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Abstract

In this paper, we show the mean square consistency for a generalized

subsampling estimator based on the aggregation of the mean, median, and trimmed

mean of some subsampling estimators for general nonstationary time series.

Consistency requires standard assumptions, including the existence of moments

and α-mixing conditions. We apply our results to the Fourier coefficients of the

autocovariance function of periodically correlated time series. Furthermore, as

in the i.i.d. case, we show that the generalized subsampling estimator satisfies

Bernstein inequality and concentrates at an improved rate (under the condition of

no or small bias) compared to the original estimator. Finally, we illustrate our

results with some simulation data examples.
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1 Introduction

The subsampling procedure introduced in Politis and Romano [1992] and Politis and

Romano [1994] (see also Politis et al. [1999]) works under mild assumptions. Its idea

is to consider subsamples Bt = (Xt, Xt+1, . . . , Xt+b−1) of length b from the original

sample (X1, X2, . . . , Xn), where b = b(n) is an integer sequence such that b/n −→ 0.

Suppose θ is the unknown parameter of interest. We then denote its estimator based on

(X1, X2, . . . , Xn) by θ̂n, and its subsampling version based on (Xt, Xt+1, . . . , Xt+b−1)

by θ̂n,b,t = θ̂n,b,t(Bt). Lenart [2018] generalized the subsampling approach and, to

construct the estimator θ̂n,b,Tk
, proposed using a number k of subsamples simultaneously

of different lengths and with a vector of starting points Tk = (t1, t2, . . . , tk).

The idea behind Politis and Romano’s subsampling is to approximate the non-

degenerate limiting distribution of τn(θ̂n−θ), where τn is a normalizing sequence, using

the empirical distribution

Ln,b(A) = 1
n− b+ 1

n−b+1∑
t=1

I{τb(θ̂n,b,t − θ̂n) ∈ A}, (1)

where A is a Borel set, and I{C} is an indicator function of the event C. Finally,

the normalizing sequence τb is often obtained by substituting in τn, b by n. In the

general case of the generalized subsampling procedure, the normalizing sequence τb can

be difficult to obtain and may need to be estimated, as is done, for example, in Bertail

et al. [1999] or Bertail et al. [2024]. For simplicity, we assume here that the rate of

convergence is known.

In this paper, we use the generalized subsampling procedure to construct mean

square consistent subsampling estimators, where the estimator θ̂n,b,Tk
is computed as the

mean, median, or trimmed mean of the set of estimator values calculated on individual

subsamples, i.e., on the set {θ̂n,b,tj , j = 1, 2, . . . , k}. We also generalize these results to

2



the case when the parameter θ depends on another unknown parameter.

Aggregating estimators to obtain improved estimators is not a new idea and has

received considerable attention in the statistical learning literature since the work of

Breiman [1996] on bagging (bootstrap aggregating), which is a resampling technique

whose main goal is to reduce the variability of a given estimator. The idea is that

averaging many estimators makes the resulting output more stable. The subsampling

version of bagging, called subbagging, was analyzed in an i.i.d. framework by Bühlmann

and Yu [2002]. Recall that aggregation methods are now standard procedures for

reducing computational cost and variance in statistical learning (see Hastie et al.

[2009], Bühlmann [2003] and references therein) for non-regular estimators. They

can be applied in many different contexts and can yield substantial gain in terms of

performance, see for instance Yang [2004]. We refer to the recent survey González et al.

[2020] for additional references, algorithms, and a practical evaluation of aggregation

methods.

In the i.i.d. case it can be proven that averaging over several subsamples may

improve the original estimator based on n observations (see Bertail et al. [2018], Bertail

et al. [2024], Politis [2024]).

This phenomenon has already been noticed and studied in some specific cases in the

literature on subbagging. For regular M-estimators, we refer to Zou et al. [2021] and

Gao et al. [2022], who proved the asymptotic normality of mean aggregated subsampling

estimators in the i.i.d. case. In this regular framework, even if there is no improvement

in terms of convergence rate, the authors proved that with the adequate choice of

subsampling size, the efficiency can be similar and the computational cost clearly

reduced for large datasets.

Recently, Bertail et al. [2024] proved some general concentration inequality in the

framework of statistical learning procedures, while Politis [2024] independently studied

the asymptotic normality of the subbagged estimator under general conditions. These

papers show that the mean of several subsampling estimators improves the convergence

rate over the original estimator when its original rate of convergence is slower than
√
n.
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A simpler version of this result, which is based on splitting the data into non-overlapping

blocks and averaging over the estimators computed on each subsample was studied in

Banerjee et al. [2019] in the framework of isotonic regression. In this case, it is known

that the rate of convergence of the standard monotonicity-constrained estimator is of

the order n1/3. In contrast, the pooled estimator based on subsamples has a better rate,

close to n1/2 under some additional conditions. The main drawback of this approach is

that this pooled estimator is hyper-efficient, and therefore lacks uniformity (over some

given class of function) in a minimax sense.

The second part of the paper is devoted to deriving some concentration inequalities

in the nonstationary case for our aggregated estimators. One of our goals is to show

that we have the same type of hyper-efficiency phenomenon for dependent data using

the generalized subsampling estimators proposed in Fukuchi [1999] and Lenart [2018]

as in the i.i.d case.

The paper is organized as follows. In Section 2 we provide a brief introduction

to generalized subsampling estimators, with a particular emphasis on the hypotheses

required for the main results of the paper. In Section 3, we present results on the mean

square consistency for the generalized subsampling estimators. In Section 4, we obtain

some Bernstein inequalities for the generalized subsampling estimators, which allow us

to get an improved convergence rate. Section 5 is devoted to certain extensions of our

consistency results when the estimators depend on certain nuisance parameters that

must be estimated. In Section 6, we present some applications of these results to a

class of cyclostationary time series. Moreover, we show empirically that aggregating

subsampling estimators improves the rate of convergence for simple estimators based

on the recentered periodogram. The technical proofs are given in the supplemenary

materials.

2 Generalized subsampling estimator

We will first recall the idea of the generalized subsampling procedure introduced

by Lenart [2018]. In the standard subsampling approach, we consider all possible
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subsamples of fixed length b. In the generalized subsampling approach, we select

some number of these subsamples, while further including a step to allow the

subsample length b to vary in a range. Specifically, let b1 and b2 denote two sequences

corresponding to the minimum and maximum block length, respectively (b1 ≤ b2). Let

k1 and k2 be the possible minimum and maximum number (respectively) of selected

blocks such that k1 ≤ k2. For a given length b with b1 ≤ b ≤ b2, we get that the number

of all possible subsamples is qn,b = n− b+ 1. By Sn,b = {1, 2, . . . , qn,b} we denote a set

of indices of the first observations (abbreviated as, initial indices) in these subsamples.

Let BK = BK(n) = {b1, b1 + 1, b1 + 2, . . . , b2} × {k1, k1 + 1, k1 + 2, . . . , k2} be a

set of all possible pairs (b, k). For a fixed (b, k), Tk = (t1, t2, . . . , tk) ∈ Skn,b is an

associated vector of initial indices of length k. Let (b∗, k∗) be a random vector

with discrete probability distribution on BK. For each (b, k) ∈ BK, we denote

p(b,k) = P ∗
(
(b∗, k∗) = (b, k)

)
. Then, conditionally to (b∗, k∗) = (b, k) ∈ BK let

T∗
k∗ = (t∗1, t∗2, . . . , t∗k) be a random vector with the support Skn,b with conditional

probabilities denoted by P ∗
(
T∗
k∗ = Tk ∈ Skn,b

∣∣∣(b∗, k∗) = (b, k)
)

= pTk|(b,k). Note that

T∗
k∗ has a random length equal to k∗. Finally, we denote the joint probability of

(b∗, k∗,T∗
k∗) as P ∗

(
(b∗, k∗,T∗

k∗) = (b, k,Tk)
)

= p(b,k,Tk).

Let (X1, X2, . . . , Xn) be an univariate sample from a time series {Xt, t ∈ Z} and

θ̂n be an estimator of the (real or complex-valued) parameter θ. We assume that

E(θ̂n) −→ θ, as n −→ ∞. By θ̂n,b,t we denote the classical subsampling estimator of

θ based on a subsample (Xt, Xt+1, . . . , Xt+b−1) of length b, where 1 ≤ t ≤ n − b + 1.

By θ̂n,b,Tk
we denote the generalized subsampling estimator (GSE) based on a set of k

subsamples of length b (see examples in Lenart [2018]). The vector Tk provides the

initial indices for these subsamples.

In this paper we generalize the subsampling estimator proposed by Fukuchi [1999].

Fukuchi’s estimator is based on the classical subsampling procedure and of the form

ΨFukuchi
n,b = 1

n− b+ 1

n−b+1∑
t=1

θ̂n,b,t. (2)
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Note that ΨFukuchi
n,b = E∗(θ̂n,b,t∗), where t∗ is a random variable with uniform discrete

distribution on the set Sn,b.

In our case, instead of E∗(θ̂n,b,t∗), we consider the expectation of the GSE, i.e.,

E∗(θ̂n,b∗,T∗
k∗ ). The estimator is then of the form

θ̂n,BK = E∗
[
θ̂n,b∗,T∗

k∗

]
=

∑
(b,k)∈BK

p(b,k)
∑

Tk∈Sk
n,b

pTk|(b,k)θ̂n,b,Tk
. (3)

Remark 2.1. Note that θ̂n,BK is defined as the expected value of a discrete random

variable, which can take up to
∑

(b,k)∈BK(n − b + 1)k different values. Therefore, due

to the high computational cost, it may be necessary to use a Monte Carlo procedure to

approximate θ̂n,BK . Furthermore, note that the (conditionally on the available sample)

the distribution of θ̂n,b∗,T∗
k∗ is a discrete distribution, which is a mixture (with weights

equal to p(b,k)) of #BK classical subsampling distributions, each with fixed k and b.

By #BK we denote the cardinality of the set BK.

In this paper, we consider the following assumptions.

Assumption 2.1. The random variables (b∗, k∗) and T∗
k∗
∣∣(b∗, k∗) = (b, k) have uniform

discrete distributions on BK and Skn,b, respectively.

Assumption 2.2. The random variable T∗
k∗
∣∣(b∗, k∗) = (b, k) has a discrete distribution

on Skn,b such that there exists constants Cp and Cq (which do not depend on (b, k)) such

that pTk|(b,k) ≤ Cp

qk
n,b

and p(b, k) ≤ Cp

(b2−b1+1)(k2−k1+1) , where qn,b = n− b+ 1.

Note that Assumption 2.2 is more general than 2.1. However, in both we assume

that pTk|(b,k) is proportional to 1/qkn,b.

Additionally, we will assume that {Xt : t ∈ Z} is α-mixing, i.e. αX(k) −→ 0

as k −→ ∞, where

αX(k) = sup
t

sup
A∈FX (−∞,t)

B∈FX (t+k,∞)

|P (A ∩B) − P (A)P (B)|
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and FX(−∞, t) = σ ({Xs : s ≤ t}), FX(t+ k,∞) = σ ({Xs : s ≥ t+ k}).

In what follows, we will consider three different estimators θ̂n,b,Tk
(see formula

(3)). These are:

i) sample mean

θ̂Mean
n,b,Tk

= 1
k

k∑
j=1

θ̂n,b,tj ,

ii) sample median

θ̂Median
n,b,Tk

= med{θ̂n,b,tj : j = 1, 2, . . . , k},

iii) sample trimmed mean

θ̂
TM(f)
n,b,Tk

= TM(f){θ̂n,b,tj : j = 1, 2, . . . , k},

where the mean of the elements in list {θ̂n,b,tj : j = 1, 2, . . . , k} is computed by

excluding the fraction f of the smallest and the fraction f of largest elements from

that list. Furthermore, we assume that there exists nf ∈ N such that for n > nf

we have that fk(n) = fk > 2.

Remark 2.2. For complex-valued estimators θ̂n,b,t, the median and trimmed mean

are defined as a complex number whose real and imaginary parts are the median

and trimmed mean of real and imaginary parts, respectively. Other definitions of the

median are possible for complex values, such as the geometric median (computed by

the Weiszfeld’s algorithm in R).

Remark 2.3. Under Assumption 2.1, the estimator (3) is of the form

θ̂n,BK = 1
w1w2

∑
(b,k)∈BK

1
qkn,b

∑
Tk∈Sk

n,b

θ̂n,b,Tk
.
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If in addition, θ̂n,b,Tk
= θ̂Mean

n,b,Tk
, then θ̂n,BK simplifies to

θ̂n,BK = θ̂Mean
n,BK = 1

w1

b2∑
b=b1

1
qn,b

n−b+1∑
j=1

θ̂n,b,t,

where w1 = b2 − b1 + 1, w2 = k2 − k1 + 1, qn,b = n− b+ 1.

3 Mean square consistency

In this section, we first provide a general mean square consistency results for θ̂n,BK .

We then give more specific conditions under which the estimators θ̂Mean
n,BK , θ̂Median

n,BK and

θ̂
TM(f)
n,b,Tk

are mean square consistent.

The following theorem is a generalization of the Fukuchi [1999]’s result.

Theorem 3.1. Assume that {Xt, t ∈ Z} is an α-mixing time series such that

Assumption 2.2 holds and

i) there exists θ ∈ R such that

E(θ̂n,BK) −→ θ, as n −→ ∞;

ii) there exist ξ > 0, ∆ > 0 and K < ∞ such that

sup
n∈Z, (b,k)∈BK, Tk∈Sk

n,b

∥θ̂n,b,Tk
∥2+ξ < ∆ and

∞∑
k=1

α
ξ

2+ξ (k) < K;

iii) b2
2k2/n −→ 0, as n −→ ∞.

Then

θ̂n,BK
L2−→ θ, as n −→ ∞.

Theorem 3.2. Assume that Assumption 2.2 holds and
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i) there exists θ ∈ R such that for any sequence of integers b̃ such that b1 ≤ b̃ ≤ b2

and any sequence of integers tn such that 1 ≤ tn ≤ n− b̃+ 1 we have convergence

E(θ̂n,b̃,tn) −→ θ, as n −→ ∞;

ii) there exist ξ > 0, ∆ > 0 and K < ∞ such that

sup
n∈Z, b∈{b1,...,b2}, t∈{1,2,...,n−b+1}

∥θ̂n,b,t∥2+ξ < ∆ and
∞∑
k=1

α
ξ

2+ξ (k) < K;

iii) b2
2k2/n −→ 0, as n −→ ∞.

Then

θ̂Mean
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂Mean
n,b,Tk

L2−→ θ, as n −→ ∞.

In the following result, we generalize Theorem 3.2 to the case of a complex-valued

parameter.

Corollary 3.1. Assume that assumptions ii)-iii) of Theorem 3.2 are satisfied for the

real and imaginary parts of complex-valued estimator θ̂n,b,t. Additionally, assume that

there exists a complex-valued parameter θ, such that for any sequence of integers b̃ such

that b1 ≤ b̃ ≤ b2 and any sequence of integers tn such that 1 ≤ tn ≤ n − b̃ + 1 we have

the convergence

E|θ̂n,b̃,tn − θ| −→ 0, as n −→ ∞.

Then the GSEs based on the following estimators θ̂n,b,Tk
of the mean

θ̂Mean∗
n,b,Tk

=

∣∣∣∣∣∣1k
k∑
j=1

θ̂n,b,tj

∣∣∣∣∣∣ , (4)

θ̂Mean∗∗
n,b,Tk

= 1
k

k∑
j=1

|θ̂n,b,tj | (5)

are mean square consistent for |θ|.
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If |θ̂n,b,t| is an estimator of |θ|, where θ̂n,b,t is a complex-valued estimator of parameter

θ, than we can define the GSE by taking the absolute value after or before calculating

median or trimmed mean, i.e. by defining θ̂n,b,Tk
in (3) as

θ̂Median∗
n,b,Tk

= |med{θ̂n,b,tj : j = 1, 2, . . . , k}|, (6)

θ̂Median∗∗
n,b,Tk

= med{|θ̂n,b,tj | : j = 1, 2, . . . , k}, (7)

θ̂
TM(f)∗
n,b,Tk

= |TM(f){θ̂n,b,tj : j = 1, 2, . . . , k}|, (8)

θ̂
TM(f)∗∗
n,b,Tk

= TM(f){|θ̂n,b,tj | : j = 1, 2, . . . , k}, (9)

where the median and trimmed mean above (under the absolute value) is a complex

number whose real and imaginary parts being the median and trimmed mean of real

and imaginary parts, respectively.

Finally, we also consider the following GSEs based on the geometric median GM for the

bivariate parameter (ℜ(θ),ℑ(θ)) and for |θ|, of the form

θ̂GMn,b,Tk
= GM

{(
ℜ(θ̂n,b,tj ),ℑ(θ̂n,b,tj )

)
: j = 1, 2, . . . , k

}
, (10)

θ̂GM∗
n,b,Tk

= Norm
[
GM

{(
ℜ(θ̂n,b,tj ),ℑ(θ̂n,b,tj )

)
: j = 1, 2, . . . , k

}]
, (11)

respectively. By ℜ(z) and ℑ(z) we denote the real and imaginary parts of the complex

number z, and Norm[v] denotes the Euclidean norm of the vector v ∈ R2.

The following result states the consistency of the GSE in the case of the median

and trimmed mean for a real-valued or complex parameter θ and its modulus |θ|. In

addition, the GSE based on the geometric median is considered.

Theorem 3.3. Assume that Assumption 2.1 holds and

i) there exists θ (real or complex-valued) such that uniformly to b ∈ {b1, b1+1, . . . , b2}
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and t ∈ {1, 2, . . . , n− b+ 1} we have a sequence Cn such that

√
k2E|θ̂n,b,t − θ| ≤ Cn −→ 0,

as n −→ ∞, where Cn is independent on t;

Moreover, assume that the conditions ii) and iii) of Theorem 3.2 hold. Then, as n −→

∞, for the real-valued θ, we have that

θ̂Median
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂Median
n,b,Tk

L2−→ θ,

θ̂
TM(f)
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂
TM(f)
n,b,Tk

L2−→ θ,

and for the complex-valued θ, we have that

θ̂
TM(f)∗
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂
TM(f)∗
n,b,Tk

L2−→ |θ|,

θ̂Median∗
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂Median∗
n,b,Tk

L2−→ |θ|,

θ̂GM∗
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂GM∗
n,b,Tk

L2−→ |θ|.

Remark 3.1. Note that the conclusion of the above theorem also holds for the

estimators (7) and (9) with real-valued parameter |θ| and the corresponding subsampling

estimator |θ̂n,b,t|.

Remark 3.2. Note that in order to construct our estimators, we need to calibrate

the parameters b1, b2, k1, and k2. It would be really challenging to obtain the

best theoretical values (according to some estimated MSE criteria) due to the general

dependent framework chosen here. We will therefore give a rule of thumb for calibrating

these parameters. In practice, for some theoretical reasons explained in the next section,
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we will always choose k1 and k2 of the same order smaller than
√
n. The aggregation

process will improve the performance of the estimator by reducing the variance, but we

need some estimators based on subsampling size b that are the best possible. Thus, this

also suggests selecting b1 and b2 of the same order by using some "optimal" subsampling

size selection procedure. Several proposals have been made in the literature. On the

one hand, one can use the procedure proposed by Bickel and Sakov [2008] for m out

of n bootstrap, which can be easily adapted to our framework. The idea is to try

to find a range of subsampling sizes for which the mean squared error estimator of

the subsampling distribution is stable. This range of values could in turn give some

reasonable values for b1 and b2. On the other hand, another solution would be to use

the procedure proposed in Politis and White [2004], which assumes a subsampling size

of the order ĈMn1/3 (see the formula (9) on p. 58 of their paper), where ĈM is an

estimated constant based on a truncation level M . In our experience, the estimator of

the constant is sensitive to the choice of the truncation level. Therefore, we suggest

using several values of M to obtain b1 and b2 corresponding to the smallest and largest

value obtained this way. The aggregation of several subsampling estimators based on

these values will be more robust to the choice of this hyper-parameter. Note that with

this selection rule b2 − b1 cannot be too large (which actually causes some problems in

practice, as can be observed in simulation studies).

4 Rate of convergence and concentration results

It is known that averaging over several (overlapping or non-overlapping) subsamples

may improve the original estimator based on n observations (see Banerjee et al. [2019],

Bertail et al. [2024]). In this section, we will show that this phenomenon also applies to

dependent data using the generalized mean subsampling estimators proposed in Fukuchi

[1999] and Lenart [2018]. For this purpose, as in Bertail et al. [2024] who studied the

i.i.d. case, we will obtain some concentration inequalities. This is possible due to

the structure of the U-statistic (based on blocks of observations) of the subsampling
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estimator. For simplicity, we only consider here the real-valued case. Recall that the

estimators we are considering are of the form

θ̂n,BK =
∑

(b,k)∈BK
p(b,k)

∑
Tk∈Sk

n,b

pTk|(b,k)θ̂n,b,Tk
.

and in particular, under Assumption 2.1,

θ̂n,BK = 1
w1w2

∑
(b,k)∈BK

1
qkn,b

∑
Tk∈Sk

n,b

θ̂n,b,Tk
,

with w1 = b2 − b1 + 1, w2 = k2 − k1 + 1 qn,b = n − b + 1. Moreover, in the case

of the mean, median, and trimmed mean we have θ̂n,b,Tk
= θ̂Mean

n,b,Tk
= 1

k

∑
tj∈Tk

θ̂n,b,tj ,

θ̂n,b,Tk
= θ̂Median

n,b,Tk
= med

tj∈Tk

{θ̂n,b,tj }, and θ̂n,b,Tk
= θ̂

TM(f)
n,b,Tk

= TM(f){θ̂n,b,tj , j = 1, . . . , k},

respectively.

We aim first to obtain Hoeffding or Bernstein inequalities for this kind of mean

aggregated estimators. The main tool for that is the Chernoff’s method which consists

of writing, for any λ > 0, for any x ∈ R,

P (θ̂n,BK − θ > x) ≤ P (exp(λ(θ̂n,BK − θ)) > exp(λx)) ≤ E(exp(λ(θ̂n,BK − θ − x)),

finding a good approximation for the Laplace transform, and then optimizing in λ.

We begin with a well-known lemma of Hoeffding [1963], see his section 5, which

reduces the problem to a study of concentration inequalities for the part of the expression

relating to V- and U-statistics, that is, 1
qk

n,b

∑
Tk∈Sk

n,b

θ̂n,b,Tk
. The result follows easily from

Jensen’s inequality.
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Lemma 4.1 (Hoeffding,1963). We have for any λ > 0, for any x ∈ R,

P ( θ̂n,BK − Eθ̂n,BK > x) ≤ E(exp(λ(θ̂n,BK − Eθ̂n,BK − x))

≤
∑

(b,k)∈BK
p(b,k)E

exp

λ
 ∑

Tk∈Sk
n,b

pTk|(b,k)(θ̂n,b,Tk
− Eθ̂n,BK − x)



 .

It follows that under Assumption 2.1, we have

P ( θ̂n,BK − Eθ̂n,BK > x) ≤

1
w1w2

∑
(b,k)∈BK

E

exp

λ
 1
qkn,b

∑
Tk∈Sk

n,b

(θ̂n,b,Tk
− Eθ̂n,BK) − x



 .

Note that in this way we reduce the problem to controlling the Laplace transform of a

V- or U-statistic of order k. The first result allowing to control the Laplace transform of

the means of strong mixing sequences in a quite general framework is due to Merlevede

et al. [2009], see their Theorem 2. This result was in turn used by Han [2018] to

obtain Bernstein-type inequalities for V- and U-statistics, see Theorem 2.1, or more

precisely his Theorem 3.1 in the appendix, in our nonstationary case. Notice that

the bound is true indifferently for U- and V-statistics. For us, this means that we can

sample the blocks indifferently with or without replacement (in the latter case, the term

qkn,b = (n− b+ 1)k should simply be replaced by qkn,b =
(n−b+1

k

)
). The following result is

a straightforward extension of Han [2018] that allows the kernel h to depend on n as in

the case of subsampling distribution. The reason for this is that in Han’s results/proofs,

the constants C1 and C2 defined below depend on the kernel size. However, it can be

verified that these coefficients increase at most linearly in the degree of the U-statistic k.

This dependence will have no effect if k/
√
n −→ 0. Recall that in such a case we have,

by Stirling formula, (n
k)
nk → 1. The condition on k is a typical condition that ensures

that the U-statistic is in an asymptotically normal regime as the degree of the kernel

increases (see Heilig and Nolan [2001] in the i.i.d. case). For i.i.d. rv’s we recover the

standard form of Hoeffding inequality for U-statistics.
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Lemma 4.2 (Han, 2018). Assume that Zi, i = 1, . . . ,∞ is a sequence of strongly mixing

(not necessarily stationary) r.v.’s with mixing coefficients decreasing exponentially, that

is such that, for j large enough, α(j) ≤ C exp(−cj) for some constants, C > 0 and

c > 0. Define the V-statistic

Vn = 1
nk

(n,...,n)∑
(i1,...,ik)=(1,...,1)

h(Zi1 , . . . , Zik),

where h is a bounded symmetric kernel of size k with |h(z1, . . . , zk)| ≤ M, where M > 0 is

an absolute constant. Assume finally that the size of the kernel is such that k/
√
n −→ 0

as n −→ ∞. Then there exist positive constants C1 and C2 depending only on c, such

that, for any λ such that 0 < λ < n
C1kM log(n) log log(4n) we have

E(exp(λ(Vn − EVn)) ≤ exp
(

C2λ
2M2kn−1

1 − C1λMkn−1 log(n) log log(4n)

)
.

By the Chernoff’s method, this gives, in turn, for some constant C3 > 0, for any x > 0

and n sufficiently large

P (|Vn − EVn| > x) ≤ exp
(

− C3x
2n/k

M2 +Mx log(n) log log(4n)

)
.

Notice that in the i.i.d. case, we know that U-statistics (with a non-degenerate first

order-gradient or influence function) concentrate at a rate close to n/k, which is almost

the rate we get here. This bound is clearly not optimal. In fact, we would prefer to have a

true Bernstein bound, replacing the term M2 in the denominator with the true variance

of the kernel of the U-statistic. Indeed, Bernstein bounds can yield a better convergence

rate when the variance is small compared to the second term in the denominator (see

Bertail et al. [2024]). In our case, because of the form of the kernel (the statistic of

interest based on a block of size b), we expect the variance of the subsampling estimator

to be of the order at least 1/τ2
b . Thus, we expect a loss when using this bound, but

we have been unable to obtain a sharp bound in a general nonstationary framework

(which seems quite unrealistic to obtain). However, even with this crude bound, we will
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show that, regardless of the convergence rate of the statistic of interest, averaging using

the divide-and-conquer methodology for the generalized subsampling estimator yields a

better rate compared to the original one, provided that the bias of the original statistic

is not too large (see discussion below).

In the case of averaging the subsampling estimators θ̂Mean
n,BK , we will apply Lemma

4.2 with h(Bt1 , Bt2 , . . . , Btk) = 1
k

∑
tj∈Tk

θ̂n,b,tj (Btj ). Similarly, in the case of θ̂Median
n,BK

we can apply the result of Lemma 4.2 with h(Bt1 , Bt2 , . . . , Btk) = med
tj∈Tk

{θ̂n,b,tj } and

h(Bt1 , Bt2 , . . . , Btk) = TM(f){θ̂n,b,tj : j = 1, 2, . . . , k} for the trimmed mean case. In

our case, the Z ′
is are the statistics evaluated on each block of random variables that

are drawn with (or without) replacement. We need to ensure whether 1
k

∑
tj∈Tk

θ̂n,b,tj

or med{θ̂n,b,tj } or TM(f){θ̂n,b,tj } are bounded to apply the result of Han [2018]. In

particular, if we have that sup
b1≤b≤b2

sup
1≤t≤n−b+1

|θ̂n,b,t| is bounded, then the kernel of the

corresponding U-statistic will automatically be bounded. Moreover, we also need to

check that the blocks are α-mixing with exponential mixing coefficient for a value large

enough. This can be checked by assuming a sufficiently small kernel subsampling size

which also satisfies b/
√
n −→ 0. This yields the following result for the mean, median

and trimmed mean of the subsampling estimators.

Theorem 4.1. Assume that Assumption 2.2 holds and that sup
b1≤b≤b2

sup
1≤t≤n−b+1

|θ̂n,b,t| is

bounded a.s. by some constant M > 0. Moreover, assume that the sequence {Xi} is

strongly mixing with exponentially decreasing mixing coefficients α(j) ≤ C exp(−cj) for

some positive constants C and c. Assume, in addition, that k1, k2 are of the same order

and are chosen such that k2/
√
n −→ 0, as well as b1, b2 are of the same order and

are chosen such that b2/
√
n −→ 0 as b2 −→ ∞. Then there exists a constant C3 > 0

depending on c and C, such that, for n large enough,

P
(
θ̂n,BK − Eθ̂n,BK > x

)
≤ exp

(
− C3x

2n/k2
M2 +Mx log(n) log log(4n)

)
.

It follows that the rate of convergence of the generalized subsampling estimator is of
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order

θ̂n,BK − Eθ̂n,BK = OP

(
k

1/2
2 log(n)1/2 log log(n)1/2

n1/2

)
.

The assumption of estimator boundedness will hold for robust estimators, but can

be removed at the expense of additional assumptions on the a.s. rate of convergence of

the statistics.

Notice that we recenter our generalized subsampling estimator with its expectation

rather than the true value of the parameter (in the unbiased case, for instance, for the

mean, this will not be a problem). However, in some cases we will need to control

the bias and effectively choose the "optimal subsampling size". In the unbiased case,

the convergence rate can be made close to
√
n by choosing a very small subsampling

size. However, in the biased case, a second-order condition is needed to control the

rate precisely. For instance, if the bias is of the order 1/
√
k, as assumed in Theorem

3.3, then a straightforward calculus shows that k should be chosen slightly smaller than

n1/2. However, this also imposes that b should be larger than k. In this case, the rate

of the bagged estimator is close (up to a certain log(n) term) to n1/4 independently

of the original rate of the original statistic. Therefore, it is important to debias the

original estimator if its convergence rate is fast. This can be done using jackknife types

of methods. The same kind of ideas were used in Bertail [1997] to obtain a better rate

of convergence of extrapolated subsampling distributions.

Unlike the i.i.d. case (see Bertail et al. [2024]), we do not assume here that there

exists a concentration inequality for the original estimator θ̂n,b,tj (Btj ) for any tj of the

form: for any tj , for some η > 0, there exist some universal constants Ci > 0, i = 1, 2

such that

Pr
(
τb|θ̂n,b,tj (Btj ) − θ| > η

)
≤ C1 exp(−n

b
C2η

2). (12)

Since our Bernstein bound is suboptimal, we do not need this assumption at the

expense of a suboptimal rate for our subsampling estimator. This condition may be

difficult to verify in practice, especially in the nonstationary case. It may be easier
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to verify it in the stationary framework. In that case, we expect to obtain a better

convergence rate by first proving the true Bernstein bound (with a variance instead of

M2). This will be the subject of our future research.

5 Extensions to estimators with nuisance parameters

In this section, we will consider a generalized version of the estimator θ̂n,b,Tk
. Sometimes

an unknown parameter θ depends on another parameter Γ (say a nuisance parameter)

that must be estimated first. For example, to estimate the covariance, the overall mean

must be estimated (unless it is known). Therefore, below we assume that the unknown

parameter θ depends on Γ, and denote it by θ(Γ). When Γ is known, then the GSE is of

the form θ̂n,b,Tk
(Γ). Otherwise, Γ needs to be estimated. By Γ̂n we denote its estimator

based on the original sample (X1, . . . , Xn). In this case, we define the GSE by

θ̂n,BK(Γ̂n) = E∗
(
θ̂n,b∗,T∗

k∗ (Γ̂n)
)

=
∑

(b,k)∈BK
p(b,k)

∑
Tk∈Sk

n,b

pTk|(b,k)θ̂n,b,Tk
(Γ̂n). (13)

Below we provide the results corresponding to Theorems 3.1-3.3 stating consistency of

our estimators.

Theorem 5.1. Assume that {Xt, t ∈ Z} is an α-mixing time series such that

Assumption 2.2 holds and

i) there exists θ ∈ R such that

E(θ̂n,BK(Γ̂n)) −→ θ

i’) OR there exists θ ∈ R such that for any sequences of integers b̃ = b̃(n) and

k̃ = k̃(n) such that 0 < b1 ≤ b̃ ≤ b2 < n, 0 < k1 ≤ k̃ ≤ k2 < n, b1, b2 −→ ∞

as n −→ ∞, but b2/n −→ 0 as n −→ ∞ and any sequence of vectors Tn,k̃ =

(tn,1, tn,2, . . . , tn,k̃) with integers tn,i such that 1 ≤ tn,i ≤ n− b̃+ 1, i = 1, 2, . . . , k̃
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we have that

E

[
θ̂n,b̃,Tn,k̃

(Γ̂n))
]

−→ θ;

ii) there exist ξ > 0 and ∆ > 0 such that

sup
b1≤b≤b2
k1≤k≤k2

Tk∈Sk
n,b, n∈Z

∥∥∥θ̂n,b,Tk
(E(Γ̂n)))

∥∥∥
2+ξ

< ∆ and
∞∑
j=1

α
ξ

2+ξ (j) < ∞,

iii) b2
2k2/n −→ 0, as n −→ ∞;

iv) for any sequences of integers b̃, b̃′, k̃, k̃′ such that 0 < b1 ≤ b̃ ≤ b2 < n, 0 <

b1 ≤ b̃′ ≤ b2 < n, 0 < k1 ≤ k̃ ≤ k2 < n, 0 < k1 ≤ k̃′ ≤ k2 < n, b1, b2 −→ ∞

as n −→ ∞, but b2/n −→ 0 as n −→ ∞ and any sequences of vectors Tn,k̃ =

(tn,1, tn,2, . . . , tn,k̃) and T′
n,k′ = (t′n,1, t′n,2, . . . , t′n,k̃′) with integers tn,i and t′n,i such

that 1 ≤ tn,i ≤ n−b̃+1 for i = 1, 2, . . . , k and 1 ≤ t′n,i ≤ n−b̃′+1 for i = 1, 2, . . . , k′

we have that

cov
(
θ̂n,b,Tk

(Γ̂n) − θ̂n,b,Tk
(E(Γ̂n)), θ̂n,b′,T′

k′
(E(Γ̂n))

)
−→ 0,

cov
(
θ̂n,b,Tk

(Γ̂n) − θ̂n,b,Tk
(E(Γ̂n)), θ̂n,b′,T′

k′
(Γ̂n) − θ̂n,b′,T′

k′
(E(Γ̂n))

)
−→ 0.

Then the estimator θ̂n,BK(Γ̂n) is mean square consistent, i.e.,

θ̂n,BK(Γ̂n) L2−→ θ, as n −→ ∞.

Theorem 5.2. Assume that Assumption 2.2 holds and

i) there exists θ ∈ R such that for any sequence of integers b̃ such that b1 ≤ b̃ ≤ b2

and any sequence of integers tn such that 1 ≤ tn ≤ n− b̃+ 1 we have

E(θ̂n,b̃,tn(Γ̂n)) −→ θ, as n −→ ∞;
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ii) there exists ξ > 0, ∆ > 0 and K < ∞ such that

sup
n∈Z

b∈{b1,...,b2}
t∈{1,2,...,n−b+1}

∥θ̂n,b,t(E(Γ̂n))∥2+ξ < ∆ and
∞∑
k=1

α
ξ

2+ξ (k) < K;

iii) b2
2k2/n −→ 0, as n −→ ∞;

iv) for any sequences of integers b̃, b̃′, such that 0 < b1 ≤ b̃ ≤ b2 < n, 0 < b1 ≤ b̃′ ≤

b2 < n, b1, b2 −→ ∞ as n −→ ∞, but b2/n −→ 0 as n −→ ∞ and any sequences

of integers tn and t′n such that 1 ≤ tn ≤ n− b̃+ 1 and 1 ≤ t′n ≤ n− b̃′ + 1 we have

that

cov
(
θ̂n,b,tn(Γ̂n) − θ̂n,b,tn(E(Γ̂n)), θ̂n,b′,t′n(E(Γ̂n))

)
−→ 0,

cov
(
θ̂n,b,tn(Γ̂n) − θ̂n,b,tn(E(Γ̂n)), θ̂n,b,t′n(Γ̂n) − θ̂n,b,t′n(E(Γ̂n))

)
−→ 0.

Then

θ̂Mean
n,BK (Γ̂n) =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂Mean
n,b,Tk

(Γ̂n) L2−→ θ, as n −→ ∞.

Theorem 5.3. Let Assumption 2.2 and conditions ii)−iv) of Theorem 5.2 hold. Assume

that

i) there exists θ ∈ R such that uniformly at b ∈ {b1, b1 + 1, . . . , b2} and t ∈

{1, 2, . . . , n− b+ 1} we have a sequence Cn such that

√
k2E|θ̂n,b,t(Γ̂n) − θ| ≤ Cn −→ 0,

as n −→ ∞, where the sequence Cn doesn’t depend on t;
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Then, as n −→ ∞ we have that

θ̂Median
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂Median
n,b,Tk

(Γ̂n) L2−→ θ

and

θ̂
TM(f)
n,BK =

∑
(b,k)∈BK

∑
Tk∈Sk

n,b

pb,k,Tk
θ̂
TM(f)
n,b,Tk

(Γ̂n) L2−→ θ.

6 Application

Below we apply the results of Section 5 to almost periodically correlated (APC)

time series, which are an important class of nonstationary time series. They are a

generalization of periodically correlated (PC) processes, which are characterized by

periodic mean and covariance functions. In the APC case, the mean and covariance

functions are almost periodic functions of the time argument. To be precise, a function

f(t) : Z −→ R is called almost periodic if for any ϵ > 0 there exists an integer

Lϵ > 0 such that among any Lϵ consecutive integers there is an integer pϵ such that

supt∈Z |f(t+pϵ)−f(t)| < ϵ (see Corduneanu [1989]). The PC/APC processes are used to

model data with cyclic features in many fields, such as telecommunications, mechanics,

vibroacoustic, economics, hydrology, and many others (see e.g., Antoni [2009], Gardner

et al. [2006], Hurd and Miamee [2007], Napolitano [2012, 2016]).

Subsampling consistency has been proven for various characteristics of APC

processes, both in the discrete and continuous case. The Fourier coefficients of the

mean function of the APC time series were considered in Lenart [2013], while the

spectral characteristics in Lenart [2011] and Lenart [2016]. Finally, the consistency for

the Fourier coefficients of the autocovariance function of the continuous APC process

was obtained by Dehay et al. [2014]. Below we will discuss the application of our

results to the Fourier coefficients of the autocovariance function of PC time series with

a deterministic trend function. This example can be easily extended to the APC case
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with a finite number of significant frequencies of the mean and autocovariance functions.

Let {Xt} be a time series with a mean function of the form

E(Xt) = µ(t) = d · f(t) +
T−1∑
k=0

m(ψk)eiψkt, (14)

where d ∈ R is some constant, f : R −→ R is some known function, ψk = 2kπ
T ,

k = 0, 1, . . . , T − 1 and T > 0 is a period length. For the function f , we assume the

following.

Assumption 6.1. Assume that the real-valued function f : R −→ R

i) has at most a finite number of local extrema;

ii) is such that there exist constants s > 0 and C1 ̸= 0 such that f(x)/xs −→ C1, as

x −→ ∞;

iii) there exists constant C2 > 0 such that

lim
n−→∞

 1
n2s+1

n∑
j=1

(
f(j) − f̄n

)2
 = C2,

where f̄n = 1
n

n∑
j=1

f(j).

A simple example of a function satisfying the above conditions is a polynomial

function of degree r ≥ 1. In this case, it is sufficient to note that s = r.

Let B(t, τ) be the autocovariance function of {Xt}. We assume that B(t, τ) is

periodic in t, with the same period T that occurred in the equation (14), i.e.,

B(t, τ) = cov(Xt, Xt+τ ) =
T−1∑
k=0

a(λk, τ)eiλkt, (15)

τ ∈ Z, λk = 2kπ/T for k = 0, 1, 2, . . . , T − 1. To estimate B(t, τ), we must first

estimate the mean function µ(t). In this case, Γ is the vector of parameters associated
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with µ(t), i.e., Γ = (d,m(ψ0),m(ψ1), . . . ,m(ψT−1)). Its estimator based on sample

(X1, X2, . . . , Xn) is of the form Γ̂n = (d̂n, m̂n(ψ0), m̂n(ψ1), . . . , m̂n(ψT−1)). To estimate

d we use the following natural estimator based on the idea of ordinary least squares

method

d̂n =

n∑
j=1

(
f(j) − f̄n

)
Xj

n∑
j=1

(
f(j) − f̄n

)2 ,

where f̄n = 1
n

n∑
j=1

f(j). Then the estimators of m(ψk), k = 0, . . . , T − 1 are of the form

m̂n(ψk) = 1
n

n∑
j=1

(Xj − d̂nf(j))e−ijψk .

Finally,

µ̂n(t) = d̂nf(t) +
T−1∑
k=0

m̂n(ψk)eiψkt

is the estimator of the mean function µ(t), t ∈ {1, 2, . . . , n}.

In the following, we focus on the estimation of var(Xt) = B(t, 0). The estimator of

the Fourier coefficient a(λk, 0) for any k = 0, . . . , T − 1 is of the form

ân(λk, 0) = 1
n

n∑
j=1

(Xj − µ̂n(j))2e−ijλk ,

and its subsampling counterpart based on block Bt is defined as follows

θ̂n,b,t(Γ̂n) = ân,b,t(λk, τ) = 1
b

t+b−1∑
j=t

(Xj − µ̂n(j))2e−ijλk . (16)

Theorem below states consistency of the GSE based on (16).

Theorem 6.1. Assume that Assumptions 2.2 and 6.1 hold. Let {Xt} be an α-mixing

time series with the mean function given by (14) and the autocovariance function by

(15). Assume that there exist real numbers ξ∗ > 0, ∆∗ > 0 and K∗ < ∞ such that

i) sup
n∈Z

∥Xn − µ(n)∥4+2ξ∗ < ∆∗;
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ii)
∞∑
k=1

kh
∗−2α

ξ∗
h∗+ξ∗ (k) < K∗;

iii) b2
2k2/n −→ 0, as n −→ ∞,

where h∗ is the smallest even integer such that h∗ ≥ 4+ξ∗. Then the estimators θ̂Mean
n,b,Tk

,

θ̂Median
n,b,Tk

and θ̂TM(f)
n,b,Tk

based on (16) are mean square consistent.

6.1 Some simulation results

Below is a brief illustration of our results using several simulated APC and PC time

series as examples. We considered two models:

M1: a pure sinusoid convoluted with an ARMA model

Xt = µ(t) + Zt, with µ(t) = a sin(λ0t) and (1 − ϕB)Zt = (1 − θεt),

where εt, t = 1, . . . n are i.i.d. Gaussian r.v.’s with variance 1. In our simulations,

we set λ0 = 0.25, ϕ = 0.8, a = 1 and θ = 0.5. Moreover, we set a sample size

n = 2000. An example realization of such series is shown in Figure 1.
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Figure 1: Model M1: pure sinusoidal component with ARMA noise.

M2: a PARMA(p,q) model

Xt =
p∑
j=1

ϕj(t)Xt−j +
q∑

k=0
θk(t)εt−k,
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where εt, t = 1, . . . n are i.i.d. Gaussian r.v.’s with variance 1. The coefficients

ϕj(t), θk(t) are periodic functions with period d, i.e., ϕj(t) = ϕj(t + d), θk(t) =

θk(t+ d). We used the package perARMA (see Dudek et al. [2016] and references

therein), in which the parsimonious parameterization suggested first in Jones and

Brelsford [1967] is implemented. It involves representing periodically varying

parameters by Fourier series

ϕj(t) = aj,1 +
⌊d/2⌋∑
l=1

(aj,2l cos(2πlt/d) + aj,2l+1 sin(2πlt/d)), j = 1, . . . , p,

θk(t) = bk,1 +
⌊d/2⌋∑
l=1

(bk,2l cos(2πlt/d) + bk,2l+1 sin(2πlt/d)), k = 1, . . . , q.

with only a few non-zero components.

We generated two PARMA models with a period length d = 12.

– M2a: PAR(2) model with a1,1 = 0.3, a2,2 = 0.5.

– M2b: PARMA(2,1) with a1,1 = 0.8, a1,2 = −0.9, a2,1 = 0.3, b1,1 =

−0.7, b2,1 = −0.2;

All coefficients not specified above are set to 0. We considered a sample size

n = 2004, corresponding to 167 periods of length d = 12. Examples of the

realization of the considered time series are shown in Figures 2 and 3.

Additionally, the corresponding sample autocorrelation functions are presented in

Figures 4 and 5. Note that cyclostationarity is more difficult to detect in the case

of the M2a model.

Our goal was to use our subsampling approach to estimate the magnitude of the

Fourier coefficient of the mean function at a fixed frequency λ0 ∈ [0, π], i.e., |m(λ0)|.

This means that our parameter of interests θ is a complex-valued and we estimate the

value of |θ|. For M1 we have |m(λ0)| = 1
2 , while for M2a and M2b |m(λ0)| = 0. Thus,

our statistic of interest was the rescaled periodogram, i.e., |θ̂n| = |1/n
∑n
j=1Xje

−ijλ0 |,

with a subsampling counterpart |θ̂n,b,t| = |1/b
∑t+b−1
j=t Xje

−ijλ0 |.
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Figure 2: Model M2a realization with n = 2004.
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Figure 3: Model M2b realization with n = 2004.
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Figure 4: Sample autocorrelation function for realization of M2a model with n = 2004.
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Figure 5: Sample autocorrelation function for realization of M2b model with n = 2004.
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The bagged subsampling procedure was repeated 500 times, and we plotted the mean

of our estimators over these repetitions. We assumed a uniform distribution for (b∗, k∗)

and T∗
k∗ |(b∗, k∗) = (b, k) (see Assumption 2.1). For each simulation, we considered 3

scenarios taking different values of the parameters b1, b2 and k1, k2. These are:

GESV1: (moderate b and small k): b1 = ⌊
√
n⌋, b2 = b1 + 10, k1 = 50, k2 = 53;

GESV2: (large b and moderate k): b1 = ⌊n2/3⌋, b2 = b1 + 10, k1 = 100, k2 = 110;

GESV3: (large b and large k): b1 = ⌊n2/3⌋, b2 = b1 + 10, k1 = 500, k2 = 530.

Figures 6-8 show results of the performed simulations for the model M1. Specifically, we

plotted the periodogram calculated on the whole sample (black) along with the bagged

estimators: mean of means (Figure 6), see formula (4), mean of medians (Figure 7) and

mean of trimmed means (Figure 8), see formula (8), respectively, based on the scenarios

GESV1 (green), GESV2 (blue) and GESV3 (red). For the periodogram, the median

was computed in three different ways, using the median of rescaled periodogram directly

(see (7)), the geometric median of the complex Fast Fourier Transform (which can be

viewed as the depth distance, i.e., the value that is at the smallest Euclidean distance

from all points), then applying the modulus (see (11)), and the value obtained by taking

the medians of the real and imaginary parts, respectively before computing (see (6)).

All results were similar and very similar to the trimmed mean, except in the first case,

that is for the median of the rescaled subsampled periodogram. Therefore, we present

only this problematic case to highlight the possible bias in this case. Notice that for

the geometric median we cannot directly obtain a Bernstein bound, but it is easy to get

a Bernstein inequality for the last case, by splitting into the real and imaginary parts

at the cost of some loss in the constants. Finally, the trimmed means are computed by

removing 1% of the largest and 1% smallest observations of the rescaled periodogram

at each frequency.

Notice that for the mean, except for the scenario GESV1, when k and b are small,

which causes an upper bias, the rescaled periodogram based on the whole sample and

its bagged estimators are quite similar. In addition, in all cases, the frequency λ0 is

well detected. Choosing the median of the rescaled periodogram seems to be the worst
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choice and seems to produce a huge bias. On the contrary, using the median of the real

and imaginary part respectively gives very similar results to the mean case when there

are no outliers.
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Figure 6: Model M1, mean case: rescaled periodogram with n = 2000.
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Figure 7: Model M1, geometric median case: rescaled periodogram with n = 2004.

The results for the PARMA model M2b are presented in Figures 9-11. We omit the

results for the model M2a which gives similar but less clear results than M2b. Note

that for M2b results for the mean of means (Figure 9) and mean of trimmed means

(Figure 11) or the mean of medians are very similar and allow us to identify the cyclic

nature of the data. Again, the mean of medians applied to rescaled periodgram (Figure

10) seems to be strongly biased: this is likely due to the strong nonlinear effect that
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Figure 8: Model M1, trimmed mean case: rescaled periodogram with n = 2004.

occurs when taking the median of modulus of complex values, even if the method is

consistent in all cases.
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Figure 9: PARMA M2b model, mean case: rescaled periodogram with n = 2004.

To evaluate the true rate of convergence of the bagged subsampling estimators for

the different scenarios, we generated realizations from models M1, M2a and M2b for

n ∈ {2 000, 2 500, 3 000, . . . , 20 500}. For each of the 40 values of n, we repeated the

procedure 500 times, which resulted in 40×500 different values of the estimators taken

at the frequency λ0. Based on these repetitions, we evaluated the convergence rate of

the bagged subsampling estimator of the rescaled periodogram (taken at frequency λ0

by looking at the behavior of the estimated variance varb,k,n (over 500 Monte-Carlo
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Figure 10: PARMA M2b model, geometric median case: rescaled periodogram with
n = 2004.
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Figure 11: PARMA M2b model, trimmed mean case: rescaled periodogram with n =
2004.
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repetitions of the procedure) as n varies.

Since our results show that the rate of convergence is of the order (nk )β with β close

to 1/2 we should have

log(varb,k,n) = −2βlog(n)(1 + νn), with νn = o(1),

and the coefficient of the slope should be close to −1. In Table 1, we present

the least squares estimates of the slope along with the standard errors based on 40

different values of n obtained for each model considered M1, M2a, M2b, and for

each parameter: mean, median, geometric median (geoMedian) and trimmed mean

(TM) under 3 scenarios: 1 (k1 = 50, b1 = ⌊n1/2⌋), 2 (k1 = 100, b1 = ⌊n2/3⌋), 3

(k1 = 500, ⌊b1 = n2/3⌋). The value of R2 is always very high (close to 0.99) and

is omitted from the table. Note that in scenario 3, when b is close to n2/3 and k is

reasonable, the bagged estimator for the mean provides an estimator with an improved

rate of convergence, close to 1, (and even better for the model M2b) and slightly

slower for the median and trimmed mean. Only for the geometric median we do not

see an improvement in some cases. For the model M1, since in this case, the rate of

convergence of the single subsampling estimator is of order b1/2, we see that the bagged

estimator has a rate of the same order. In all cases where b and k are small, there is an

improvement over a single subsampling estimator, but it is smaller than in scenario 3.

The rate appears to improve as k becomes larger, even if b is held fixed equal to ⌊n2/3⌋.

It seems that for the trimmed mean we also get improved results, but at the cost of a

slight loss in term of efficiency.
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Bagged
Estimator Scenario M1 M2a M2b

Mean 1 −0.5853
(0.0068)

−0.87560
(0.0109)

−1.0512
0.0124

2 −0.74610
0.0100

−1.0130
(0.0099)

−1.2067
(0.0133)

3 −0.9395
(0.01088)

−1.1664
(0.0142)

−1.2765
(0.0145)

Median of r.p. 1 −0.575077
0.00939

−0.8600
(0.0104)

−0.9729
(0.0116)

2 −0.623078
(0.0092)

−0.8454
(0.0104)

−0.9815
(0.0108)

3 −0.7014
(0.0116)

−0.8664
(0.0124)

−0.9829
(0.0104)

Geo Median 1 −0.5367
(0.0070)

−0.84846
(0.0110)

−1.0186
(0.0123)

2 −0.6795
(0.0110)

−0.9689
(0.0100)

−1.1708
(0.0132)

3 −0.8357
(0.0127)

−1.0923
(0.0153)

1.2158
(0.0151)

TM 1 −0.5397
(0.0092)

0.8490
(0.011)

−1.0501
(0.0126)

2 −0.6856
0.0110

−0.9759
(0.0101)

−1.2033
(0.0133)

3 −0.8823
(0.0119)

−1.17654
(0.0158)

−1.2646
(0.0150)

Table 1: Convergence rate estimation results: estimated value of −2β along with
standard error for each considered model M1, M2a, M2b, and for each parameter:
mean, median, geometric median (geoMedian) and trimmed mean (TM) under 3
scenarios: 1 (k1 = 50, b1 = ⌊n1/2⌋), 2 (k1 = 100, b1 = ⌊n2/3⌋), 3 (k1 = 500, ⌊b1 =
n2/3⌋).

7 Conclusions

This paper provides some general results on the mean square consistency for generalized

subsampling estimators that can be viewed as bagged subsampling estimators. We also

developed some Bernstein inequalities for these generalized subsampling estimators,

which allow us to show that bagged subsampling estimators enjoy some improved
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convergence rate properties, as in the i.i.d. case. We have extended and applied our

results to some cyclostationary times series. We have investigated the properties of

our estimator on some periodic ARMA models. Our simulation results illustrate the

consistency of the bagged subsampling estimators and, also reflect the gain in accuracy

that we have explored in theory. Using the mean of means, medians or trimmed means

yields fairly similar results when applied directly to the periodogram. However, care

should be taken using the median or trimmed mean when applied to the rescaled

peridogram. For example, we applied the median to the rescaled periodogram before

averaging and this appears to cause a significant bias. The main remaining issue is the

choice of the hyperparameters, b the subsampling size, and k the number of subsampling

estimators used to compute the bagged estimators. In a nonstationary setting, this is

a challenging problem. We hope to solve this problem in the future by combining the

tools developed in Bertail and Dudek [2024], Lenart [2011] and Lenart [2018].
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