SPL (dB) 76.8 86.5 97.2 106.7 116.5 126.5 133.4

vrms (m s−1)
exp. 1.59×10−2 4.59×10−2 1.56×10−1 4.58×10−1 1.35 3.78 7.13

num. 1.93×10−2 6.17×10−2 2.16×10−1 6.02×10−1 1.60 4.03 7.16

PP#3, Cavity depth of 30 mm

Incident SPL (dB) 76.6 86.6 96.4 106.2 116.1 125.3 133.5

vrms (m s−1)
exp. 1.24×10−2 3.73×10−2 1.15×10−1 3.55×10−1 1.07 2.84 6.43

num. 2.23×10−2 7.34×10−2 2.17×10−1 6.19×10−1 1.70 3.52 6.61

Table B.6: Rms amplitude of the velocity in the perforations for PP#2 and PP#3 absorbers with a cavity depth of

30 mm for a broadband excitation: values deduced from the experiments and from the numerical simulations.
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