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Fig. 1: We study the evolution of synthetic images throughout their online lifespan
through collecting different online versions of the “same” synthetic image. Using this
data, we evaluate state-of-the-art synthetic image detectors, to find out that they
mostly fail to detect several instances that were shared online, while the time since ini-
tial sharing negatively affects detection performance. Using retrieval-assisted synthetic
image detection, it is feasible to retain the initial detection performance throughout
the online lifespan of a synthetic image.

Abstract. Synthetic images disseminated online significantly differ from
those used during the training and evaluation of the state-of-the-art
detectors. In this work, we analyze the performance of synthetic im-
age detectors as deceptive synthetic images evolve throughout their on-
line lifespan. Our study reveals that, despite advancements in the field,
current state-of-the-art detectors struggle to distinguish between syn-
thetic and real images in the wild. Moreover, we show that the time
elapsed since the initial online appearance of a synthetic image nega-
tively affects the performance of most detectors. Ultimately, by employ-
ing a retrieval-assisted detection approach, we demonstrate the feasi-
bility to maintain initial detection performance throughout the whole
online lifespan of an image and enhance the average detection efficacy
across several state-of-the-art detectors by 6.7% and 7.8% for balanced
accuracy and AUC metrics, respectively. The dataset is available at
https://doi.org/10.5281/zenodo.13648239.
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1 Introduction

Several synthetic image generation approaches have been recently proposed,
achieving an outstanding level of photorealism and blending the boundaries
between generated and real content [10, 51]. In response, the image forensics
community has explored detecting whether an image originates from a genera-
tive model, or constitutes a real one, capturing an actual moment of our physical
world [1,35]. In particular, detectors have been proposed to tackle popular gen-
erative approaches, such as Generative Adversarial Networks (GANs) [16,47,48]
and Diffusion Models (DMs) [3,5,8,24,34]. All of them achieve very high detec-
tion performance in their respective evaluation setups. However, when detection
approaches are tested on real-life cases of synthetic visual content spreading
online, reported user experiences [13] seem to contradict these lab-controlled
experimental results. In this work, we analyse how current synthetic image de-
tectors perform when facing synthetic images that circulate online in different
variations. Moreover, we study how the evolution of the copies of synthetic im-
ages shared online affect the performance of detection methods.

To evaluate synthetic image detection (SID) approaches on actual cases of
AI-generated images spreading online, and to study the evolution of synthetic
content with respect to time, suitable benchmark data is required. However, the
currently available datasets have either been generated under highly-controlled
lab assumptions [3, 8, 48, 55], or collected from online channels such as Discord,
where images are posted right after their generation [50]. These datasets neither
capture the multi-step post-processing operations expected to have been applied
on images spreading online, especially for a long time, nor do they consider
complex transformations commonly encountered in the wild, such as addition of
text and inclusion in memes [13]. Benchmarks currently ignore the evolution of
a synthetic image throughout its online lifespan. To tackle this limitation and
enable a study of the real-world performance of SID methods, we collect the Fact-
checked Online Synthetic Image Dataset (FOSID). Starting from some popular
fact-checked synthetic images, we collect, curate and analyze a large number of
their instances circulating online, thus capturing a web-scale variability of the
applied chains of post-processing operations. We capture the dimension of time
since the initial online appearance of a synthetic image to enable our study on
how the properties of synthetic images, introduced by the generative processes
[8, 48,49], evolve with respect to the time an image remains online.

We use our FOSID dataset as well as images from several large-scale and
forensics-oriented benchmarks to evaluate the performance of several recently
proposed SID methods. We find out that all tested methods are improperly
calibrated to handle in-the-wild samples. Most of them also fail to produce a
well-separated ranking between deceiving synthetic images and real ones origi-
nating from the Web. We show that on heavily post-processed instances, such as
the ones with additional overlays or included in memes, many detectors plausibly
exhibit increased performance by detecting this later post-processing instead of
the signal of the synthetic image. In addition, by analyzing the evolution of the
synthetic images throughout their online lifespan, we show that the performance
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of most detectors drops with respect to the time elapsed since the initial online
appearance of an image. We exploit this finding by using a Retrieval-Assisted
Synthetic Image Detection (RASID) pipeline to maintain consistent SID perfor-
mance across the different copies of synthetic images, where the longer chain of
post-processing operations degrades detection performance. An overview of the
proposed concept is presented in Fig. 1.

Overall, our contributions include the following:

– We show that the state-of-the-art SID approaches are significantly uncali-
brated for handling actual online cases of synthetic images.

– We find that most SID methods fail to discriminate between synthetic and
real image cases collected in the wild with no further preconditions, even
when tuning a threshold.

– We study the effects of chains of post-processing operations applied to an im-
age after its initial online appearance to the performance of SID approaches
and notice a degradation over time.

– We employ a retrieval-assisted detection process to maintain the detection
performance across the early- and the late-shared copies of synthetic images,
and achieve a performance increase of 6.7% and 7.8% in balanced accuracy
and AUC respectively, averaged over several SID methods.

– We make publicly available the FOSID collection to facilitate further studies
on the evolution of fact-checked deceiving synthetic images throughout their
online lifespan.

2 Related Work

2.1 Synthetic Image Generation

Throughout the recent years image generation approaches have significantly
evolved, rapidly moving from the generation of blurry and low-resolution im-
ages [19] to the creation of photo-realistic imagery indistinguishable from actual
photos [40]. While several approaches for generative image modelling have been
proposed, the progress in the field has been primarily driven by the adoption of
the Generative Adversarial Networks (GANs) [16,17], and more recently, by the
introduction of the Diffusion Models (DMs) [24,45].

Early unconditional GAN architectures such as ProGAN [28], BigGAN [4]
and StyleGAN [29], pioneered the generation of high-fidelity images using ran-
dom noise as input. At the same time, conditional GAN architectures, such as
CycleGAN [54], StarGAN [7], GauGAN [39] and more recently GigaGAN [26]
introduced the ability to control the image generation process using an image or
text input. Lately, the introduction of Diffusion Models has set new standards to
generative modelling, with the introduction of architectures such as the denois-
ing diffusion probabilistic models [24] that learn to reverse the diffusion process
and the latent diffusion models [42] that increase efficiency by performing the
denoising process in the latent space. Moreover, some recently proposed archi-
tectures and methodologies such as ControlNet [52] and Diffusion in Style [14]
have significantly increased the versatility of conditioning pre-trained DMs.
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2.2 Synthetic Image Detection

In response to the trends in generative modelling, there has been a surge in
methods for detecting synthetic images. Early works in the field primarily fo-
cusing on GAN-based architectures noticed that generative models introduce
spectral artifacts to the images and proposed methods to model them either in
the spatial [48] or spectral domain [15]. Others found that generative models fail
to match the distribution of real images in texture-rich regions of the images
and proposed approaches for modelling them using either global [37] or multi-
scale [25] texture representations. Subsequent works found that the gradients of
the latent representations with respect to the RGB images can also discriminate
between synthetic and real images [47].

Recent works have found that DMs also introduce spectral artifacts and
adapted previous detectors to the detection of images originating from DMs [3,
8,34]. However, the poor generalization performance of such methods due to the
differences between the spectral artifacts introduced by generative models even
with minimal differences, inspired several works to revisit previously explored
ideas, such as the texture artifacts [53] or the artifacts introduced by the upscal-
ing layers of the generative architectures [46]. In pursuit of more generalizable
features, recent works exploit errors in the high-level semantics of synthetic im-
ages using latent representations from frozen pre-trained encoders, either only
in the visual modality [9, 31, 38] or in the alignment between the visual content
and textual captions of the image [44]. In a similar direction, others exploit the
errors appearing when reconstructing the real images [5,49]. In addition, recent
image forgery localization approaches increase granularity of SID by detecting
local manipulations performed by generative models [20,21,27].

2.3 Synthetic Image Detection Benchmarks

Several recent SID works have introduced benchmark datasets spanning a broad
range of generative models. Wang et al. [48] and Asnani et al. [2] introduced
datasets that include samples from several generative approaches up to the GAN
era. More recently, Corvi et al. [8], Ojha et al. [38] and Wang et al. [49] have
introduced training and testing data generated by diffusion models. Moreover,
Synthbuster [3], DiffusionDB [50], GenImage [55] and Twigma [6] significantly
increased the scale of the available data for some of the most popular generative
approaches. Last, SIDBench [43] recently introduced a framework for bench-
marking SID approaches in a modular manner across different datasets.

However, all the aforementioned works either employ some automated syn-
thesis pipelines that produce arbitrary synthetic data, or collect synthetic data
from online channels where they are posted soon after their generation, including
many cartoon-looking and highly styled images. Thus, as Dufour et al. [13] have
already highlighted, most of these images are highly unlikely to represent con-
tent that would constitute misinformation. Moreover, neither of these datasets
capture the evolution of synthetic images over their online lifespan, and as a
consequence, they only consider images that have passed through very few (if
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Fig. 2: Fact-checked synthetic images used as seeds for the data collection process.
The “Pope” image is a satirical depiction of the Pope, while the remaining three were
presented as relating to events of the Israel-Hamas war. The images have been cropped
and scaled to the same aspect ratio for illustration purposes in this figure only.

any) post-processing operations. To the best of our knowledge, we are the first to
study the performance of SID approaches in the wild, throughout the online lifes-
pan of synthetic images that are representative of actual cases of misinformation.
Thus, we combine i) actual pieces of synthetic imagery constituting misinforma-
tion, ii) a representative set of post-processing operations encountered in the
wild and iii) the consideration of the time since their online appearance.

3 Data Collection Process

Assessing the performance of SID methods in the wild requires data that cap-
tures the various forms in which a synthetic image may appear online, through-
out its online lifespan. We use the term online lifespan of an image to denote
the evolution of its copies shared online with respect to the time elapsed since
its first online appearance. This evolution may include simple post-processing
operations, like resizing, cropping or recompression, but also more complex ma-
nipulations like the addition of text, the inclusion in memes or the online sharing
of screenshots that include the initial image. In this direction, we built a time-
ordered collection of the copies of synthetic images that have been previously
shared online as pieces of misinformation, namely the Fact-checked Online Syn-
thetic Image Dataset (FOSID).

To build this dataset we initially selected a set of four images that have been
recently shared online with the intention to deceive and have been proven to
originate from synthetic image generators through rigorous fact-checking 4 5 6 7.
These images, that we present in Fig. 2, were used as seeds for the collection of
4 https://factcheck.afp.com/doc.afp.com.33C66F3
5 https://factcheck.afp.com/doc.afp.com.33ZJ8WU
6 https://factcheck.afp.com/doc.afp.com.343V9H6
7 https://www.dailymail.co.uk/news/article-12785455/young-people-Hamas-
dirty-tricks-propaganda-war-AMI-H-ORKABY.html

https://factcheck.afp.com/doc.afp.com.33C66F3
https://factcheck.afp.com/doc.afp.com.33ZJ8WU
https://factcheck.afp.com/doc.afp.com.343V9H6
https://www.dailymail.co.uk/news/article-12785455/young-people-Hamas-dirty-tricks-propaganda-war-AMI-H-ORKABY.html
https://www.dailymail.co.uk/news/article-12785455/young-people-Hamas-dirty-tricks-propaganda-war-AMI-H-ORKABY.html


6 D. Karageorgiou et al.

(a) Basic Images (b) Non-Basic Images

Fig. 3: Examples of basic and non-basic images from the Gaza1 subset of FOSID.

four subsets that capture the online evolution of each image with respect to the
time since its first online appearance. They were selected as they had seen wide
propagation on social media at the time of writing and were also debunked by
several fact-checking agencies. To facilitate our data collection process we used
the Google Fact Check Tools [18] to perform reverse image search, while at the
same time having access to a time-sorted list of the retrieved URLs. In total, we
collected 3070 URLs, spanning an online lifespan between three and 10 months
for each of the four seed images, amounting to a total lifespan of 25 months.
The evolution over the lifespan of each image constitutes a different subset of
FOSID, namely the Pope, Gaza1, Gaza2 and Gaza3 subsets.

The URL list initially returned by the reverse image search process was
including irrelevant web content, like URLs of web pages with the seed image
under a news feed bar, URLs of web aggregators, and in general URLs of pages
where the examined image was not part of the main content. For that reason
we manually curated the list of the URLs returned by the reverse image search
process, in order to conclude with a list of URLs where each image was the
main content. Since many web pages were including more images into their
main content along with the image under question, we further extracted the
direct URLs pointing to the images visually related to the seed ones. Last, we
noticed that a significant number of websites reshare exactly the same image files,
without any alterations at the byte-level. We then grouped the URLs according
to the unique image files they point to.

Several of the collected images had undergone some non-trivial post-processing
operations, such as the addition of graphic overlays in the form of text, water-
marks or emojis, their inclusion in screenshots, photo collages or memes, or
forgery operations, such as background removal. While all the above consti-
tute manipulations that should be expected to be applied to a synthetic im-
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Table 1: Overview of the Fact-checked Synthetic Image Dataset (FOSID). The dataset
is organized in four subsets, each capturing the evolution of an image over time.

Subset Lifespan Total URLs Valid URLs Unique Img Basic Img

Pope 9 months 678 664 228 195
Gaza1 3 months 772 621 239 146
Gaza2 3 months 808 806 272 215
Gaza3 10 months 745 742 216 157

Total 25 months 3070 2833 955 713

age throughout its online lifespan, we recognize that most state-of-the-art SID
methods do not explicitly consider them. Thus, we adopt the definition of ba-
sic images from Dufour et. al [13], for describing images that visually appear to
originate from a camera, and cannot be certainly judged otherwise just by visual
inspection. Thus, we further curate a basic subset of the collected images, which
we believe to better represent the handcrafted datasets used for training most
state-of-the-art detectors. Also, we consider the basic images to constitute the
narrower topic-agnostic range of images a detector should support, since in most
cases it is intractable to further distinguish them just by visual inspection and
so not realistic to impose such preconditions to the user of the detector. Fig. 3
depicts samples belonging to the basic and non-basic subsets of our dataset. The
contents of FOSID are summarized in Tab. 1.

4 Evaluation

4.1 Metrics

Initially, we employ the Balanced Accuracy (BA) metric, computed over the
0.5 threshold, as an indicator of the performance of a detector when deployed
in the wild, where it may either be impossible to tune a threshold due to the
lack of representative data or the output of the detector is expected to be in-
terpreted as a meaningful probability by the users. Furthermore, we employ the
Area Under the ROC Curve (AUC) score as an indicator of the discriminating
ability of a detector, and the BA metric, computed over the Equal Error Rate
(EER) threshold, to indicate the amount of correctly classified samples of both
real and synthetic images, when treating each class as equally important. More-
over, throughout our analysis we found several detectors to perform worse than
random prediction, thus, some metrics are reported to be below 50%. For these
cases we intentionally do not inverse the labels to get scores above 50%, since
in the respective evaluation of each detector on lab-generated data an inversion
was not considered. This highlights the level of misalignment that is expected to
occur when deploying detectors trained on lab-generated data on actual cases.
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4.2 Synthetic Image Detection Approaches

In our study we consider several recently proposed SID methods, that are re-
ported to generalize across different generative models in their respective papers.
While some of these approaches were originally proposed for GAN-generated
images, they all consider cross-model generalization. Thus, we include them to
study their generalization performance in the wild, despite the fact that our
fact-checked images originate from recent DMs.

– CNNDetect [48] that employs a ResNet50 [23] model trained on ProGAN
data to detect images produced by several GAN-based generative models.

– FreqDetect [15] that uses the DCT transform of an image as input to a
classifier to detect GAN-generated images.

– GramNet [37] that leverages global texture representations to detect GAN
generated face images.

– Fusing [25] that combines global and local features to detect GAN-generated
images.

– LGrad [47] that exploits the gradients of the latent representation of an im-
age produced by an encoder with respect to the input image, to discriminate
between GAN-generated and real images.

– DIMD [8] that introduces a detection approach based on ResNet50 for
detecting images generated by DMs.

– UnivFD [38] that uses features from a pre-trained CLIP ViT encoder [41]
and nearest-neighbor search to detect synthetic images from several genera-
tive architectures.

– DeFake [44] that exploits the difference in the alignment of the image’s
content and its caption using CLIP’s image and text encoders. [41].

– DIRE [49] that leverages the error in reconstructing an image with a DM
to detect fake images.

– PatchCraft [53] that exploits the differences in the rich-texture regions
between synthetic and real images.

– NPR [46] that leverages neighboring pixel relationships to capture the ar-
tifacts introduced by the upscaling stages of generative models.

– RINE [31] that leverages features from the intermediate layers of the CLIP’s
image encoder to build a general SID model.

We used the publicly provided pre-trained models of the methods and eval-
uated them through the SIDBench [43] framework. For methods that provided
more than one pre-trained models, we evaluated all of them and report the re-
sults of the best one. In total, we evaluated 25 pre-trained models for the 12
considered detection methods.

4.3 Sources of Real Images

In order to capture a web-scale variability of post-processing operations in our
real data, we employed images from five public datasets that have either been
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Table 2: Evaluation of SID methods using a fixed threshold on the four subsets of
FOSID. BA is computed using the 0.5 threshold. The presented scores are averaged
over five datasets of real images.

Approach Pope Gaza1 Gaza2 Gaza3 Overall

GramNet [37] 43.8 43.0 43.0 43.0 43.2
UnivFD [38] 44.8 47.7 45.3 45.5 45.8
PatchCraft [53] 51.5 48.3 48.7 43.3 47.9
Fusing [25] 49.9 49.0 49.0 49.2 49.3
CNNDetect [48] 49.7 49.4 49.4 49.0 49.4
FreqDetect [15] 57.0 43.2 47.6 50.1 49.5
Dire [49] 51.5 51.5 51.8 51.1 51.5
DIMD [8] 70.6 78.0 51.7 52.8 53.0
NPR [46] 74.0 74.0 26.8 73.6 59.2
Rine [31] 46.4 82.1 67.8 51.0 61.8
LGrad [47] 61.0 58.9 71.2 81.5 68.1
DeFake [44] 81.1 72.9 64.6 72.6 72.8

collected in the wild (before the appearance of high-performing synthetic image
generation methods), or have been captured using verified camera images. In
particular, we randomly sample 2k images from each of the following datasets:

– ImageNet [12] constituting a diverse collection of highly compressed and
post-processed images shared across the Web.

– COCO [36] as a large-scale source of images focusing on the semantic prop-
erties of the depicted objects.

– Open Images Dataset [32] as a source of high-resolution images that have
been shared on the Web.

– RAISE [11] that includes images captured by professional photographers
at the resolution produced by the DSLR camera. Specifically, we use the
pre-processed JPEG-RAISE [33] variant, which converts the provided RAW
camera files to JPEG ones. This dataset facilitates the evaluation on images
without further post-processing, apart from the compression operation.

– FODB [22] that comprises images captured by smartphones and shared over
online social media platforms.

We draw samples from the validation subsets of ImageNet, COCO and Open
Images Dataset to minimize any possible direct or indirect data leaks through
the employment of the respective training subsets in the training data of the
detectors or their pre-trained backbones.

4.4 Evaluation of synthetic image detectors using a fixed threshold

When deploying SID methods in the wild where they may encounter images
from unknown generative models with arbitrary post-processing operations ap-
plied to them, calibrating the detection threshold can be infeasible. To provide a
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Table 3: Evaluation of the discrimination capability of SID methods on the four
subsets of FOSID. BA computed using the EER threshold and the AUC metrics are
reported. The presented scores are averaged over five datasets of real images.

Approach Pope Gaza1 Gaza2 Gaza3 Overall
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

GramNet [37] 33.2 30.7 28.0 21.6 21.7 12.0 17.4 11.5 25.1 19.0
UnivFD [38] 31.8 28.9 45.5 49.9 54.2 57.5 33.8 34.3 41.3 42.6
FreqDetect [15] 57.8 59.5 38.1 37.0 48.5 49.9 55.2 56.1 49.9 50.6
PatchCraft [53] 59.7 62.2 55.0 56.7 53.9 56.2 45.5 44.5 53.5 54.9
NPR [46] 58.5 58.4 80.0 80.8 37.3 36.5 55.9 55.8 57.9 57.9
Fusing [25] 59.6 61.7 57.5 57.5 57.0 61.3 64.6 68.6 59.7 62.3
CNNDetect [48] 68.3 73.5 55.8 57.7 61.6 70.8 50.0 49.2 58.9 62.8
Dire [49] 50.0 63.8 50.0 65.6 50.6 68.3 50.0 64.1 50.1 65.5
LGrad [47] 65.2 67.5 59.9 63.4 71.1 79.0 84.0 90.0 70.1 75.0
Rine [31] 51.5 51.7 84.6 90.0 79.0 88.1 69.9 74.0 71.2 75.9
DeFake [44] 84.1 91.3 72.7 79.4 64.2 69.9 71.7 77.0 73.2 79.4
DIMD [8] 81.3 89.0 81.9 89.6 70.1 80.6 66.6 71.8 75.0 82.8

meaningful detection score to a user who might interpret it as the probability of
an image being synthetic, the scores for any synthetic images should lie close to
1 while the scores for any real ones close to 0. Thus, we evaluate all the detection
methods by computing the BA metric using the common threshold of 0.5 and we
report it for each FOSID subset in Tab. 2. The performance of the majority of
methods is very close to random selection, while the highest performing achieves
a BA value of 72.8%, which is significantly lower than its performance on lab-
collected data [44]. Thus, most models appear to be performing much worse in
the wild.

4.5 Evaluation of the discriminatory ability of detectors

In order to answer whether the state-of-the-art detectors can correctly discrimi-
nate synthetic images from real, irrespective of the detection threshold, we com-
pute the BA metric using the EER threshold of each detector and the threshold-
agnostic AUC score. We report the results on Tab. 3 and note that while the
accuracy of the best performing model in the list has slightly improved to 75%
compared to the performance achieved using a fixed threshold in Tab. 2, it is
still far below the performance reported by the same method on lab-generated
data [8]. Furthermore, we notice that two detectors inversely predict the true
labels, thus performing significantly worse than random selection. Overall, the
detection performance of most detectors indicates that there is still significant
progress needed until it becomes feasible to separate synthetic from real images
in the wild.
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Table 4: Evaluation of the discrimination capability of SID methods on five real
datasets. BA computed using the EER threshold and the AUC metrics are reported.
The presented scores are averaged over the four subsets of FODB.

Approach COCO ImageNet OpenIm. RAISE FODB Overall
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

GramNet 19.7 13.5 14.7 9.3 26.1 14.2 28.4 23.8 36.6 34.1 25.1 19.0
UnivFD 50.7 53.5 55.4 59.8 36.5 39.3 23.5 18.8 40.6 42.0 41.3 42.6
FreqDetect 47.3 46.3 59.0 60.8 48.7 50.0 46.1 46.8 48.4 49.4 49.9 50.6
RPTC 56.0 58.0 73.7 79.5 49.4 51.2 44.7 43.0 43.6 42.8 53.5 54.9
NPR 19.9 19.0 96.4 98.5 66.3 63.2 13.3 13.0 93.5 95.7 57.9 57.9
Fusing 73.5 78.8 69.1 73.0 56.4 61.3 44.6 41.8 54.8 56.7 59.7 62.3
CNNDetect 70.3 76.8 68.3 74.3 56.2 64.0 45.0 42.0 54.8 57.0 58.9 62.8
Dire 50.0 62.7 50.0 66.0 50.7 68.3 50.0 69.5 50.0 60.8 50.1 65.5
LGrad 80.3 86.8 70.0 75.5 70.4 75.3 61.2 60.0 68.4 73.5 70.1 75.0
Rine 83.7 89.0 86.7 92.3 72.0 81.0 49.1 50.2 64.7 67.2 71.2 75.9
DeFake 76.3 83.0 71.1 77.0 73.5 80.0 74.0 80.0 71.3 77.0 73.2 79.4
DIMD 82.5 90.0 88.0 95.0 69.2 82.0 61.1 64.8 74.0 82.1 75.0 82.8

Overall 59.2 63.1 66.9 71.7 56.3 60.8 45.1 46.1 58.4 61.5 57.2 60.7

4.6 Evaluation of detectors on different sources of real data

To study how the SID methods perform with respect to different sources of real
data, we report in Tab. 4 the performance of several detectors when considering
separately each of the five datasets of real images. We present the BA using
the EER threshold and the AUC metrics. The results show that most detec-
tors are better aligned to the ImageNet data, achieving on average 66.9% on
balanced accuracy and 71.7% on AUC across all detectors. Instead, the most
challenging source of real images is the RAISE dataset, with 45.1% and 46.1%
on the same metrics respectively. While it may seem as counter-intuitive that the
forensics-oriented JPEG-RAISE dataset, which involves minimal post-processing
compared to the rest, to be the most challenging one, a reason for its challenging
nature is likely that it includes several megapixel images, something that most
detectors do not typically consider in their training. Furthermore, we note that
the easiest data from the validation splits of COCO and ImageNet, align very
closely with the validation and testing data of several detectors, that consider
them.

4.7 Evaluation on basic images

Most state-of-the-art SID methods primarily consider basic images for their
training. Thus, in this experiment we evaluate their performance by considering
only the subset of basic images in FOSID and report the BA computed over the
EER threshold and the AUC score in Tab. 5, while we sort models based on their
AUC score on basic images. We show that in eight out of 12 considered models
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Table 5: Evaluation of SID methods across all images of FOSID and only its basic
subset. The BA and the AUC metrics are reported. The presented scores are averaged
over the four main subsets of FOSID and over five datasets of real images.

Approach All Basic Diff. (%)
ACC AUC ACC AUC ACC AUC

GramNet [37] 25.1 19.0 20.3 15.6 -19.2 -18.0
UnivFD [38] 41.3 42.6 37.4 37.0 -9.5 -13.2
NPR [46] 57.9 57.9 41.6 41.9 -28.1 -27.6
FreqDetect [15] 49.9 50.6 50.0 51.0 0.2 0.7
Rine [31] 53.5 54.9 54.9 56.0 2.6 2.0
CNNDetect [48] 58.9 62.8 56.7 58.5 -3.8 -6.9
Fusing [25] 59.7 62.3 57.6 58.6 -3.5 -6.0
Dire [49] 50.1 65.5 50.0 68.6 -0.3 4.8
PatchCraft [53] 71.2 75.9 69.8 73.7 -2.0 -3.0
LGrad [47] 70.1 75.0 70.1 74.2 0.1 -1.0
DIMD [8] 75.0 82.8 73.6 79.1 -1.8 -4.5
DeFake [44] 73.2 79.4 73.7 80.4 0.7 1.3

Overall -5.4 -6.0

there is a performance drop, ranging in relative values from −0.3% to −28.1% in
the case of BA and from −1% to −27.6% in the case of AUC. Instead, the gains
for the four remaining models range from 0.1% to 2.6% for BA and from 0.7%
to 4.8% for AUC. Overall, there is an average performance drop across all de-
tectors of −5.4% and −6.0%, and a drop of −1.7% and −2.9% between the best
detector on all and only the basic samples, for the metrics of BA and AUC re-
spectively. We attribute this drop to the fact that many detectors are sensitive to
the non-trivial post-processing operations applied to the non-basic images, and
thus detect these later manipulations, instead of the primary synthetic image
signal.

4.8 Detection performance throughout the online lifespan of images

In this experiment we attempt to answer how the evolution of the copies of a
synthetic image with respect to the time elapsed since its first online appearance
affects SID performance. To this end, we split each of the time-sorted subsets
of FOSID originating from a different seed image into quarters and measure the
performance difference between the first (Q1) and fourth quarter (Q4) images.
We use the basic images to align as much as possible with the training data of
the detectors. We report the BA computed over the EER threshold and the AUC
metrics in Tab. 6. In the majority of detectors there is a relative performance
drop ranging between −0.9% and −15.2% and between −0.9% and −12.5% for
the AUC and BA metrics respectively. Overall, we note an average performance
drop of −3.2% and −2.6% in the same metrics. 9 of the 12 methods present a
drop in ACC (including one which was already at random-like accuracy), and 10
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Table 6: Evaluation over the online lifespan of images. BA computed using the EER
threshold and the AUC metrics are reported. The presented scores are averaged over
the four main subsets of FOSID and over five datasets of real images.

Approach Q1 Q4 Diff. (%)

ACC AUC ACC AUC ACC AUC

GramNet [37] 21.5 17.6 21.3 17.4 -0.9 -1.1
UnivFD [38] 42.4 42.6 41.4 42.2 -2.5 -0.9
FreqDetect [15] 55.1 56.5 48.2 47.9 -12.5 -15.2
PatchCraft [53] 56.0 57.3 53.0 54.5 -5.3 -4.9
NPR [46] 57.6 58.7 57.8 57.8 0.2 -1.6
Fusing [25] 59.0 61.3 58.2 59.9 -1.3 -2.3
CNNDetect [48] 60.0 62.9 56.5 59.3 -5.9 -5.7
Dire [49] 50.0 68.3 50.0 65.4 0.0 -4.2
LGrad [47] 70.4 74.8 72.1 76.7 2.5 2.6
Rine [31] 71.8 76.0 71.0 75.3 -1.2 -0.9
DeFake [44] 72.7 78.8 72.9 79.9 0.2 1.4
DIMD [8] 78.2 84.4 74.3 80.2 -5.0 -5.0

Overall -2.6 -3.2

of them a drop in AUC. Thus, we see that the accumulation of post-processing
operations into the subsequent copies of a synthetic image shared online, degrade
the ability of the state-of-the-art detectors to distinguish them from real images,
even though those post-processing operations are mostly invisible in the case of
basic images that we examine.

4.9 Retrieval-assisted detection of synthetic images

To recover the performance drop that occurs as the time since the initial online
appearance of a synthetic image increases, we introduce the concept of Retrieval
Assisted Synthetic Image Detection (RASID). In particular, we employ the DnS
[30] architecture, proposed for near-duplicate media retrieval, to create an index
of all images submitted to the detection system. Then, for images submitted to
the system after the Q1 range, instead of directly using the scores produced by
the detectors, we query the retrieval system with the submitted image to return
all near-duplicate images submitted throughout Q1. If such images exist in the
index, the mean of their detection scores with respect to each detection approach
is used. Otherwise, the direct output of the detector is used. The empirically
selected similarity threshold of 0.7 is used to classify the images retrieved by
DnS as near-duplicates of the query one.

To better align with the training data of the detectors, we evaluate the RASID
approach using the basic images of FOSID. In Tab. 7 we report the BA computed
over the EER threshold and the AUC metrics for both the cases when directly
considering the output of a detector and when applying the RASID approach.
We show that the later improves SID performance across all the detectors by
6.7% and 7.8% on the BA and AUC metrics respectively.
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Table 7: Evaluation of RASID. BA computed using the EER threshold and the AUC
metrics are reported. The presented scores are averaged over the four main subsets of
FOSID and over five datasets of real images.

Approach Direct Det. RASID Diff. (%)

ACC AUC ACC AUC ACC AUC

GramNet [37] 20.3 15.6 21.8 17.5 7.0 13.0
UnivFD [38] 37.4 37.0 41.0 41.7 10.0 13.0
FreqDetect [15] 50.0 51.0 52.2 53.6 4.0 5.0
PatchCraft [53] 54.9 56.0 55.6 56.6 1.0 1.0
NPR [46] 41.6 41.9 57.5 58.4 38.0 39.0
Fusing [25] 57.6 58.6 60.2 61.9 4.0 6.0
CNNDetect [48] 56.7 58.5 59.3 62.3 5.0 7.0
Dire [49] 50.0 68.6 50.0 67.6 0.0 -2.0
LGrad [47] 70.1 74.2 71.3 75.7 2.0 2.0
Rine [31] 69.8 73.7 73.2 77.1 5.0 5.0
DeFake [44] 73.7 80.4 72.9 79.5 -1.0 -1.0
DIMD [8] 73.6 79.1 77.6 83.6 5.0 6.0

Overall 6.7 7.8

5 Conclusion

We analyzed for the first time the performance of SID approaches on actual
online misinformation cases of synthetic images. In our study, we found that
the current state-of-the-art detectors fail to discriminate between real and syn-
thetic images that circulate online, thus indicating that the unconditional in the
wild detection of deceiving synthetic images is not yet reliably addressed. Fur-
thermore, we found that neither the calibration of a threshold, nor the visual
alignment of online images with the ones considered during the training of the
detectors is sufficient to improve SID performance. This highlights the need for
further exploration in the direction of capturing artifacts that are robust to deep
chains of post-processing operations that are commonly encountered in online
images. Furthermore, we presented that as the time since the initial sharing of a
synthetic image passes, the accumulation of post-processing operations degrades
the ability to detect its subsequent copies. Using a retrieval-assisted detection
pipeline, we showed that it is feasible to maintain consistent SID performance
for the entire online lifespan of an image. This indicates that the effective com-
bination of SID and image retrieval approaches constitutes a promising research
direction, since the later primarily rely on image content, and thus, are expected
to be less susceptible to complex post-processing operations.

Acknowledgments: This work has received funding by the European Union
under the Horizon Europe vera.ai project, grant agreement number 101070093.
It has also received funding by the ANR under the APATE project, grant number
ANR-22-CE39-0016.
Centre Borelli is also a member of Université Paris Cité, SSA and INSERM.



Evolution of Synthetic Image Detection Performance 15

References

1. Akhtar, Z.: Deepfakes generation and detection: a short survey. Journal of Imaging
9(1), 18 (2023)

2. Asnani, V., Yin, X., Hassner, T., Liu, X.: Reverse engineering of generative models:
Inferring model hyperparameters from generated images. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2023)

3. Bammey, Q.: Synthbuster: Towards detection of diffusion model generated images.
IEEE Open Journal of Signal Processing (2023)

4. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. In: International Conference on Learning Representations
(2018)

5. Cazenavette, G., Sud, A., Leung, T., Usman, B.: Fakeinversion: Learning to detect
images from unseen text-to-image models by inverting stable diffusion. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 10759–10769 (2024)

6. Chen, Y., Zou, J.Y.: Twigma: A dataset of ai-generated images with metadata
from twitter. Advances in Neural Information Processing Systems 36 (2024)

7. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: Unified gener-
ative adversarial networks for multi-domain image-to-image translation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
8789–8797 (2018)

8. Corvi, R., Cozzolino, D., Zingarini, G., Poggi, G., Nagano, K., Verdoliva, L.: On
the detection of synthetic images generated by diffusion models. In: ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 1–5. IEEE (2023)

9. Cozzolino, D., Poggi, G., Corvi, R., Nießner, M., Verdoliva, L.: Raising the bar of ai-
generated image detection with clip. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 4356–4366 (2024)

10. Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion models in vision:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(9),
10850–10869 (2023)

11. Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: Raise: A raw images
dataset for digital image forensics. In: Proceedings of the 6th ACM multimedia
systems conference. pp. 219–224 (2015)

12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

13. Dufour, N., Pathak, A., Samangouei, P., Hariri, N., Deshetti, S., Dudfield, A.,
Guess, C., Escayola, P.H., Tran, B., Babakar, M., et al.: Ammeba: A large-scale
survey and dataset of media-based misinformation in-the-wild. arXiv preprint
arXiv:2405.11697 (2024)

14. Everaert, M.N., Bocchio, M., Arpa, S., Süsstrunk, S., Achanta, R.: Diffusion in
style. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 2251–2261 (October 2023)

15. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leverag-
ing frequency analysis for deep fake image recognition. In: International conference
on machine learning. pp. 3247–3258. PMLR (2020)

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014)



16 D. Karageorgiou et al.

17. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020)

18. Google: Google fact check tools (2024), https://newsinitiative.withgoogle.
com/id/resources/trainings/google-fact-check-tools/, accessed 4th Jul.
2024

19. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recur-
rent neural network for image generation. In: International conference on machine
learning. pp. 1462–1471. PMLR (2015)

20. Guillaro, F., Cozzolino, D., Sud, A., Dufour, N., Verdoliva, L.: Trufor: Leveraging
all-round clues for trustworthy image forgery detection and localization. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 20606–20615 (2023)

21. Guo, X., Liu, X., Ren, Z., Grosz, S., Masi, I., Liu, X.: Hierarchical fine-grained
image forgery detection and localization. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 3155–3165 (2023)

22. Hadwiger, B., Riess, C.: The forchheim image database for camera identification in
the wild. In: Pattern Recognition. ICPR International Workshops and Challenges:
Virtual Event, January 10–15, 2021, Proceedings, Part VI. pp. 500–515. Springer
(2021)

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

24. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

25. Ju, Y., Jia, S., Ke, L., Xue, H., Nagano, K., Lyu, S.: Fusing global and local
features for generalized ai-synthesized image detection. In: 2022 IEEE International
Conference on Image Processing (ICIP). pp. 3465–3469. IEEE (2022)

26. Kang, M., Zhu, J.Y., Zhang, R., Park, J., Shechtman, E., Paris, S., Park, T.: Scaling
up gans for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10124–10134 (2023)

27. Karageorgiou, D., Kordopatis-Zilos, G., Papadopoulos, S.: Fusion transformer with
object mask guidance for image forgery analysis. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4345–4355 (2024)

28. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: International Conference on Learning
Representations (2018)

29. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 4401–4410 (2019)

30. Kordopatis-Zilos, G., Tzelepis, C., Papadopoulos, S., Kompatsiaris, I., Patras, I.:
Dns: Distill-and-select for efficient and accurate video indexing and retrieval. In-
ternational Journal of Computer Vision 130(10), 2385–2407 (2022)

31. Koutlis, C., Papadopoulos, S.: Leveraging representations from intermediate
encoder-blocks for synthetic image detection. arXiv preprint arXiv:2402.19091
(2024)

32. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Ka-
mali, S., Popov, S., Malloci, M., Kolesnikov, A., et al.: The open images dataset
v4: Unified image classification, object detection, and visual relationship detection
at scale. International journal of computer vision 128(7), 1956–1981 (2020)

https://newsinitiative.withgoogle.com/id/resources/trainings/google-fact-check-tools/
https://newsinitiative.withgoogle.com/id/resources/trainings/google-fact-check-tools/


Evolution of Synthetic Image Detection Performance 17

33. Kwon, M.J., Nam, S.H., Yu, I.J., Lee, H.K., Kim, C.: Learning jpeg compression
artifacts for image manipulation detection and localization. International Journal
of Computer Vision 130(8), 1875–1895 (2022)

34. Li, Y., Bammey, Q., Gardella, M., Nikoukhah, T., Morel, J.M., Colom, M.,
Von Gioi, R.G.: Masksim: Detection of synthetic images by masked spectrum simi-
larity analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 3855–3865 (2024)

35. Lin, L., Gupta, N., Zhang, Y., Ren, H., Liu, C.H., Ding, F., Wang, X., Li, X.,
Verdoliva, L., Hu, S.: Detecting multimedia generated by large ai models: A survey.
arXiv preprint arXiv:2402.00045 (2024)

36. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

37. Liu, Z., Qi, X., Torr, P.H.: Global texture enhancement for fake face detection in
the wild. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 8060–8069 (2020)

38. Ojha, U., Li, Y., Lee, Y.J.: Towards universal fake image detectors that gener-
alize across generative models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 24480–24489 (2023)

39. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with
spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 2337–2346 (2019)

40. Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna,
J., Rombach, R.: Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952 (2023)

41. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

42. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

43. Schinas, M., Papadopoulos, S.: Sidbench: A python framework for reliably assessing
synthetic image detection methods. arXiv preprint arXiv:2404.18552 (2024)

44. Sha, Z., Li, Z., Yu, N., Zhang, Y.: De-fake: Detection and attribution of fake images
generated by text-to-image generation models. In: Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. pp. 3418–3432
(2023)

45. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: International conference
on machine learning. pp. 2256–2265. PMLR (2015)

46. Tan, C., Zhao, Y., Wei, S., Gu, G., Liu, P., Wei, Y.: Rethinking the up-sampling
operations in cnn-based generative network for generalizable deepfake detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 28130–28139 (2024)

47. Tan, C., Zhao, Y., Wei, S., Gu, G., Wei, Y.: Learning on gradients: Generalized
artifacts representation for gan-generated images detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12105–
12114 (2023)



18 D. Karageorgiou et al.

48. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: Cnn-generated images
are surprisingly easy to spot... for now. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. pp. 8695–8704 (2020)

49. Wang, Z., Bao, J., Zhou, W., Wang, W., Hu, H., Chen, H., Li, H.: Dire for diffusion-
generated image detection. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 22445–22455 (2023)

50. Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: Diffu-
siondb: A large-scale prompt gallery dataset for text-to-image generative models.
arXiv preprint arXiv:2210.14896 (2022)

51. Zhang, C., Zhang, C., Zhang, M., Kweon, I.S.: Text-to-image diffusion models in
generative ai: A survey. arXiv preprint arXiv:2303.07909 (2023)

52. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 3836–3847 (2023)

53. Zhong, N., Xu, Y., Qian, Z., Zhang, X.: Patchcraft: Exploring texture patch for
efficient ai-generated image detection. arXiv preprint arXiv:2311.12397 (2023)

54. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2223–2232 (2017)

55. Zhu, M., Chen, H., Yan, Q., Huang, X., Lin, G., Li, W., Tu, Z., Hu, H., Hu, J.,
Wang, Y.: Genimage: A million-scale benchmark for detecting ai-generated image.
Advances in Neural Information Processing Systems 36 (2023)


	Evolution of Detection Performance throughout the Online Lifespan of Synthetic Images

