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Abstract

This article investigates the optimization under uncertainty of a mass-in-mass meta-cell for its potential use within a
metamaterial. The specificity of the proposed mass-in-mass system stems from the hybrid nonlinear-linear stiffness at
the inner level. It is well known that these systems exhibit high sensitivity to small perturbations in loading conditions
or design parameters. In fact, the sensitivity is such that the system can exhibit discontinuous behaviors. Therefore
the proposed optimization approach not only accounts for sources of uncertainties but also can handle discontinuous
responses. The objective of the stochastic optimization is to find the stiffness properties of the mass-in-mass system
which minimize the expected value of a specific efficiency metric. In order to better understand the system’s dynamic
behavior and the origins of the discontinuities, slow invariant manifolds and frequency response curves are provided.
The efficiency of the optimized system with hybrid stiffness is compared with that of a similar optimized system
featuring pure cubic nonlinearity.

1. Introduction

Metamaterials are engineered systems that leverage various physical and mechanical properties at micro-scale to
achieve tailored responses at macro-scale [1, 2, 3, 4]. Examples of such behaviors in mechanical metamaterials [5, 6]
include zero or negative Poisson’s ratio, mass, density, etc. [7, 8, 9, 10], and the emergence of bandgapsfrequency
ranges where the system response to external excitation or waves is zero or stays below a controlled threshold [11,5

12, 13]. One such designed system of interest in this paper is mass-in-mass cells [14, 15, 16], which can exhibit rich
dynamical behaviors in linear [17] and nonlinear [18, 19] domains, characterized by the creation of bandgaps and
modulated responses in linear and nonlinear domains, respectively. The inner mass of a single mass-in-mass cell can
be tailored to design the responses of the outer mass, such as controlling its vibratory response and/or harvesting its
energy.10

The passive vibratory energy control of a dynamic system is typically achieved using a secondary oscillator whose
linear or nonlinear characteristics are specifically tailored and exploited [20, 21]. The most established of such oscilla-
tors is referred to as a Frahm device [22] or tuned mass damper [23]. This device has a high efficiency near their tuned
frequencies but degrades substantially elsewhere. To overcome this limitation, Roberson [24] introduced a cubic part
to the linear restoring force, expanding its operational frequency range. Since then, different types of nonlinear passive15

absorbers have been developed, notably the nonlinear energy sink (NES) [25, 26, 27]. As research progressed, various
other nonlinearities were explored, including nonsmooth systems such as vibro-impact [28, 29, 30], piece-wise linear
models [31, 32, 33], and Bouc-Wen type nonlinearities [34]. In such systems, it is possible to induce an irreversible
transfer of vibrational energy from the main oscillator to the nonlinear one, a phenomenon known as targeted energy
transfer [25, 27, 35].20

The NES design dictates the targeted energy transfer, including the possible bifurcations and, consequently, the
NES efficiency to absorb and dissipate energy. However, it was observed that NESs exhibit a remarkable sensitivity
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to perturbations in design parameters or initial conditions [36], sometimes leading to a discontinuous nature of ac-
tivation, and even a slight alteration in these factors can trigger a change from a state of "high" to "low" efficiency.
Therefore, given that the device must have specific properties and uncertainties can significantly affect its performance,25

an optimization process that accounts for sources of uncertainty becomes an essential task.
In this article, we present the optimization of a grounded cell composed of an outer mass housing an inner resonator

with specific stiffness properties. The proposed mass-in-mass design is based on a hybrid nonlinear-linear stiffness
whose characteristics are the subject of the proposed optimization. In addition, the optimization is stochastic in nature
and accounts for various sources of uncertainties in design and loading.30

To perform the stochastic optimization [37], this study employs the algorithm presented in [38], which is based on
Kriging surrogate model [39], clustering [40], and a support vector machine (SVM) classifier [41]. The optimization
scheme enables the unsupervised identification of regions with different levels of efficiency, such as in the case where
the resonator is activated. The stochastic optimization methods enables the use of random design variables and random
parameters (aleatory variables) such as the initial velocity of the outer mass or the excitation force magnitude. The35

objective function considered is the expected value of the amplitude of the main system for given ranges of excitation
conditions, including cases where the main mass is subjected to an impulse or a harmonic force. In order to further
understand the dynamics leading to the optimal results and the origin of the discontinuities, Slow Invariant Manifolds
(SIM) and frequency response curves, as investigated in [18], are presented.

The article is constructed as follows: in Section 2, we introduce the system and its dynamics, along with the40

methods used to derive the SIM and the frequency response curves. This section also presents the efficiency metric
and analysis of the system’s activation levels, sources of incertitudes and potential discontinuous behavior. Section
3 describes optimization problem under uncertainty formulation and outlines the proposed algorithm for minimizing
the mean efficiency. Additionally, this section introduces important tools such as Kriging and SVM. In Section 4, we
present the optimization of the meta-cell, considering two types of excitation and two different nonlinearities for the45

system.

2. The system under study and its different dynamics

2.1. Academic model

A mass-in-mass cell unit is represented in Fig. 1. It consists of an outer rigid mass m1 with generalized displace-
ment u1(t) and an inner rigid mass m2 having the generalized displacement u2(t). The outer mass is grounded by a50

linear spring with constant stiffness k1 and linear damping with a constant coefficient c1. Both masses are coupled
via a damping coefficient, c2, and a nonlinear restoring force, F(α), function of the relative displacement of the two
masses. Besides that, the outer mass (m1) is forced by an external sinusoidal excitation S (t) = P sin(Ωt).

u1

u2

k1
F (α)

m2

c1

c2

m1

S(t)

Figure 1: Model of a mass-in-mass cell unit [18]. The nonlinear interactions between two masses is represented by the function F(α).

The governing equations of the system in the time domain t are as follows:{
m1u′′1 + k1u1 + c1u′1 + F(u1 − u2) + c2(u′1 − u′2) = P sin(Ωt)
m2u′′2 + F(u2 − u1) + c2(u′2 − u′1) = 0 (1)
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where (.)′ stands for derivative with respect to t.55

Introducing a dimensionless time τ as:

τ = ωt =

√
k1

m1
t (2)

The Eq. 1 adopts the dimensionless form:ü1 + u1 + ϵζ1u̇1 + ϵ f (u1 − u2) + ϵζ2(u̇1 − u̇2) = ϵγ sin(ϑτ)
ϵü2 + ϵ f (u2 − u1) + ϵζ2(u̇2 − u̇1) = 0

(3)

where ( ˙ ) stands for the derivative with respect to τ.
ϵ is a physical parameter representing the mass ratio between the two oscillators, i.e., ϵ = m2/m1. Assuming that
0 < ϵ ≪ 1, the following parameters are introduced:60

ϵζ1 =
c1√
k1m1

, ϵζ2 =
c2√
k1m1

, ϵγ =
P
k1
, ϑ =

Ω

ω
, ϵ f (u1 − u2) =

F(u1 − u2)
k1

(4)

f (α) is defined as:

f (α) =


kNLα

3 if −δ ≤ α ≤ δ
kL(α − δ) + kNLδ

3 if α > δ
kL(α + δ) − kNLδ

3 if α < −δ
(5)

In detail, the restoring force function f (α) is cubic in the clearance of 2δ and it becomes linear elsewhere, with a slope
of kL.
The dynamical behavior of the system is studied by applying the multiple time scales method [42] combined with a
complexification method [43], which are the subject of the following subsection.65

2.2. Multiple time scales methods and complex variables of Manevitch

In the multiple time scales method, the time scales τ j are defined as follows [42]:

τ j = ϵ
jτ, j ∈ N (6)

Different scales of time are coupled to each other via the small physical parameter ϵ. The time is decomposed in fast
(τ0) and slow scales (τ j = ϵ

jτ, j = 1, 2, ...).
For further developments, new variables w and v, which correspond to the center of mass of the two particles and the70

relative displacement, respectively, will be introduced as [18]:[
w
v

]
=

[
1 ϵ
1 −1

] [
u1
u2

]
(7)

The multiple scales method will be combined with the complexification technique. Complex variables of Manevitch
[43], as function of the dimensionless frequency ϑ, are applied to the system as follows:φ1eiϑτ = ẇ + iϑw

φ2eiϑτ = v̇ + iϑv
(8)

with i2 = −1.
To keep only the resonant terms corresponding to this pulsation, a Galerkin method is applied based on the truncated75

Fourier series via keeping the first harmonics. For a generic function s(φ1, φ2, φ
∗
1, φ
∗
2), this task is carried out via:

S (φ1, φ2, φ
∗
1, φ
∗
2) =

ϑ

2π

∫ 2π
ϑ

0
s(φ1, φ2, φ

∗
1, φ
∗
2)e−iϑτdτ (9)
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When using this technique, it will be assumed that φ1, φ2, φ
∗
1, φ
∗
2 do not depend on fast timescale, i.e., τ0 = τ. The

validity of this assumption is checked during the multiple scale analysis.
Applying the complex variables of Manevitch and the Galerkin method, the following system of equations is obtained:

φ̇1

2
+

iϑφ1

2
+

1
(1 + ϵ)

φ1

2iϑ
+

ϵ

(1 + ϵ)
φ2

2iϑ
+

ϵ

(1 + ϵ)
ζ1

(
φ1

2
+ ϵ
φ2

2

)
− ϵγ

2i
= 0

φ̇2

2
+

iϑφ2

2
+ +

1
(1 + ϵ)

φ1

2iϑ
+

ϵ

(1 + ϵ)
φ2

2iϑ
+

ϵ

(1 + ϵ)
ζ1

(
φ1

2
+ ϵ
φ2

2

)
+ F (φ2, φ

∗
2)(ϵ + 1) + ζ2

φ2

2
(ϵ + 1) − ϵγ

2i
= 0

(10)

80

In the subsequent subsection, we address Eq. (10) using the method of multiple scales via looking at equations of
different orders of ϵ. Selected results from [18], accompanied by supplementary analysis, are also provided to a better
understanding of the system’s dynamics.

2.3. Fast and slow dynamics of the system
We consider the system behavior in the vicinity of 1:1 resonance, where the frequency of the main system is close85

to that of the external force. From that, we set ϑ = 1 + σϵ, where σ is the detuning parameter.

Fast dynamics. The system behavior at the fast time scale is described by the system of equations (10) at ϵ0 order:
∂φ1

∂τ0
= 0

∂φ2

∂τ0
+ iφ2 − iφ1 − iφ2g(|φ2|2) + ζ2φ2 = 0

(11)

where [18]:

g(|φ2|2) =



3KNL|φ2|2
4

if |φ2| < δ

3KNL|φ2|2
4

+
1

4π|φ2|


−8δKL

√
1 − δ

2

|φ2|2


+KNL

−6δ|φ2|2
√

1 − δ
2

|φ2|2
+ 12δ3

√
1 − δ

2

|φ2|2


+(8KL|φ2| − 6KNL|φ2|3) arccos

(
δ

|φ2|

)]
if |φ2| ≥ δ

(12)

The first equation of (11) implies that φ1 = φ1(τ1, τ2, ...), validating for this variable the hypothesis made for use of

Galerkin’s method (Eq. (9)). For the second equation of (11), we seek the fixed point φ2 verifying lim
τ0→∞

∂φ2

∂τ0
= 0.90

From that, we obtain the SIM as follows:

H = −iφ2 + iφ1 + iφ2g(|φ2|2) − ζ2φ2 = 0 (13)

Expressing the complex variables of Manevitch in the polar domain as φ j = N jeiθ j , N j ∈ R+, θ j ∈ R, j = 1, 2, we
obtain the final equation of the SIM as follows:

N1 = N2

√
(1 − g(N2

2 ))2 + ζ2
2 (14)

From this equation, it is evident that the SIM does not depend on the amplitude of the external excitation applied to
the main system. In other words, the SIM is a geometrical representation of all possible final states of the system.95

Thus, the behavior of a system is attracted by its SIM and evolves around it. Figure 2 shows an example of SIM with
its stability borders of the non-optimized system considering the parameters of Tables 1 and 2 [18].
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ζ1 ζ2 γ

0.1 0.1 0

Table 1: Parameters of the system.

kNL kL δ

0.1 0.1 5

Table 2: Parameters of the restoring force function.

Figure 2: The SIM of a non-optimized system and its stability borders (- - -) [18].

Slow dynamics. The system behavior at the slow time scale is described by the system of equations (10) at ϵ1 order.
When the first equation of the system (10) is studied at ϵ1 order, it yields:100

∂φ1

∂τ1
= E1(φ1, φ2, φ

∗
1, φ
∗
2) (15)

where
E1(φ1, φ2, φ

∗
1, φ
∗
2) = −2σφ1 + iζ1φ1 + φ2 − φ1 − γ = 0 (16)

To detect the equilibrium and singular points of the system, Eq. 16 should be accompanied by the SIM and its
evolution at τ1 time scale, resulting in:

∂H

∂φ2

∂H

∂φ∗2

∂H ∗

∂φ2

∂H ∗

∂φ∗2

︸              ︷︷              ︸
S1


∂φ2

∂τ1

∂φ∗2
∂τ1

 = −

∂H

∂φ1

∂H

∂φ∗1

∂H ∗

∂φ1

∂H ∗

∂φ∗1

︸              ︷︷              ︸
S2

E1

E∗1

 (17)

To determine the equilibrium points of the system, the following conditions are established:
E1(φ1, φ2, φ

∗
1, φ
∗
2) = 0

H (φ1, φ2, φ
∗
1, φ
∗
2) = 0

det(S1) , 0
(18)
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For the identification of singular points, the conditions are modified as follows:105 
E1(φ1, φ2, φ

∗
1, φ
∗
2) = 0

H (φ1, φ2, φ
∗
1, φ
∗
2) = 0

det(S1) = 0
(19)

Considering Eq. (13) that links the variables φ1 and φ2 in the governing equation of the SIM, Eq. (16) reads to:

(−2σ + iζ1 − 1)(φ2 − g(N2
2 ) − iζ2φ2) + φ2 − γ = 0 (20)

Upon expressing Eq. (20) in the polar domain, it can be reorganized as:(
4N2

2 − 8N2
2 g(N2

2 ) + 4N2
2 g2(N2

2 ) + 4N2
2ζ

2
2

)
σ2

+
(
−4N2

2 g(N2
2 ) + 4N2

2 g2(N2
2 ) + 4N2

2ζ
2
2

)
σ

+N2
2

(
ζ2

1ζ
2
2 + g2(N2

2 ) + ζ2
1 − 2ζ2

1 g(N2
2 ) + 2ζ1ζ2 + ζ2

1 g2(N2
2 ) + ζ2

2

)
− γ2 = 0

(21)

Equation 21 allows us to derive the frequency response curve in terms of N2 for a given amplitude of forcing γ.
Subsequently, the frequency response curve in terms of N1 can be acquired using the equation of the SIM (refer to Eq.
(14)).110

Figure 3 presents an example of frequency response curves. It illustrates all possible equilibrium points for the forcing
amplitude γ = 2 in terms of N1 and N2, and as a function of the detuning parameter σ. The equilibrium points located
in unstable zones of the SIM (presented in Fig. 2) are highlighted in green, and the isola in red. It is important
to mention that if the system has only one equilibrium point and it is situated in the unstable zone, it will present
modulated response [44, 45], represented by relaxation oscillations between stable branches of the SIM.

Figure 3: Detected equilibrium points of the system subjected to a forcing amplitude γ = 2 with respect to the detuning parameter σ. System
parameters are provided in Tables 1 and 2 [18].

115
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2.4. Activation levels

Depending on the initial conditions, the studied system exhibits the possibility of two, one, or no bifurcations for
free responses. In other words, specific activation levels must be surpassed for unforced systems to exhibit bifurca-
tions.
For a better understanding, numerical responses of an unforced system are added to the SIM in Fig. 4. In Fig. 4a,120

it is noticed that starting from the initial conditions represented by ×, the system response is attracted by the SIM.
Subsequently, double bifurcations occur due to the existence of two unstable zones in the SIM (as shown in Fig. 2),
leading the system to eventually reach the rest position, as expected for a damped free response. However, in Fig. 4b,
the system exhibits only one bifurcation due to its lower initial condition. In contrast, in Fig. 4c, no bifurcation is
observed since the initial conditions are below the bifurcations thresholds.
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N
1
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8

N
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(b)
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2

0

2

4

6

8

N
1
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Figure 4: The SIM of the system (in black) and corresponding free numerical responses (in blue) obtained for different initial conditions represented
by × symbol: (a) (u1,0, u2,0, u̇1,0, u̇2,0) = (0, 0, 4.38, 0); (b) (u1,0, u2,0, u̇1,0, u̇2,0) = (0, 0, 2.98, 0); (c) (u1,0, u2,0, u̇1,0, u̇2,0) = (0, 0, 0.52, 0). Numerical
results are obtained from direct numerical integration of Eq. (3).

125

2.5. Sources of incertitudes

One of the sources of incertitudes in the response of the studied system lies in its initial conditions, such as the
initial velocity of the external mass u̇1, where the main mass is subjected to an impulse. Depending on the initial
values of u̇1, the system can exhibit one, two, or no bifurcations, as illustrated in Figure 4.
Another source of incertitudes is the external force applied to the outer mass. Depending on its amplitude γ and its130

frequency detuning parameter σ, this force can activate different parts of the SIM resulting in periodic or non-periodic
responses with possible bifurcations around one or both unstable zones of the SIM.
It is possible to determine which part of the SIM is activated when we examine the frequency response curve on the
N1 −N2 plane. The two-dimensional representation of Fig. 3 in terms of N1 and N2 is depicted in Fig. 5a. To comple-
ment this representation, Fig. 5b illustrates the corresponding regions of the SIM that are activated by the particular135

amplitude of force considered, i.e., γ parameter. It is important to note that altering the forcing amplitude activates
different regions of the SIM. For instance, as the amplitude of force increases, more zones of the SIM become acti-
vated.
Other two-dimensional views of Fig. 3 are presented in Figs. 6a and 6b. These visual representations offer valuable
insights into the system’s behavior with respect to the detuning parameter (σ) of the excitation frequency. One remark-140

able observation is that the system can exhibit multiple possible equilibrium points for certain detuning parameters.
Also, depending on this parameter, the equilibrium point can reside within a stable or unstable region of the SIM. The
latter is highlighted in green and can result in a non-periodic response.
It is important to acknowledge that design variables, such as the parameters of the restoring force, can be sources of
incertitudes when the studied system is fabricated. In the works of Boroson et al. [46, 38], the nonlinear stiffness is145

considered as a stochastic design variable. However, in this study, only the external force and the initial velocity will
be considered as stochastic variables.

2.6. Efficiency metric

To maximize the efficiency of the inner mass in improving the behavior of the outer mass, an optimization process
should be carried out. To achieve this, an efficiency metric is introduced and defined as the ratio between the responses150
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Figure 5: Two-dimensional views of Fig. 3: (a) N1 versus N2; (b) Superposition of Fig. 5a on the SIM. The system is subjected to a forcing
amplitude γ = 2, with the system parameters detailed in Tables 1 and 2.

(a) (b)

Figure 6: Two-dimensional views of Fig. 3: (a) N1 with respect to the detuning parameter σ; (b) N2 with respect to σ. The system is subjected to
a forcing amplitude γ = 2, with the system parameters detailed in Tables 1 and 2.

of the 2 dof, RMS2do f (u̇1), and the 1 dof (i.e., without inner mass), RMS1do f (u̇1), systems. This ratio is evaluated based
on the root mean squares of u̇1, representing the velocity of the external mass. This metric is expressed as:

RMS∗u̇1
=

RMS2do f (u̇1)
RMS1do f (u̇1)

(22)

This metric quantifies the efficiency of energy reduction in the 2 dof system compared to the 1 dof system. Conse-
quently, smaller values of RMS∗u̇1

indicate higher efficiency in vibratory energy reduction for the 2 dof system.

2.7. Potential discontinuous behavior155

As we have seen in the previous sections, the studied system can or not face bifurcations, which leads to a potential
discontinuous behavior. he discontinuous behavior is evident when considering an unforced system. However, the
behavior can become more complex in the case of a forced system, as we will see.
To facilitate the visualization of the distribution and patterns of the efficiency metric, histograms are generated by
obtaining efficiency metric’s values for a range of parameters. The values are then divided into intervals (bins), and160

the number of data points in each bin is quantified. Finally, these quantifications are graphically represented as bars.
In Figure 7, histograms of the efficiency metric are presented, considering responses from the unforced system. The
only varying initial condition is the initial velocity of the outer mass (u̇1,0), with all other initial conditions set to zero.
The values of other parameters remain fixed according to Tables 1 and 2.
In Fig. 7a, the range of u̇1,0 extends from 0.5 to 2.5 and two data clusters, namely C1 and C2, are distinguished: C1165

displays high values of the efficiency metric, indicating an absence of bifurcation in the system’s response, and C2
displays lower values, representative of the system’s responses exhibiting one bifurcation. Upon further expansion of
the range of u̇1,0 to include values from 0.5 to 5, the histogram in Fig. 7b illustrates the emergence of an additional

8



(a) (b)

Figure 7: Histogram of the unforced system’s responses: (a) u̇1,0 ∈ [0.5, 2.5]; (b) u̇1,0 ∈ [0.5, 5]. Different response clusters are denoted by C1, C2
and C3.

response cluster C3 featuring two bifurcations. One representative example for each cluster of Fig. 7b is depicted in
Fig. 8.
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Figure 8: The SIM of the system (in black) and corresponding numerical responses of the unforced system (in blue) originating from the distinct
clusters of Fig. 7b are depicted with different initial conditions represented by × symbol: (a) (u1,0, u2,0, u̇1,0, u̇2,0) = (0, 0, 4.38, 0) (cluster C3 of
Fig. 7b); (b) (u1,0, u2,0, u̇1,0, u̇2,0) = (0, 0, 2.98, 0) (cluster C2 of Fig. 7b); (c) (u1,0, u2,0, u̇1,0, u̇2,0) = (0, 0, 0.52, 0) (cluster C1 of Fig. 7b). Numerical
results are obtained from direct numerical integration of Eq. (3).

170

In Fig. 8a, the response exhibits a double bifurcation and belongs to the cluster C3, characterized by the highest
efficiency of the studied system compared to the 1 dof system. Figure 8b depicts a response with one bifurcation,
corresponding to the cluster C2. Finally, Fig. 8c presents a response from the cluster C1, with no bifurcation, where
the behavior of the studied system is closer to the behavior of the 1 dof system.
Figure 9 presents a histogram where, in addition to u̇1,0 ranging from 0.5 to 2.5, the parameter kNL varies from 0 to175

0.5 (see Eq. 5 for definition of the nonlinear restoring function). Despite the velocity ranging only from 0.5 to 2.5, as
for the case presented in Fig. 7a where only two groups of responses are observed, the emergence of a third cluster
C3 below the metric’s value of 0.2, i.e., RMS∗u̇1 = 0.2 (as seen in Fig. 7b), is observed due to the variation of kNL.
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Figure 9: Histogram of the unforced system’s responses: u̇1,0 ∈ [0.5, 2.5], kNL ∈ [0, 0.5]. See Eq. 5 for definition of the nonlinear restoring
function. Different response clusters are denoted by C1, C2 and C3.

Figure 10 presents another histogram, where alongside u̇1,0 ranging from 0.5 to 2.5, the parameter δ varies from
0 to 6. Some notable differences become apparent in the histogram of Fig. 10 when compared to that of Fig. 7a: the180

discontinuity is less evident, and we observe the emergence of the cluster C3.

Figure 10: Histogram of the unforced system’s responses: u̇1,0 ∈ [0.5, 2.5], δ ∈ [0, 6]. See Eq. 5 for definition of the nonlinear restoring function.
Different response clusters are denoted by C1, C2 and C3.

To explain the difference between the histograms of Figs. 10 and 7a and their discontinuities, let us consider a set
of parameters around the metric’s value of 0.58 in Fig. 10, (the same value where a discontinuity is present in Fig.
7a): δ = 2.72 and the initial conditions as (u1,0, u2,0, u̇1,0, u̇2,0) = (0, 0, 1.58, 0). The corresponding SIM and numerical
responses are represented in Fig. 11a. Similarly, for the same initial conditions but with δ = 5 (the constant value185

of δ in the histogram of Fig. 7a, where the discontinuity between clusters is clear), the SIM and numerical responses
are plotted in Fig. 11b. The difference between the responses in both figures is evident: in Fig. 11b, the response
presents a bifurcation with a larger amplitude than the one of Fig. 11a, and thus, it is more effective in terms of energy
reduction of the outer mass. In other words, varying δ causes the amplitudes of bifurcations to vary, which explains
the presence of responses between the identified clusters in the histogram of Fig. 10.190

In Fig. 10, cluster C3 exhibits responses with double bifurcations, whereas cluster C2 displays a single bifurcation.
To illustrate this, a set of parameters from each cluster are selected. Figure 12b presents the numerical response and
the corresponding SIM obtained using a set of parameters around the metric’s value of 0.3 (cluster C2), revealing a
single bifurcation. Meanwhile, in Fig. 12a, a set of parameters around a metric’s value of 0.17 (cluster C3) are taking
into account, resulting in a system’s response with two bifurcations. Figure 12c presents the numerical response and195
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Figure 11: The SIM of the system (in black) and corresponding free numerical responses (in blue) for the initial conditions (u1,0, u2,0, u̇1,0, u̇2,0) =
(0, 0, 1.58, 0), represented by × symbol, and: (a) δ = 2.72 (between the clusters C1 and C2 of Fig. 10); (b) δ = 5 (constant value of δ in the
histogram of Fig. 7a, where the discontinuity between clusters is clear). Numerical results are obtained from direct numerical integration of Eq.
(3).

the SIM of the system obtained using a set of parameters from cluster C1, around the metric’s value of 0.7 and, as
expected, this unforced response exhibits no bifurcations.
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Figure 12: Numerical response of an unforced system and the SIM obtained using a set of parameters around the efficiency metric’s value of (a)
0.17 (cluster C3 of Fig. 10); (b) 0.3 (cluster C2 of Fig. 10) and (c) 0.7 (cluster C1 of Fig. 10). The initial conditions are represented by × symbol.
Numerical results are obtained from direct numerical integration of Eq. (3).

11



Figure 13 presents a histogram of the efficiency metric considering the responses of a forced system with all initial
conditions set to zero (including u̇1,0 = 0). Here, the amplitude of the external force γ varies from 0 to 2, and the
detuning parameter σ from -1 to 1. In this case, it is difficult to distinguish different groups of efficiency metric. In200

fact, due to the initial conditions set to zero, it is more probable that the system is attracted to equilibrium points
situated on the lower part of the main branch of the frequency response curves, one of which is illustrated for γ = 2 in
Fig. 3. In other words, the system is less likely to face regimes positioned on the isola.

Figure 13: Histogram of the forced system’s responses: γ ∈ [0.01, 2], σ ∈ [−1, 1].

However, if the initial velocity u1,0 is considered in addition to γ and σ, the system’s response can reach an isola and,
thus, present a discontinuous behavior. To exemplify this, Fig. 14 depicts a histogram of the efficiency metric, with205

u̇1,0 ranging from 0.5 to 2.5 and γ ranging from 0.01 to 2. After analyzing Fig. 6, the value of σ is set to -1.5 to enable
the system to potentially reach responses positioned on the isola. Finally, Fig. 14 shows two groups of responses:
C2 with the equilibrium points of the 2 dof system at the main branch of the frequency response curves and C1 at the
isola. In other words, when the equilibrium point is situated at the isola, it corresponds to high energy levels of the
outer mass, resulting in a high value of the efficiency metric, which is associated with cluster C1.

Figure 14: Histogram of the forced system’s responses: u̇1,0 ∈ [0.5, 2.5], γ ∈ [0.01, 2], σ = −1.5. Different response clusters are denoted by C1 and
C2.

210
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3. Methodology of the stochastic optimization

3.1. Formulation of the optimization problem
The optimization problem treated in this study is written as follows:

min
xd

EXa (RMS∗u̇1
(xd,Xa))

s.t. xmin
d ≤ xd ≤ xmax

d

(23)

where xd stands for design variables and Xa for aleatory variables of given distribution. The design variables are the
quantities to be optimized, such as the stiffnesses of the nonlinear spring. The initial conditions imposed to the system,215

such as initial velocities or external forces, are examples of Xa. EXa (RMS∗u̇1
) stands for the expected value of RMS∗u̇1

over the aleatory variable space. The computation of the expected value is detailed in Sec. 3.3.

3.2. Space decomposition
Due to the discontinuous behavior of such system in general, the space can be divided into two regions of the

design and aleatory variables using the K-means algorithm. This algorithm is employed to quantify the information220

gained by a given sample and to identify groups with different responses so that it minimizes the within-cluster sum
of squares by moving the samples from one cluster to another [40]. In the following, the number of clusters, will be
set to 2.
A Support Vector Machine (SVM) [41] is then constructed to approximate the boundary between the two classes
of data (e.g., high and low efficiency) as defined by the clustering. The objective in SVM is to obtain an optimal225

classification boundary that maximizes the "margin." For a d-dimensional space sampled with N training points xi,
the corresponding boundary that separates the two classes of data can be represented as:

s(x) = b +
N∑

i=1

λiyiK(xi, x) = 0 (24)

where b is a scalar referred to as the bias, λi are Lagrange multipliers, K is the kernel of the SVM, and yi = ±1
depending on the class the point is associated with. Thus, the classification of any point x is given by the sign of
s(x). The SVM boundary is first trained using a design of experiments that covers the entire space, then refined with230

additional samples, which is detailed in Sec. 3.4.

3.3. Response approximation and statical moment computation
Kriging meta-model [39] is an approximation ( f̃ ) of a function ( f ) constructed as a trend refined by a Gaussian

process:
f̃ (x) = µ + Z(x) (25)

where µ is a trend of the model and Z(x) is a Gaussian process of mean 0, which accounts for uncertainty in prediction235

depending on the sparsity of data.
The unknowns of Kriging are solved using the maximum likelihood method, constructed based on the known actual
values and correlations for the evaluated samples. The main advantage of Kriging is its ability to not only offer pre-
dictions for unknown points in the design space but also provide estimates of the variance of the approximation at
those points.240

When the design space is divided into two regions, then two Krigings and one SVM meta-models are used to approx-
imate the system’s efficiency over the entire design and aleatory space. In this case, the expected value is computed
as follows:

EXa (RMS∗u̇1
) =

1
NMC

NMC∑
i=1

R(pi) (26)

where R is defined as:

R(pi) =

 R̃MS∗u̇1

(1)
(pi) if s(pi) ≤ 0

R̃MS∗u̇1

(2)
(pi) if s(pi) > 0

(27)

pi are the NMC Monte Carlo samples around xd. R̃MS∗u̇
(1)

and R̃MS∗u̇
(2)

are the Kriging approximations which depend245

on the classification of the sample, determined by the sign of s(x), that is, the SVM approximation.
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3.4. Adaptive sampling
In order to improve the precision of the SVM boundary, an adaptive sampling scheme referred as Generalized

Max-Min (GMM) is used to refine the boundary of the failure domain. The sampling algorithm is described in detail
in [47]. The objective of this algorithm is to insert a new sample as far as possible from other samples and also in250

the region of highest probability of misclassification by the SVM, that is, where s(x) = 0. GMM samples are found
solving the following optimization problem:

x(k)
g = arg max

x={xd ,xa}
fx(x)

1
(Nd+Na) min

i
||x − xi||

s.t. s(x) = 0

xmin
d ≤ xd ≤ xmax

d

xmin
a ≤ xa ≤ xmax

a

(28)

where Nd and Na are the number of design and aleatory variables, respectively. fx is a (Nd + Na)-dimensional joint
probability density function. Note that the distributions for the design variables which are assumed deterministic are
uniform distributions. In addition, bounds on the aleatory variables were added as the distributions considered have a255

finite support.
Another adaptive sampling scheme is used to update the Krigings. The sub-problem focuses on finding the optimum
in the design space without considering the aleatory variables. Among the possible choices of aleatory variables, we
seek the ones that maximize the Kriging prediction’s variance at the optimum x(k)

d at the kth iteration, while taking into
account the joint distribution. This sub-problem can be presented as follows:260

x(k)
a = arg max

xa

fxa (x(k)
d , xa)

1
Na σ̂2(x(k)

d , xa)

s.t. xmin
a ≤ xa ≤ xmax

a

(29)

where σ̂2 is the predicted variance of the Kriging approximations at the kth iteration.

3.5. Optimization algorithm
The procedure of the stochastic optimization algorithm is outlined in Algorithm 1. This algorithm is particularly

employed in scenarios characterized by a discontinuous behavior, requiring the segregation of regions with markedly265

distinct efficiency levels. An example of such a situation is when considering the unforced system.

4. Optimization of the meta-cell

Two distinct optimization problems concerning the meta-cell are presented in this section. Firstly, the scenario
takes into account the unforced system, where the outer mass is subjected to an impulse represented by its initial
velocity u̇1,0. Then, a forced system is considered, with a forcing amplitude γ (see Eq. 3) and a detuning parameter of270

the excitation frequency σ. Across all scenarios, the damping parameters ζ1 and ζ2 remain fixed at 0.1, and ϵ at 0.01.
The parameters governing the restoring force function of the inner mass are considered as design variables. kNL and
kL range from 0 to 0.5, while δ varies from 0 to 6 (see Eq. 5 for definition of the nonlinear restoring function).

Problem I. The optimization problem considering an unforced system is formulated as:275

min
δ,kNL,kL

EU̇1,0
(RMS∗u̇1

(δ, kNL, kL︸    ︷︷    ︸
xd

, u̇1,0︸︷︷︸
Xa

))

s.t. 0 ≤ δ ≤ 6
0 ≤ kNL ≤ 0.5
0 ≤ kL ≤ 0.5

(30)

where u̇1,0 is the aleatory variable defined as u̇1,0 ∼ Nt(1.5, 0.0625), i.e., the variable u̇1,0 is distributed as a truncated
normal distribution with mean 1.5 and variance 0.0625 (the standard deviation corresponds to 25% of the u̇1,0 ranges).
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Algorithm 1 Stochastic optimization

1: Define an efficiency metric: RMS∗u̇1
;

2: Generate a Design of Experiments (XDOE);
3: Compute the function RMS∗u̇1

(XDOE);
4: Divide the samples into two clusters;
5: Approximate the boundary between the clusters using an SVM;

6: Train two Kriging models, one for each cluster: R̃MS∗u̇1

(1)
and R̃MS∗u̇1

(2)
;

7: Find the minimum x(k)
d at the kth iteration:

x(k)
d =arg min

xd

EXa (R̃MS∗u̇1
(xd,Xa))

s.t. xmin
d ≤ xd ≤ xmax

d

8: Find x(k)
a that maximizes the Kriging variance at x(k)

d accounting for joint distribution:

x(k)
a = arg max

Xa

fxa (x(k)
d , xa)

1
Na σ̂2(x(k)

d , xa)

s.t. xmin
a ≤ xa ≤ xmax

a

9: SVM refinement: generate a generalized max-min sample x(k)
g ;

x(k)
g = arg max

x={xd ,xa}
fx(x)

1
(Nd+Na ) min

i
||x − xi||

s.t. s(x) = 0

xmin
d ≤ xd ≤ xmax

d

xmin
a ≤ xa ≤ xmax

a

10: Compute RMS∗u̇1
at x(k)

g and (x(k)
d , x

(k)
a ). Add to the database;

11: Repeat from Step 4 until convergence.

Problem II. The optimization problem for the forced system is formulated as follows:

min
δ,kNL,kL

EΓ,Σ(RMS∗u̇1
(δ, kNL, kL︸    ︷︷    ︸

xd

, γ, σ︸︷︷︸
Xa

))

s.t. 0 ≤ δ ≤ 6
0 ≤ kNL ≤ 0.5
0 ≤ kL ≤ 0.5

(31)

γ and σ are the aleatory variables of the problem and follow truncated normal distributions: γ ∼ Nt(1, 0.0625) and280

σ ∼ Nt(0, 0.0625). The standard deviations correspond to 25% of the aleatory variables’ ranges.
Moreover, the optimization problems are conducted for the system featuring a pure cubic nonlinearity as the restoring
force functionof the inner mass, i.e., f (α) = kNLα

3. This is carried out to establish a comparison with the scenario that
involves the piecewise hybrid nonlinear-linear stiffness. The aleatory variables remain consistent with the previous
definitions, and the parameter kNL of the restoring force is treated as the design variable, ranging from 0 to 0.5.285

4.1. Results of problem I
The optimization results for an unforced system, considering two different nonlinearities (pure cubic and the

hybrid nonlinearity discussed earlier), are detailed in Table 3. This table provides the optimal values of the design

15



variables, along with the number of initial samples and total iterations used in the optimization process. To verify the290

efficiency prediction’s validity at the optimum, the table includes a comparison between the surrogate-based expected
value (EΣ,Γ(R̃MS∗u̇1)), i.e., determined through Kriging approximations, and the true expected values (EΣ,Γ(RMS∗u̇1

))
derived from the actual metric using 2000 Monte Carlo samples. The table also provides the lower and upper bounds
of the 95% confidence intervals (CI) of both expected values.

Parameters Pure cubic nonlinearity Hybrid nonlinearity
Number of Krigings 2 2
Initial DOE size 10 20
Iterations 16 17
kNL 0.1605 0.2618
kL 0.2520
δ 2.4043

EΣ,Γ(R̃MS∗u̇1) (%) 0.3182 0.1856
95% CI [0.3164, 0.3199] [0.1850, 0.1861]
EΣ,Γ(RMS∗u̇1

) (%) 0.3147 0.1844
95% CI [0.3110, 0.3184] [0.1828, 0.1859]

Table 3: Results of the optimization problem for the unforced system using pure cubic and hybrid restoring forces.

The convergence behaviors of the objective function and the design variables are illustrated in Fig. 15 for the case295

involving cubic nonlinearity and in Fig. 16 for the system with hybrid nonlinearity. Notably, few iterations are
necessary to converge to the optimal solution. The approximations of the expected values exhibit a high level of
accuracy, deviating by 2% from the actual values for each problem.
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Figure 15: Optimization of the unforced 2 dof system with pure cubic restoring force. Convergences of (a) Objective function and (b) kNL.
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Figure 16: Optimization of the unforced 2 dof system with a hybrid restoring force. Convergences of (a) Objective function; (b) kNL; (c) kL and (d)
δ.

It is worth noting that the expected value for the system with hybrid nonlinearity is significantly lower than that of
the system with pure cubic nonlinearity, showing a remarkable 41.8% reduction in the expected value. This highlights
the superior efficiency of the hybrid nonlinearity in reducing energy for this specific problem set when compared to
the use of pure cubic nonlinearity.
Here, we will explore examples of SVM and Kriging models used in the optimization of the unforced 2 dof system305

with pure cubic restoring force, featuring just two variables and offering a 3D visualization. For illustration, Fig. 17a
presents the design of experiments and one SVM model used to classify the efficiency metric, while Fig. 17b presents
the two Kriging models built using the design of experiments to approximate the efficiency metric over the entire
design space. Figure 18a displays the sample points and the SVM model at the final iteration of the optimization

(a) (b)

Figure 17: Models used in the optimization of the unforced 2 dof system with pure cubic restoring force function: (a) Design of experiments and
SVM model; (b) SVM and Kriging models.

process. Meanwhile, Fig. 18b illustrates the two Kriging models constructed using the collected samples. Comparing310

Figs. 18b and 17b, we observe that the Kriging models in the last iteration (Fig. 18b) undergo a change in form due
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Parameters Pure cubic nonlinearity Hybrid nonlinearity
Number of Krigings 1 1
Initial DOE size 15 25
Iterations 40 30
kNL 0.3868 0.3574
kL 0.3284
δ 2.0680

EΣ,Γ(R̃MS∗u̇1) (%) 0.2528 0.2080
95% CI [0.2489, 0.2567] [0.2048, 0.2112]
EΣ,Γ(RMS∗u̇1

) (%) 0.2577 0.2115
95% CI [0.2459, 0.2695] [0.2047, 0.2184]

Table 4: Results of the optimization problem for the forced system using pure cubic and hybrid restoring forces.

to refinement, resulting in more precise approximations of the efficiency metric’s values.

(a) (b)

Figure 18: Models used in the optimization of the unforced 2 dof system with pure cubic restoring force function: (a) Sample points and SVM
model at the final iteration; (b) SVM and Kriging models at the final iteration.

4.2. Results of the problem II
Table 4 presents the results and details of the optimizations of the forced systems. The convergence of the objective315

functions and design variables is shown in Fig. 19 for the problem with cubic nonlinearity and in Fig. 20 for the
problem with hybrid nonlinearity. In both cases, relatively few iterations are required to reach the converged optimum,
and the approximations of the expected values are accurate, within 2% of the actual ones for each problem.
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(b)

Figure 19: Optimization of the forced 2 dof system with pure cubic restoring force. Convergences of: (a) Objective function and (b) kNL.
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Figure 20: Optimization of the forced 2 dof system with a hybrid restoring force. Convergences of: (a) Objective function; (b) kNL; (c) kL and (d)
δ.

When comparing the expected values for both types of nonlinearities, we observe a greater reduction for the
system with hybrid nonlinearity compared to the system with pure cubic nonlinearity, showing a 17.7% reduction in320

the expected value for this specific problem set.
Considering the 1 dof system, it is possible to trace its equilibrium points in terms of N1 and σ. Figures 21, 22 and
23 present frequency response curves for different forcing amplitudes and systems: 1 dof, 2 dof with the optimized
pure cubic nonlinearity, and 2 dof with the optimized hybrid nonlinearity. From these figures, it is clear that the
curve corresponding to the hybrid nonlinearity can intersect with the other two, but it predominantly stays beneath325

them. In detail, we notice that the curves representing the 2 dof systems are significantly lower than the 1 dof curve,
indicating a notably higher efficiency in energy reduction of the outer mass (N1) with the addition of the inner mass,
as expected, given that this additional mass works as a NES for the outer mass. When comparing the curves of hybrid
and pure cubic nonlinearity, we see occasional overlap, but the hybrid nonlinearity curve is generally slightly lower
than the pure cubic nonlinearity curve. Furthermore, an isola emerges in the system with pure cubic nonlinearity330

under the considered excitation parameters in the optimization problem. In contrast, this isola does not manifest in
the system with hybrid nonlinearity. These observations justify the observed 17.7% reduction in the expected value
when employing the hybrid nonlinearity.
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Figure 21: Frequency response curves for different systems: 1 dof system (green curve), 2 dof system with pure cubic nonlinearity (yellow curve),
and 2 dof system with hybrid nonlinearity (purple curve). The curves illustrate variations in N1 and σ for γ = 1.

Figure 22: Frequency response curves for different systems: 1 dof system (green curve), 2 dof system with pure cubic nonlinearity (yellow curve),
and 2 dof system with hybrid nonlinearity (purple curve). The curves illustrate variations in N1 and σ for γ = 1.5.

Figure 23: Frequency response curves for different systems: 1 dof system (green curve), 2 dof system with pure cubic nonlinearity (yellow curve),
and 2 dof system with hybrid nonlinearity (purple curve). The curves illustrate variations in N1 and σ for γ = 2.

5. Conclusion

In this paper, the stochastic optimization problem of a mass-in-mass cell is carried out. Tools such as Slow Invari-335

ant Manifolds and nonlinear frequency responses curves obtained from detection of fast and slow systems dynamics
are presented to enhance the comprehension of the system’s dynamic behavior, including potential discontinuities.
Recognizing the system’s high sensitivity to uncertainties, a stochastic optimization algorithm is employed to account
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for them. The meta-cell with hybrid and pure cubic nonlinearities is studied, considering not only an impulse as
excitation but also harmonic forces. The results demonstrate that the system with optimized hybrid nonlinearity ex-340

hibits higher efficiencies in energy reduction than the corresponding optimized pure cubic nonlinearity. The presented
optimization process in this study can be applied to the design and fabrication of the considered meta-cells, aiming to
enhance the efficiency of vibratory energy exchanges between two masses.
In this study, a deterministic and fixed damping parameter is used for the system. Given its impact on the system’s
behavior, future work will involve treating the damping parameter as a design variable. Additionally, optimizing a345

chain of mass-in-mass cells should be explored to enhance vibratory energy transfer between oscillators and different
modes within the chain.
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