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Abstract

Unsupervised and zero-shot Named Entity Recognition
(NER) aims to extract and classify entities in documents
from a target domain without annotated data. This setting
is particularly relevant for specific domains (biomedical,
legal, scientific, ...) where labeled documents are scarce
and expensive to create. While zero-shot NER approaches
yield impressive outcomes, they operate under the assump-
tion that all entity types are predefined and known. This
limitation makes their application impossible in novelty
detection, exploration, or knowledge graph construction
scenarios.

To address this shortcoming, we introduce OWNER,
our unsupervised and open-world NER model, which does
not need annotations in the target domain (similar to zero-
shot) and does not require knowledge of the target entity
types or their number. We propose a novel triangular
architecture to type and structure entities automatically. It
comprises a prompt-based entity type encoder, an unsuper-
vised clustering model, and embedding refinement with
contrastive learning to refine entity embeddings and elicit
entity types more precisely. Results on 13 domain-specific
datasets show that OWNER outperforms open-world large
language model prompting (4 % – 18 % in AMI) and per-
forms competitively with state-of-the-art zero-shot models.
Qualitative analysis shows that OWNER effectively groups
entities into semantically meaningful clusters that closely
resemble actual entity types (without knowing them before-
hand). The source code of OWNER is publicly available
at https://github.com/alteca/OWNER.

Keywords— Named entity recognition, open information
extraction, open-world named entity recognition, unsupervised
named entity recognition.

1 Introduction
Named Entity Recognition (NER) is a fundamental NLP task that
aims to identify entities in text and classify them into entity types.
Historically, NER has primarily been approached as a supervised
task, [74, 91], which presents challenges in specific domains
(e.g., scientific, biomedical) where large labeled corpora may not
be readily available. As a consequence, interest in low-resource
and few-shot NER has risen [45, 78, 23], especially since the
emergence of Encoder-only Language Models (EncLM) such as
BERT [16]. However, these approaches still require annotated
documents.

Zero-shot NER aims to alleviate this constraint. Recent
models typically transfer knowledge from a source domain D𝑆

to a target domain D𝑇 where no annotated data is available
[57, 92]. Although they do not require labels inD𝑇 , they assume
a closed-world hypothesis, where entity types are known in
advance. This is particularly problematic for tasks such as
knowledge graph construction that require novelty detection.
On a specific domain, an expert user can define the structure of
information (entity types) he is interested in extracting. However,
being exhaustive in this scheme identification and structuration
process is difficult, if not impossible. This incompleteness
would result in missing meaningful and valuable entities not
initially envisioned.

The solution to these issues — 1) lack of annotations in
specific domains, and 2) closed-world — is unsupervised and
open-world1 NER. Our literature review shows, however, that
this setting has been little studied compared to closed-world
NER. To the best of our knowledge, the last research work dates
back to 2020 [48] and is not reproducible (lack of source code
and implementation details). Therefore, this article aims to re-
explore this setting in light of the recent advancements in NLP.
We present OWNER, our “Unsupervised Open-World Named
Entity Recognition” model. OWNER is unsupervised and
open-world: it infers and structures entities into non-predefined
entity types. OWNER uses annotated data from D𝑆 , which
can be manually or automatically annotated documents, to

1Unsupervision implies an open-world setting as no prior knowledge
(including entity types) is given to the model. In this article, when we
employ the adjective “unsupervised,” we implicate “open-world” as
well.
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learn named entity recognition and transfer it to D𝑇 , where
no annotated document is available. We split NER into two
subtasks: mention detection (locating entities) and entity typing
(typing the extracted entities). For mention detection, we
implement a simple BIO sequence labeling NER (see Sect. 2),
expecting it to better generalize on specific domains than more
complex architectures [23]2. For entity typing, we employ
EncLM (e.g., BERT [16]) prompting and clustering, which
allow us to organize unseen entity types. In particular, we
propose a heuristic to fasten the estimation of the number
of clusters. We also implement an embedding refinement
approach based on contrastive learning to isolate entity types
more effectively in D𝑇 . This simple yet innovative architecture
empirically outperforms LLM-based (Large Language Model)
open-world NER and is competitive with closed-world zero-
shot models. We expect it to be a strong benchmark for future
unsupervised and open-world NER research. To summarize our
main contributions:

• We propose OWNER, an unsupervised and open-world
NER model that extracts and classifies entities from a
target domainD𝑇 1) without annotations inD𝑇 , 2) without
knowing the target entity types T𝑇 , nor 3) their number
|T𝑇 |.

• To type entities, we propose a novel architecture with 1)
prompt-based entity encoding, 2) unsupervised clustering
to classify entities into entity types, and 3) contrastive
learning to elicit entity types more precisely.

• Experimental results on 13 domain-specific datasets show
that OWNER surpasses LLM-based open-world NER
and performs comparably to state-of-the-art closed-world
zero-shot models.

• Qualitative analysis highlights that OWNER structures
entities in semantically coherent clusters close to true
entity types.

2 Related Work
Before starting this section, we clarify the mathematical nota-
tions. NER analyses documents 𝑿 = [𝑥0, 𝑥1, ...𝑥 |𝑿 |−1]. 𝑥𝑖 ∈ 𝑿
is a token3. The objective is to extract entities 𝒆 = [𝑥𝑖 , ..., 𝑥 𝑗 ]
and classify their entity type 𝑡. The set of entity types is
denoted T . We assume access to labeled documents from a
source domain D𝑆 (with its set of entity types T𝑆) and try to
generalize to a target domain D𝑇 (associated with the entity
types T𝑇 ) where annotated data is absent. Closed-world models
need to know T𝑇 (number, names, and sometimes descriptions),
whereas open-world methods such as OWNER cannot access it.

2.1 Few-Shot & Zero-Shot NER (Closed-World)
As a reminder, few-shot and zero-shot models suppose knowing
the target entity types list T𝑇 beforehand. Most approaches
assume the availability of labeled data in a source domain
D𝑆 and try to learn from D𝑆 and transfer to D𝑇 . D𝑆 and
D𝑇 differ stylistically (type of text), semantically (topic), or

2Experimental results confirm this hypothesis (see Sect. 5.3).
3Word, part of a word, or punctuation as defined by SentencePiece

[39].

from the entity-type perspective (T𝑆 ≠ T𝑇 ). D𝑆 can be a
manually annotated dataset [23, 64], a distantly labeled dataset
[68], or a synthetically generated dataset [55, 92, 86]. Recent
approaches are divided into two families: 1) two-stage NER,
and 2) one-stage or integrated NER.

Two-stage approaches split NER into Mention Detection
(MD) and Entity Typing (ET) [88, 23, 49]. MD aims to identify
spans of 𝑿 that are entities, and ET classifies the type of
each extracted entity. Integrated models combine MD and ET
in one step, the motivation being to reduce cascading errors
[14, 68, 31, 92, 64]. In practice, both paradigms attain state-of-
the-art results [23, 14]. Until recently, most approaches relied
on Encoder-only Language Models (EncLM), such as BERT
[16]. We see now the rising use of Large Language Models
(LLM) in these two low-resource settings [92, 64], where LLMs
are shown to shine [3].

Mention Detection (MD) Few-shot and zero-shot ap-
proaches follow architectures similar to supervised models for
MD. They usually implement span-based extractors [78, 20, 86],
although BIO sequence labeling is still used [23, 49]. These ex-
tractors are trained in a supervised fashion on D𝑆 entities. The
challenge involves transferring the learned patterns from D𝑆 to
D𝑇 entities. BIO sequence labeling classifies each token 𝑥 in 𝑿
as either B (first token of an entity), I (second or following token
of an entity), or O (not an entity). A decoding algorithm then
reconstructs the entity’s boundaries using the predicted classes.
Greedy algorithms are used, especially with recent language
models [23]. Conditional random fields [25] are extensively
employed to improve decoding. The main weakness of BIO is
that it cannot predict nested entities. This is the main motivation
for span-based extractors.

In general, span-based extractors score each possible span in
𝑿 and determine the true entities [91, 78]. To do that, they com-
pute start of span and end of span vector representations (usually
embeddings of the first and last tokens of the candidate span).
Zhong et al. [91] concatenate the start and end embeddings
and use them in a perceptron that scores the candidate span.
Wang et al. [78] use bilinear layers to replace the perceptron,
allowing more efficient computations compared to Zhong et al.
[91]. Span-based approaches suffer from the quadratic number
of possible spans, making scoring the candidate spans expen-
sive for long documents. Dobrovolskii [19] tries to overcome
this problem with a hybrid approach. First, each word in 𝑿
is classified as an entity head or not. An entity head is the
main word of an entity; Dobrovolskii considers the head to be
the root of the syntactic subtree of the entity. This ingenuity
allows him to lower the quadratic span complexity to a linear
(word) complexity. Once the entity heads are identified, the
boundaries of each entity are determined using a convolutional
neural network. Finally, Zaratiana et al. [85] propose to adapt
conditional random fields for span-based extractors to enforce
non-overlapping spans.

Entity Typing (ET) The general principle is to compute
a vector representation of the extracted entities (entity embed-
dings) and compare them to those of the exemplars (few-shot)
or the target entity types (zero-shot and few-shot). Zhang et al.
[88] propose to use the k-nearest neighbors with the few-shot
exemplars to identify the type. Prototypical networks [70]
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are generally preferred to classify entities [78, 23, 20]. The
entity-type prototypes are computed using the exemplars.

Entity embeddings are computed by aggregating the EncLM
embeddings of the individual tokens composing the entity in the
case of a BIO extractor [23] or by using the span representation
constructed by the span extractor [78]. Shen et al. [68] and
Ding et al. [17] explore prompting techniques with EncLM
(using the [MASK] token) to generate entity embeddings.

Meta-learning [24] is employed to enhance the efficacy of
transfer learning [49]. The idea is to generate large amounts
of few-shot episodes using the annotated data of D𝑆; each
episode contains a subset of T𝑆 , randomly selected few-shot
exemplars associated to T𝑆 , and test documents to compute the
performance. Then, the model is trained on the episodes to
achieve the best transfer in the smallest fine-tuning steps possible
(hence the meta-learning term). This allows fine-tuning even
on the limited few-shot exemplars, as the model is adapted to
converge quickly and reliably.

Finally, Liu et al.[45] and Mahapatra et al. [51] explore
the effectiveness of adapting EncLM embeddings to the target
domain. They employ large amounts of unannotated documents
of D𝑇 and fine-tune BERT weights using a masked language
modeling task. Empirically, they observe a link between a
decrease in perplexity and an increase in NER performances.
Mahapatra et al. [51] decrease the training time required for
domain adaptation by filtering the unannotated documents of
D𝑇 to keep those more aligned to the actual documents where
entities are to be extracted.

Large Language Models Recently, LLMs [81, 75] have
been successfully applied to few-shot and zero-shot NER and
have state-of-the-art results on the zero-shot setting.

First, “raw” prompting obtains impressive results compared
to previous works [79, 84, 82]. Wang et al. [79] and Ye et al.
[84] require few-shot exemplars to specify the output format.
Wei et al. [82] (ChatIE) propose a multi-turn framework that
works in a zero-shot setting (without the need for exemplars).
Surprisingly, they reverse the usual MD and ET steps order.
Indeed, they first ask the LLM which entity types are present
in the document (given a predefined list of entity types). In
subsequent turns, they ask the LLM about the entities associated
with each entity type. Xie et al. [83] propose to generate few-
shot instances using GPT-3.5 [54] automatically and refine
them with an ensemble method (multiple generations with
temperature and a voting system to gather entity predictions).
They empirically observe that these automatically generated
few-shot instances significantly improve zero-shot performance.
The weakness of their works [83, 82] is the multiple turns
required to analyze a document, which are expensive and slow
when using the APIs of the largest LLMs.

Sainz et al. [64], Zhou et al. [92], and Wang et al. [80]
explore the idea of fine-tuning small LLMs [75, 6, 35] on
manually or synthetically labeled datasets. In doing so, they
create NER-specialized LLMs with better performances than
generalist LLMs while being much smaller. Zhou et al. [92]
propose to annotate documents from the Pile corpus [26] using
GPT-3.5 (they call this dataset Pile-NER) and fine-tune Vicuna
[6] on it. Their UniNER model achieves better performances
than GPT-3.5 in a zero-shot context. Additionally, fine-tuning
using a large amount of synthetic data allows them to specify a

custom JSON format that UniNER follows reliably. GoLLIE
[64] uses Code-Llama [63] as its backbone and is fine-tuned
on manually labeled datasets from the news and biomedical
domains. Sainz et al. [64] and Li et al. [41] follow a “Python
class” scheme, where each entity type is specified as a Python
class with a name, a description, and a few examples. They find
empirically that description and exemplars metadata positively
impact GoLLIE and KnowCoder performances.

Regarding the prediction format, most of the approaches
follow a surface form extraction scheme [84, 82, 92, 64], except
GPT-NER [79]. The models output only the entity text, and a
subsequent algorithm is required to localize the entity in the
document. The output format is generally JSON, but Sainz
et al. [64] use Python code, allowing them to add metadata
elegantly in comments (description and exemplars). GPT-NER
[79] proposes a sequence labeling scheme. It asks the LLM to
repeat the input document, with a special markup delimiting
the boundaries of entities: @@ as the opening tag and ## as the
closing tag. This format removes the dependency on a decoding
algorithm, as the detected entities are localized in the document
by design. However, it is incompatible with a zero-shot setting,
as in-context exemplars are required to describe the output
format.

Finally, Zaratiana et al. [86] (GliNER), and Ding et al. [18]
(GNER) fine-tune EncLM embeddings (DeBERTa v3 [30]) or
full transformers (Flan-T5 [8]) on the GPT-3.5 generated anno-
tations of Pile-NER [92]. In particular, GliNER implements
a span-based extractor for MD coupled with a method similar
to prototypical networks for ET. They obtain very competitive
results compared to the much larger fine-tuned LLMs UniNER
[92] and GoLLIE [64]. Today, this model represents an inter-
esting balance between the flexibility of LLM-based zero-shot
NER and the relatively small number of parameters of EncLM
embeddings.

2.2 Unsupervised and Open-World NER
Most Unsupervised Models are not Open-World In
theory, unsupervised models are open-world, given that the
absence of annotated data implies auto-structuration and type
discovery techniques (e.g., clustering). However, this is not
always the case. Historically, unsupervised NER implemented
rules and patterns-based models [11, 52]. They were specific to
a small set of entity types, hindering the discovery of unspecified
types. In fact, the most recent unsupervised NERs suffer from
the same problem and require prior knowledge of the target
entity types [34, 44, 57, 33]. Formally, they are zero-shot
models (as they require the specification of entity types) and
not unsupervised approaches.

Jia et al. [34], Liu et al. [44], and Peng et al. [57] propose
to generalize the transfer-learning from D𝑆 to D𝑇 setting used
in the zero-shot setting. They train entity-type-specific models
based on BERT embeddings, which are merged together in a
mixture of experts. They must know the target entity types
beforehand and need access to labels for each entity type
(from a different domain, but still annotations). CycleNER
[33] proposes a seq-to-seq model with a double translation
mechanism between text and entities. It comprises two models:
S2E translating the document into its list of entities and E2S
generating the text from a list of entities. The two models are
trained jointly, and S2E is kept for predictions. CycleNER also
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must know the target entity types in advance and requires lists
of entities from D𝑇 .

“True” Unsupervised and Open-World NER To the
best of our knowledge, only UNER [48] is compatible with true
unsupervised and open-world scenarios. UNER uses clustering
for MD and employs self-learning with auto-encoders for ET.
However, UNER is subject to drifting (as it relies on self-
learning) and requires careful hyperparameter tuning (number
of training steps, learning rate, etc.) to prevent catastrophic
performance drops. Unfortunately, UNER lacks source code
and a detailed explanation of how these hyperparameters are
adjusted unsupervised. It makes their results unreproducible.

As an aside, it is interesting to notice that the related domains
of unsupervised and few-shot relation extraction also suffer
from the hyperparameter tuning critique [58, 27]. They rely on
training procedures (e.g., self-learning) sensitive to hyperparam-
eter values that cannot be adjusted without accessing labeled
data.

Can Zero-Shot Models Be Directly Translated to an
Open-World Setting? The zero-shot and unsupervised
settings are very similar, not needing annotated data in D𝑇 ; the
only difference is specifying entity types beforehand (zero-shot)
or automatically discovering them (unsupervised, open-world).
At first glance, the reader may think that zero-shot approaches
can be easily translated to an open-world setting. But the truth
is more complex. As presented in Sect. 2.1, we can divide
zero-shot approaches into fine-tuned models (EncLM or LLMs)
and frozen LLM prompting.

Fine-tuned approaches (based on EncLMs [86], full trans-
formers [18] or LLMs [92]) all require the specification of an
entity types schema beforehand, which is heavily employed
during their training procedure. For instance, Ding et al. [18]
or Lou et al. [47] experimentally observe that negative sam-
pling (i.e., specifying entity types not mentioned in the current
document) is a key to attaining state-of-the-art performances.
However, if entity types are not specified (open-world), it is
impossible to replicate such a training procedure, and the main
contribution of these methods is lost. Similarly, Zaratiana et al.
[86] require the list of predefined entity types in input as they are
using the embeddings of the entity type names for their predic-
tion. Older prototype-based or nearest-neighbor-based models
are also not translatable, as they require labels to construct the
prototypes or propagate the classes step by step. This category
of models is not easily generalizable to an open-world setting,
as removing the dependency on predefined entity types implies
the definition of new input formats or training procedures.

Prompting of frozen LLMs [82, 83] is easier to adapt, as it
necessitates adjusting the prompt to remove the dependency
on pre-specified entity types (see Sect. 4.1). However, the
impact on performances of un-specifying entity types from the
prompt remains unevaluated, and we expect a performance drop
compared to zero-shot prompting.

3 Description of OWNER
OWNER aims to extract and type entities from documents 𝑿 of
D𝑇 in an unsupervised and open-world setting. Given 𝑿, the
objective is to identify the spans 𝒆 = [𝑥𝑖 , ..., 𝑥 𝑗 ] ∈ 𝑿 that are

entities, and classify the type 𝑡 for each 𝒆. OWNER assumes no
prior knowledge of D𝑇 . It does not have access to:

• annotated documents of D𝑇 ,

• the set of entity types T𝑇 ,

• the number of entity types |T𝑇 |.

Similarly to recent zero-shot and few-shot models [86, 92, 68],
OWNER is built upon a cross-domain transfer-learning scheme.
The general idea is to learn the NER task on a source domain
D𝑆 , where annotated data is available, and transfer it to D𝑇 .
D𝑆 differs from D𝑇 stylistically, semantically, and/or from the
entity type perspective (T𝑆 ≠ T𝑇 ). We go beyond zero-shot and
few-shot approaches by not predefining T𝑇 .

As shown in Fig. 1, OWNER follows a two-step process,
with:

1. Mention Detection (MD). It identifies the spans 𝒆 of 𝑿
that are entities.

2. Entity Typing (ET). It classifies the type 𝑡 for each extracted
entity. In practice, OWNER finds clusters of entities with
the same type 𝑡.

3.1 Mention Detection (MD)
MD identifies entities 𝒆 for a given document 𝑿.

As we have presented in the previous section, two main
prediction paradigms exist for MD: BIO sequence labeling
extractors [78, 20, 86], and span-based extractors [23, 49]. In
general, span-based extractors achieve slightly better results
than BIO models in supervised and low-resource settings [91,
86]. We choose to formulate MD as a BIO sequence labeling,
classifying each 𝑥𝑖 ∈ 𝑿 as B (first token of an entity), I (second
or following token of an entity), or O (not an entity). We employ
a BIO extractor due to its lower expressivity and complexity than
span-based models, expecting it to lead to better generalizability
on unseen domains and new entity types [23].

We employ EncLM embeddings, coming from pre-trained
language models such as BERT [16], combined with a linear
classifier:

fMD (𝑥𝑖 , 𝑿) = 𝜎(EncLM(𝑥𝑖 , 𝑿)𝑾 + 𝒃), (1)

where 𝑾 and 𝒃 are learned weights, EncLM(𝑥𝑖 , 𝑿) is the
EncLM embedding of 𝑥𝑖 in the context of 𝑿, and 𝜎 is the
softmax function. fMD is fine-tuned (EncLM weights, 𝑾 and
𝒃) on annotated documents from D𝑆 .

In fact, MD is the primary motivation for annotated data.
Indeed, the only MD model that works without labels relies on
self-learning [48]. Yet, self-learning is known to be subject to
drifting when overtrained. Preventing drifting requires careful
hyperparameter tuning (especially the number of training steps
and the learning rate). Luo et al. [48] do not explain how to
adjust them without external annotated 𝑿 from D𝑇 . As a result,
we propose to use annotated documents from D𝑆 to train MD in
a supervised fashion (but cross-domain) to diminish the risk of
unstable results. As a side note, annotations for D𝑆 may come
from manually labeled datasets, distantly annotated datasets
[68], or synthetically generated data [92]. In this article, we
train OWNER on manually labeled and synthetically generated
datasets (see Sect. 5.2).

4



theory
enzyme

protein

Mention Detection (MD) Entity Typing (ET)

T

(Science)

S

(News)

fMD = BIO Classifier

e1 GβγB

e2 ironB 

channelsI

e3 GIRKsB

Cross-Domain 

Training

X = The primary effectors of 

Gβγ are various iron channels, 

such as GIRKs.

Entity Encoder

(e1, X) = {X} {e1} is a [MASK].

 = The primary effectors of Gβγ … 

as GIRKs. Gβγ is a [MASK].

fET = EncLM([MASK], (e1, X))
k-means + BIC

Entity Clustering

Bre-XB hasO aO partnershipO 

withO PTB PanutanI DutaI …

e1 Bre-X (ORG)

e2 PT Panutan Duta (PER)

e3 Panutan Group (ORG)

Contrastive Learning

Cross-Domain Fine-Tuning

Embedding Refinement

Figure 1: Overall architecture of OWNER.

3.2 Entity Typing (ET)
ET classifies the entities previously extracted with MD. In an
unsupervised setting, the objective is to group entities with the
same entity type 𝑡 ∈ T𝑇 . As shown in Fig. 1, ET comprises three
modules. They employ well-established technologies that have
proven useful for NER, such as EncLM prompting, clustering,
or contrastive learning [7]. To our knowledge, they have never
been combined together4, and this is their combination that
enables open-world and unsupervised entity typing.

3.2.1 Entity Encoder
The first module of ET is the entity encoder, which computes
a vector representation (or entity embedding) of the current
entity. We want this embedding to represent the entity type:
two entities 𝒆1 and 𝒆2 with close embeddings should have the
same type 𝑡. Conversely, two entities with different 𝑡1 and 𝑡2
should have remote entity embeddings. To encode entities, we
propose to use EncLM prompting [12, 27]. A prompt P is a
text containing one [MASK] token, which the EncLM encodes.
[MASK] indicates that the token is unknown, and the EncLM
will compute an embedding representative of the missing word.
By carefully designing P, we can “ask” the EncLM the type 𝑡 of
the current entity and use the [MASK] embedding as our entity
embedding. The formulation of P is important for prompting
performance and is usually adjusted using labels of D𝑇 [69].
In our unsupervised setting, we decide not to tune it and choose
the simplest template possible:

P(𝒆, 𝑿) = “{𝑿} {𝒆} is a [MASK].”. (2)

For instance (also shown in Fig. 1):

𝑿 = “The primary effectors of Gβγ are various iron
channels, such as GIRKs.”,

𝒆 = “Gβγ”,
P(𝒆, 𝑿) = “The primary effectors of Gβγ are various iron

channels, such as GIRKs. Gβγ is a [MASK].”

The entity representation is then computed as the embedding
of [MASK] in the context of the prompt P(𝒆, 𝑿):

fET (𝒆, 𝑿) = EncLM([MASK],P(𝒆, 𝑿)). (3)

4UNER [48] employs a very different auto-encoder approach for
ET.

The choice of EncLM embeddings instead of LLM or full-
transformers embeddings is motivated by two reasons. First,
it allows us to define a fill-in-the-blank task that forces the
model to predict precisely one word, most probably describing
the entity type. Computing the entity embedding is then
straightforward and does not require aggregation techniques
(e.g., mean pooling, attention [19]). Second, EncLMs are much
smaller than LLMs (10 – 100 times smaller), making them more
applicable in resource-constrained environments.

3.2.2 Entity Clustering

Once all entities extracted in D𝑇 are encoded using the previous
module, we cluster the embeddings to identify groups of entities
that are close and thus expected to have the same type 𝑡 ∈ T𝑇 .
We use the simple k-means algorithm [46, 50]5. Since the
number of entity types is unknown, the number of entity types
(clusters) 𝑘 must be estimated.

As a side note, the only unsupervised prior work, UNER
[48], required 𝑘 to be known in advance. This constraint is
counter-intuitive and unrealistic: if T𝑇 is unknown, we cannot
determine |T𝑇 | (and thus 𝑘). That is why we want to estimate 𝑘
automatically.

Brute-Force Estimation Interestingly, k-means can be seen
as a simplification and approximation of a spherical Gaussian
Mixture Model (GMM) [22]. The main difference resides in
cluster membership: with k-means, each point belongs only
to one cluster (Dirac probability distribution), whereas GMM
produces soft-clustering assignments. One approach to estimate
the number of clusters of a GMM is to fix an upper bound
𝐾, compute a clustering for each 𝑘, 2 ≤ 𝑘 ≤ 𝐾, compute the
Bayesian Information Criteria (BIC) [65] for each clustering
and select 𝑘̂ that minimizes BIC. BIC measures the clustering
quality and adjusts it relative to the complexity of the model.
Indeed, when looking at the right-hand side of Eq. (4), the
left term measures the quality of the fit, while the right part
estimates the complexity of the model. BIC finds a good tradeoff
between the clustering quality and its complexity (number of

5Genest et al. [27] observed empirically that the best-performing
clustering algorithm for unsupervised relation extraction was k-means.
More complex approaches attained lower results, probably due to
their increased expressivity that modeled noise instead of valuable
information.
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clusters). We propose to apply this same procedure to estimate
the number of clusters with k-means, using the k-means BIC
formula of Onumanyi et al. [53]:

𝐵𝐼𝐶 = 𝑛 ln( 𝑅𝑆𝑆
𝑛

) + 𝑘 ln(𝑛), (4)

𝑅𝑆𝑆 =
∑︁

0≤𝑖<𝑛
(fET (𝒆𝑖 , 𝑿𝑖) − 𝒄𝑖)2, (5)

with 𝑛 the number of entities 𝒆𝑖 extracted by MD, 𝑿𝑖 the doc-
ument containing 𝒆𝑖 and 𝒄𝑖 the centroid of the cluster containing
𝒆𝑖 . We call this procedure brute force cluster estimation. This
is the main approach we employ during OWNER’s evaluation.

Ternary Search One constraint of the previous approach
is that it requires to compute a clustering for each 2 ≤ 𝑘 ≤ 𝐾,
which is computationally expensive. Empirically, we find the
BIC curve for ET to be smooth, globally convex, and with a
single minimum (see Fig. 8 (a)). This was observed for the 13
D𝑇 datasets used during evaluation (see Sect. 4.2), different
EncLM embeddings, and every variation of OWNER. With
this experimental observation, finding the global minimum BIC
without testing every possible 𝑘 is possible. One such method
is the ternary search. We propose implementing it and call it
ternary search cluster estimation. The ternary search follows
an iterative approach, with each cycle being:

1. In input, we have a lower bound 𝑘𝑚𝑖𝑛 and an upper bound
𝑘𝑚𝑎𝑥 for the number of clusters.

2. Select 𝑘1 and 𝑘2 such as they divide the search space
between 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 in thirds.

3. For 𝑘1 and 𝑘2, compute the clustering and calculate the
BIC.

4. If 𝑘1 has a lower BIC than 𝑘2, then 𝑘𝑚𝑎𝑥 = 𝑘2, else
𝑘𝑚𝑖𝑛 = 𝑘1.

The cycle is repeated until 𝑘𝑚𝑎𝑥 = 𝑘𝑚𝑖𝑛. At each cycle, the
search space is reduced by a third, giving a logarithmic com-
plexity of O(log3 (𝐾) · k-means), compared to O(𝐾 · k-means)
for the brute force method.

In practice, three improvements can be made. First, if the
lowest BIC is at 𝑘𝑚𝑖𝑛, we set 𝑘𝑚𝑎𝑥 = 𝑘1; and conversely, if the
lowest BIC is 𝑘𝑚𝑎𝑥 , we set 𝑘𝑚𝑖𝑛 = 𝑘2. It allows the elimination
of two-thirds of the search space in one cycle.

Secondly, we propose to remove the need to fix an upper
bound 𝐾. We provide a first estimate 𝑘𝑚𝑎𝑥 =

√
𝑛 and allow

the ternary search to increase 𝑘𝑚𝑎𝑥 if the minimum BIC is
located after it. During the first cycle, if the lowest BIC is
located at 𝑘𝑚𝑎𝑥 , instead of updating 𝑘𝑚𝑖𝑛, we set 𝑘𝑚𝑎𝑥 =

𝑘𝑚𝑎𝑥 + 𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛

3 . This move is possible for the following
cycles until the lowest BIC is not at 𝑘𝑚𝑎𝑥 .

Finally, the BIC curve is not completely smooth locally. To
improve the minimum estimation accuracy, when 𝑘𝑚𝑖𝑛 and
𝑘𝑚𝑎𝑥 are close (e.g., 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 ≤ 5), we compute every
clustering for 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 and select 𝑘̂ with the lowest
BIC.

The pseudocode of the ternary search cluster estimation is
displayed in Fig. 2. The function call from the user should
be Ternary-Search(1,

√
𝑛, 𝑡𝑟𝑢𝑒). In practice, memoization is

implemented to avoid recomputing the BIC multiple times for
the same 𝑘 , but it is skipped in the figure for clarity.

function Ternary-Search(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥 , 𝑓 𝑖𝑟𝑠𝑡𝑐𝑦𝑐𝑙𝑒)
begin

Data: 𝑘𝑚𝑖𝑛 the lower bound for 𝑘 , 𝑘𝑚𝑎𝑥 the upper
bound for 𝑘 , 𝑓 𝑖𝑟𝑠𝑡𝑐𝑦𝑐𝑙𝑒 if the upper bound
can be increased.

Result: 𝑘̂ estimation of the number of clusters.
if |𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 | < 5 then

return arg min𝑘𝑚𝑖𝑛≤𝑘≤𝑘𝑚𝑎𝑥
(BIC(𝑘))

𝑘1 = 𝑘𝑚𝑖𝑛 + floor
(
𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛

3

)
𝑘2 = 𝑘𝑚𝑎𝑥 − floor

(
𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛

3

)
𝑘𝑏𝑒𝑠𝑡 = arg min𝑘∈{𝑘𝑚𝑖𝑛 ,𝑘1 ,𝑘2 ,𝑘𝑚𝑎𝑥 } (BIC(𝑘))
if 𝑘𝑏𝑒𝑠𝑡 = 𝑘𝑚𝑖𝑛 then

return Ternary-Search(𝑘𝑚𝑖𝑛, 𝑘1, 𝑓 𝑎𝑙𝑠𝑒)
else if 𝑘𝑏𝑒𝑠𝑡 = 𝑘1 then

return Ternary-Search(𝑘𝑚𝑖𝑛, 𝑘2, 𝑓 𝑎𝑙𝑠𝑒)
else if 𝑘𝑏𝑒𝑠𝑡 = 𝑘2 then

return Ternary-Search(𝑘1, 𝑘𝑚𝑎𝑥 , 𝑓 𝑎𝑙𝑠𝑒)
else if 𝑘𝑏𝑒𝑠𝑡 = 𝑘𝑚𝑎𝑥 and 𝑓 𝑖𝑟𝑠𝑡𝑐𝑦𝑐𝑙𝑒 then

return
Ternary-Search(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥 + 𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛

3 , 𝑡𝑟𝑢𝑒)

else
return Ternary-Search(𝑘2, 𝑘𝑚𝑎𝑥 , 𝑓 𝑎𝑙𝑠𝑒)

end

Figure 2: Pseudocode of the ternary search algo-
rithm to estimate the number of clusters.

3.2.3 Embedding Refinement (ER)
ET is not trained using labeled documents. However, since
MD uses labeled data in D𝑇 , we can also employ them for
ET to isolate entity types more clearly during the clustering.
Contrastive learning has been applied for this purpose in the
context of low-resource NER [31, 14]. The objective is to
bring entities of the same type closer and move away entities of
different types by optimizing EncLM representations. Existing
models apply contrastive learning on the annotated data of D𝑇 ,
which we do not have. As a result, we propose optimizing
the contrastive loss on entities of D𝑆 , anticipating that the
reorganized embedding space will also benefit entities in D𝑇 .

We implement the widely used triplet margin loss LTM [4].
LTM considers entity triplets (𝒆𝑎, 𝒆+, 𝒆−). 𝒆𝑎 is called the
anchor. The positive entity 𝒆+ has the same type as the anchor
𝒆𝑎, and the negative entity 𝒆− has a different type than 𝒆𝑎. The
objective of LTM is to ensure that 𝒆+ is closer to 𝒆𝑎 than 𝒆− up
to a certain margin. We have:

LTM (𝒆𝑎, 𝒆+, 𝒆−) = max[0, d(𝒆𝑎, 𝒆+) − d(𝒆𝑎, 𝒆−) + 1] (6)

with d(𝒆𝑎, 𝒆+) the Euclidian distance between fET (𝒆𝑎, 𝑿) and
fET (𝒆+, 𝑿). fET weights are fine-tuned on entities of D𝑆 using
LTM. We fix the LTM margin at 1. Empirically, we have not
found that the margin significantly impacted the performances.

Contrary to usual EncLM fine-tuning, a larger batch size is
beneficial with contrastive learning [5], as it helps regularize the
embedding space reorganization. The limiting factor to increase
the batch size with ET is entity encoding. For each triplet
(𝒆𝑎, 𝒆+, 𝒆−), three prompts P need to be encoded. This comes
with a substantial GPU footprint, hindering large batch sizes.
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System Message: You are a helpful information
extraction system.
Prompt: Given a passage, your task is to extract all
entities and identify their entity types. The output
should be in a list of tuples of the following format:
[(“entity 1”, “type of entity 1”), ...].
Passage: {𝑿}

Figure 3: Unsupervised prompt used by Zhou et al. [92]
to annotate Pile-NER. It also corresponds to the prompt
of UniNER Uns (GPT-3.5).

To mitigate this issue, we change the perspective and consider
batches of entities instead of batches of triplets. Each entity 𝒆
is associated with the document 𝑿𝒆 ∈ D𝑆 in which it appears
and its type 𝑡𝒆 ∈ T𝑆 . We encode one prompt for each entity.
Then, we find all valid triplets inside the batch, respecting the
condition (𝑡𝒆+ = 𝑡𝒆𝑎 ) ∧ (𝑡𝒆− ≠ 𝑡𝒆𝑎 ). We can encode 128 entities
per batch in our experimental setup. Without this optimization,
one batch comprises 42 triplets, and LTM does not converge.
With this optimization, one batch contains, on average, more
than 100,000 valid triplets.

4 Experimental Setup

4.1 Baselines
Luo et al. [48] did not release the source code of UNER, the
only comparable unsupervised and open-world baseline, and
we could not reproduce their results. To solve this shortcoming,
we propose an evaluation focusing on two directions.

Zero-Shot Baselines (Closed-World) First, we compare
OWNER with state-of-the-art zero-shot NER models. These
models are more supervised than OWNER (as they have access
to the list of entity types) and are thus expected to achieve better
results than ours. However, they allow us to contextualize the
performance of unsupervised and open-world NER with more
usual and standard low-resource approaches.

We include UniNER [92], GoLLIE [64], and ChatIE (GPT-
3.5) [82]. We also evaluate ChatIE with the open-weight
Llama 3 8B: ChatIE (Llama 3). UniNER and GoLLIE are
LLMs fine-tuned on synthetically or manually labeled datasets,
whereas ChatIE implements “raw” prompting. We also test
GliNER L [86] and GNER [18], which respectively use an
EncLM (DeBERTav3 [30]) and a full transformer (Flan-T5
[60, 8]), both fine-tuned on the same dataset as UniNER.

We report the baselines’ backbones and the number of pa-
rameters in Table 2.

Unsupervised Baselines Creation As no unsupervised
and open-world baseline is currently evaluable, we propose
creating two baselines based on zero-shot NERs. As we have
seen in Sect. 2.2, not all zero-shot models can be translated
to work in an open-world setting. LLM prompting is the
only family of methods that can be directly adapted to work
unsupervised and open-world.

1) Type Elicitation Prompt

System Message: A virtual assistant answers ques-
tions from a user based on the provided text.
Prompt: Given document: {𝑿}. Please answer:
What types of entities are included in this sentence?
Answer with a JSON list like: [“entity type 1”,
“entity type 2”, ...].

2) Entity Extraction Prompt

System Message: A virtual assistant answers ques-
tions from a user based on the provided text.
Prompt: According to the document above, please
output the entities of type “{𝑡}” in the form of a
JSON list like: [“entity 1”, “entity 2”, ...].

Figure 4: Unsupervised adaptation of the prompting
method of ChatIE [82]. ChatIE follows a multi-turn
question-answering setup, with the first prompt employed
to identify the entity types mentioned in the current docu-
ment and subsequent questions to identify entities for each
elicitated entity type. This prompt is employed by ChatIE
Uns (GPT 3.5) and ChatIE Uns (Llama 3 8B).

First, Zhou et al. [92] annotated the Pile-NER dataset
by prompting GPT-3.5 without specifying entity types (see
section 3.1 of their paper), thus in an unsupervised setting.
They never evaluated this approach, and we include it to provide
reference values of unsupervised GPT-3.5 prompting. We call
this baseline UniNER Uns (GPT-3.5). The prompt they used is
displayed in Fig. 3. Additionally, we tried to replace GPT-3.5
with Llama 3 8B, but this smaller model could not respect the
format specified in the prompt, resulting in null scores.

Second, the dual-stage method that ChatIE [82] implements,
with type elicitation and entity extraction, can be translated to
work under an unsupervised setting. Initially, type elicitation
necessitates the list of entity types T𝑇 , but we can reformulate it
to remove this dependency. The prompts employed are displayed
in Fig. 4. We call this baseline ChatIE Uns (GPT-3.5). We
could successfully replace GPT-3.5 with Llama 3 8B, and we
call this approach ChatIE Uns (Llama 3). Finally, this baseline
allows us to compare the performance between very similar
zero-shot (ChatIE) and unsupervised (ChatIE Uns) models and
observe the impact of not specifying entity types beforehand.

4.2 Datasets

4.2.1 Target Domain D𝑇

Specific domains where annotated data is scarce or absent
are the primary use cases of an unsupervised and open-world
NER. We focus on datasets that differ from D𝑆 stylistically
(types of text), semantically (topics), and/or from the entity
type perspective (unseen entity types). As a result, we evaluate
OWNER on 13 domain-specific datasets:

• five CrossNER datasets [45] (AI, Literature, Music, Poli-
tics, and Science). They cover specific topics (scientific
and literary) and unseen entity types.
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• two MIT datasets [42] (Movie and Restaurant). They cover
new styles of text (reviews and search engine queries),
specific topics, and unseen entity types.

• FabNER [40] with physics and chemistry articles labeled
with scientific entity types.

• GENIA [37] and i2b2 [72] contain biomedical articles
(taken from PubMed) annotated with biomedical entities.

• GENTLE [1] and GUM [87] cover unusual styles of text:
e.g., dictionary entries, travel guides, legal notes, or poetry.

• WNUT 17 [15] comprises social network posts.

These datasets cover a wide spectrum of types of text (en-
cyclopedic, scientific, biomedical, social networks, customer
reviews, dictionary entries, ...); domains (computer science,
physics, chemistry, natural science, biomedical, literature, mu-
sic, ...); and entity types (algorithm, protein, cell type, poem,
mechanical property, animal, or political party among many
others). It allows us to have a detailed picture of the quality and
generalizability of OWNER.

4.2.2 Source Domain D𝑆

We propose to train OWNER with two datasets: CoNLL-2003
[74], and Pile-NER [92]. They represent two different ways to
envision the unsupervised setting.

CoNLL-2003 (named CoNLL thereafter) represents the cross-
domain perspective. It contains general-domain newspaper
articles manually annotated with four entity types (person,
location, organization, and misc). CoNLL is chosen to be
distant from D𝑇 datasets stylistically, semantically, and from
the entity type point of view. It allows us to evaluate the
cross-domain capabilities of OWNER.

Pile-NER represents the synthetic data perspective. It com-
prises 50,000 documents gathered from the Pile corpus [26]
automatically annotated by GPT-3.56, resulting in 13,000 fine-
grained entity types. The idea is that large and diverse D𝑇

datasets benefit the generalizability and partially close the
stylistic, semantic, or entity type gap between D𝑆 and D𝑇 .
Nonetheless, as the annotation process is automatic and does
not involve human actions, it is not time-consuming or expen-
sive. In fact, the latest few-shot and zero-shot models use large
amounts of automatically annotated D𝑆 data (e.g., UniNER,
GliNER L, and GNER train on Pile-NER), and the results show
the benefits of these automatically labeled corpora.

4.3 Metrics
We divide evaluation metrics into two parts:

1. Mention Detection. They check whether the model ex-
tracts entities correctly without considering entity types.

2. Entity Typing. They check whether the model correctly
classifies the entity type.

6As an aside, it is interesting to notice that Gao et al. [26] employed
“real” documents from the Pile corpus instead of generating them with
GPT-3.5. They argue having diverse documents and wide coverage
of domains with LLM-generated documents is difficult, resulting in
lower performance.

Entity typing metrics are also employed to evaluate end-to-
end NER, combining mention detection and entity typing.

4.3.1 Mention Detection

Similarly to previous works (Zong et al. [91] among others), we
consider a predicted entity to be correct if its boundaries are the
same as the ones of a ground truth entity. Thus, we define true
positives (TP), false positives (FP), and false negatives (FN) as
follows:

𝒆 = 𝒆 ⇐⇒ start(𝒆) = start(𝒆) ∧ end(𝒆) = end(𝒆), (7)

TP𝑀𝐷 =
∑̂︁
𝒆

∑︁
𝒆

1𝒆=𝒆, (8)

FP𝑀𝐷 =
∑̂︁
𝒆

1¬∃𝒆 s.t. 𝒆=𝒆, (9)

FN𝑀𝐷 =
∑︁
𝒆

1¬∃𝒆 s.t. 𝒆=𝒆, (10)

with start(𝒆) (resp. end(𝒆)) the index in 𝑿 of the first (resp.
last) token of 𝒆. By convention, this formulation has no true
negatives (TN)7. We use the micro aggregation to compute the
F1 score, precision (P), and recall (R). As a side note, F1 micro
equals the accuracy because we are in a single-label prediction
setting. We have:

P𝑀𝐷 =
TP𝑀𝐷

TP𝑀𝐷 +FP𝑀𝐷

, (11)

R𝑀𝐷 =
TP𝑀𝐷

TP𝑀𝐷 +FN𝑀𝐷

, (12)

F1𝑀𝐷 =
2 P𝑀𝐷 R𝑀𝐷

P𝑀𝐷 +R𝑀𝐷

. (13)

We notice that some recent LLM-based approaches [64, 92,
82] have changed the boundary check by a surface form check
(i.e., checking that a predicted entity has the same text as a
true entity)8. This modification is less precise than an exact
boundary check and can be problematic when multiple entities
with the same surface form in the same document have different
types (e.g., “French persons speak French”, the first French
refers to a nationality, and the second to a language). In our
evaluation, we evaluate all baselines and OWNER using the
same boundary check metrics to ensure maximal fairness.

7A TN is a span that is not a true entity nor a predicted one. Given
that the number of spans evolves quadratically depending on the size
of the document and entities are relatively scarce, TNs would crush
TPs, FPs, and FNs, leading to undiscriminative scores. Therefore, the
consensus (e.g., [91, 86]) is to remove true negatives.

8In fact, this change is not documented in their respective papers,
but it is present in their source code.
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4.3.2 Entity Typing & End-to-End NER

As open-world methods determine entity types, the set of
predicted clusters (predicted entity types) is not guaranteed to
be equal to the set of true entity types. The predicted clusters
cannot be directly mapped to the true entity types (no direct
link between cluster IDs and class IDs). As a result, traditional
classification metrics such as precision, recall, and F1 score
cannot be used to evaluate open-world NER models.

Multiple metrics have been proposed to compare clustering
to true labels. Compared to classification metrics, they are
robust to permutations (meaning the cluster IDs will not impact
the final score) and to partial matches (e.g., two or more clusters
that correspond to a single class or the opposite). Two widely
used metrics to compare clusterings with labels are the Adjusted
Rand Index ARI [32, 71], and the Adjusted Mutual Information
AMI [66]9. In our experimental setup with unbalanced datasets,
Romano et al. [61] recommend using AMI over ARI. AMI is
adjusted for chance: a random clustering will reliably produce a
score close to 0. Additionally, it is defined over [−1, 1]: scores
below zero mean methods that are less effective than random
clustering.

We recall the definition of AMI. First, the correspondences
between the true and predicted entities are calculated with the
equality defined in Eq. (7). A “predicted” placeholder is created
with a specific error entity type for the true entities that were
not predicted (FN). Conversely, for the predicted entities that
do not exist in the ground truth (FP), a “true” placeholder with
a specific error entity type is created.

The Mutual Information (MI) score measures the mutual
dependence between the true entity type and predicted entity
type random variables. It is defined as:

MI(𝑡, 𝑡) = H(𝑡) − H(𝑡 |𝑡),
= H(𝑡) − H(𝑡 |𝑡),

(14)

with H the Shannon entropy [66]. 𝒆, 𝒆, 𝑡, or 𝑡 are considered
to be random variables in the definitions10. To derive the actual
values, the reader has to enumerate all 𝒆 ∈ D and 𝒆 ∈ D.

Adjusted Mutual Information (AMI) is the adjustment for
the chance of MI, such that a random clustering will produce
scores close to or equal to zero. It is defined as:

AMI(𝑡, 𝑡) =
MI(𝑡, 𝑡) − 𝔼𝑡 ′ ,𝑡 ′ {MI(𝑡′, 𝑡′)}

max{H(𝑡),H(𝑡)} − 𝔼𝑡 ′ ,𝑡 ′ {MI(𝑡′, 𝑡′)}
. (15)

𝔼𝑡 ′ ,𝑡 ′ {MI(𝑡′, 𝑡′)} is the expected MI between two random
clusterings and is estimated using a hypergeometric model of
randomness [77].

4.4 Implementation Details
OWNER follows a “train once, test anywhere” [59] methodol-
ogy: it needs to be trained once on D𝑆 and can be applied to

9We are also aware of the V-measure [62] or the B3 [2]. These
metrics are, however, not adjusted for chance (see the subsequent
paragraphs for an explanation).

10𝒆 and 𝒆 are not mentioned in the equations, but 𝑡 is dependent of
𝒆 and 𝑡 of 𝒆.

multiple D𝑇 datasets without further effort. Regarding hyperpa-
rameters, as OWNER is unsupervised, we cannot use validation
data to adjust them. We opt for standard hyperparameter values
defined by Devlin et al. [16].

Entity Extraction We use DeBERTa v3 embeddings [29,
30]11, train the model for 4 epochs, using the Adam optimizer
[38], a decreasing linear schedule without warmup, a learning
rate of 2 × 10−5, a batch size of 32, and dropout (𝑝 = 0.1)
between the EncLM and the linear classifier.

Entity Typing We use BERT embeddings11. We employ the
simplest prompt possible, defined in Eq. (2), and train the model
for 4 epochs, using the Adam optimizer [38], a decreasing linear
schedule without warmup, a learning rate of 2 × 10−5, a batch
size of 128 as discussed in Sect. 3.2.3, and dropout (𝑝 = 0.1).
For the brute force cluster estimation, we fix the upper bound
𝐾 to 50 and increase it if 𝑘̂ is close to 𝐾: 𝐾 = 100 for GUM,
𝐾 = 100 for OWNER trained on CoNLL and tested on i2b2
and 𝐾 = 500 for Pile-NER and i2b2.

Computational Resources Experiments were run on a
single machine with 12 cores, 128 GB of RAM, and a GPU
with 48 GB of VRAM. The required computational time is
equivalent to BERT fine-tuning and depends on the size of the
training dataset. With CoNLL, training usually last 50 min, and
with Pile-NER, 5 h.

5 Results & Analysis
For OWNER, each experiment is repeated with five random
seeds, and we report the average value and the standard deviation.

5.1 Comparison With the Baselines
The performances of OWNER and the zero-shot and unsuper-
vised baselines on the 13 D𝑇 datasets are reported in Fig. 5 and
Table 1.

Unsupervised Open-World Baselines OWNER (Pile-
NER) significantly outperforms all open-world baselines with
an average AMI gap of 4.3 % with UniNER Uns (GPT-3.5),
18 % with ChatIE Uns (GPT-3.5), and 19 % with ChatIE Uns
(Llama 3). UniNER Uns (GPT-3.5) has a short advantage of
1 % in AMI for Restaurant, which is the only time an open-world
baseline attains better results than OWNER (Pile-NER).

OWNER (CoNLL), trained on a much more distant D𝑇

dataset, surpasses UniNER Uns (GPT-3.5), ChatIE Uns (GPT-
3.5), and ChatIE Uns (Llama 3) with average AMI gaps of
3.6 %, 17 %, and 19 %.

OWNER performs significantly better than LLM-based open-
world NERs on a wide spectrum of domain-specific datasets. It
demonstrates that our architecture effectively detects and types
entities in an open-world and unsupervised setting. Finally,
it is interesting to put the size of the compared baselines in
perspective with the performances (see Table 2). OWNER is the
smallest model with its 110 M parameters, yet it outperforms

11 We review the choice of EncLM embeddings in App. A.
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* We could not run GNER (T5-xxl) on i2b2 due to excessive RAM consumption.
† The standard deviation of OWNER is displayed as a vertical bar.

Figure 5: NER performances (AMI) of OWNER, zero-shot, and unsupervised baselines. OWNER is less supervised
and smaller than zero-shot baselines and smaller than unsupervised baselines. Exact values can be seen in Table 1.

Table 1: NER performances (AMI %) of OWNER, zero-shot, and unsupervised baselines. The best AMI for each D𝑇

dataset and setting (zero-shot, unsupervised) is in bold, and the best AMI for each D𝑇 dataset is in green.
AI Liter. Music Politics Science FabNER GENIA GENTLE GUM i2b2 Movie Restau. WNUT 17

Zero-Shot
UniNER 43.1 48.6 50.2 46.6 49.4 23.5 29.8 32.5 32.0 25.8 39.8 23.8 24.2
GoLLIE 48.0 50.2 52.6 49.7 52.7 21.1 30.4 22.8 20.7 43.1 48.5 29.4 32.3

GliNER L 45.1 50.7 58.4 50.0 54.1 27.9 34.5 32.8 28.4 29.4 43.6 37.1 30.3
ChatIE (GPT-3.5) 39.4 46.5 49.8 43.0 52.1 25.2 28.9 30.4 31.1 30.0 46.2 33.8 24.1
ChatIE (Llama 3) 18.0 20.3 17.8 19.8 17.1 18.9 18.5 20.9 24.0 14.7 20.3 11.5 12.8

GNER (T5-xxl) 52.5 53.7 63.1 54.9 59.7 14.7 27.9 21.8 17.3 * 55.4 42.1 31.0
GNER (T5) 41.9 45.9 52.7 49.1 50.2 18.3 26.6 24.6 19.0 36.0 48.1 35.9 28.8

Unsupervised
UniNER Uns (GPT-3.5) 33.5 42.8 48.1 40.3 43.7 21.2 24.4 20.4 23.3 15.5 34.9 29.0 15.0

ChatIE Uns (GPT-3.5) 12.8 20.4 27.8 27.5 25.7 5.7 7.6 11.2 11.1 6.1 26.4 17.7 6.8
ChatIE Uns (Llama 3) 12.8 18.2 15.5 14.6 16.5 15.6 15.9 18.6 17.9 6.8 16.5 20.0 7.0

OWNER (CoNLL) 44.3(3) 46.6(5) 50.1(9) 53.7(3) 52.3(6) 14.7(5) 23.5(2) 25.2(5) 25.6(1) 35.7(1.3) 30.3(1.0) 12.1(1.5) 24.6(4)
OWNER (Pile-NER) 39.4(9) 49.5(8) 52.5(3) 48.5(7) 50.9(4) 23.5(2) 25.3(3) 25.0(4) 26.7(1) 16.2(2) 38.4(8) 27.9(5) 24.0(3)

The standard deviation of OWNER is printed in parentheses.
* We could not run GNER (T5-xxl) on i2b2 due to excessive RAM consumption.
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Table 2: Number of parameters of OWNER, zero-shot,
and unsupervised baselines. OWNER is more than 60-100
times smaller than LLM-based NERs.

Model Backbone # Parameters

Zero-Shot

UniNER Llama 7 B (×60)
GoLLIE Code-Llama 7 B (×60)
GliNER L DeBERTa v3 300 M (×2.7)
ChatIE (GPT-3.5) GPT 3.5 †
ChatIE (Llama 3) Llama 3 8 B (×70)
GNER Flan T5 275 M (×2.5)
GNER (T5-xxl) Flan T5 XXL 11 B (×100)

Unsupervised

UniNER Uns (GPT-3.5) GPT 3.5 †
ChatIE Uns (GPT-3.5) GPT 3.5 †
ChatIE Uns (Llama 3) Llama 3 8 B (×70)

OWNER DeBERTa v3
BERT 110 M*

† Although not disclosed, GPT-3.5 is expected to be larger than Llama
3.
* OWNER uses two encoders with a total of 200 M parameters (90 M
for DeBERTa v3 and 110 M for BERT). But at any given time, only
one is loaded.

much larger LLM baselines that are one to two orders of
magnitude bigger.

Zero-Shot Baselines Even when compared to the closed-
world zero-shot models, OWNER is not out of the picture.

OWNER (Pile-NER) performs significantly better than
ChatIE (Llama 3), and matches or surpasses the perfor-

mances of UniNER on six datasets, ChatIE (GPT-3.5) on
five datasets, GNER (T5) on five datasets, GoLLIE on four
datasets, GNER (T5-xxl) on three datasets, and GliNER L
on one dataset. In general, zero-shot baselines outperform
OWNER, which is expected, given they have access to the list
of entity types (which is a form of supervision). Nevertheless,
without accessing annotated data in D𝑇 nor knowing the tar-
get entity types T𝑇 , OWNER attains honorable results when
compared to the state-of-the-art zero-shot approaches.

To contextualize the performances of zero-shot models, the
comparison between ChatIE (GPT-3.5) and ChatIE Uns (GPT-
3.5) is interesting. Indeed, ChatIE Uns uses the same technique
as ChatIE for NER, except it does not have access to the list
of entity types. We can see in Table 1 that ChatIE Uns per-
formances are extremely low compared to ChatIE: the average
gap is 21 % in AMI. The small modification of removing the
predefined list of entity types tremendously impacts perfor-
mance. This demonstrates that entity type specification is a
strong supervision signal and, thus, that unsupervised NER is a
much more challenging task than zero-shot NER.

When looking closely, ChatIE Uns does not group entities
together in coherent entity types and results in predicting over-
specific entity types (see Table 6). For instance, ChatIE has
identified 11,840 entity types (instead of 10) on the GUM
dataset, such as lantern festival, theme music, light show, laser
light show. It is also a problem of UniNER Uns, at a lesser
degree, though (see Sect. 5.5).

Table 3: Comparison of precision (P) and recall (R) (in
%) of OWNER for MD between CoNLL and Pile-NER.
The standard deviation is displayed in parentheses. Each
D𝑇 dataset’s best precision and recall are in bold.

D𝑆 CoNLL Pile-NER

P R P R

D𝑇

AI 86.2(2) 46.6(5) 74.1(6) 77.5(5)
Liter. 87.2(8) 80.9(4) 85.5(3) 77.6(2)

Music 84.1(4) 74.5(2) 85.5(3) 82.8(4)
Politics 78.9(3) 82.3(2) 82.1(5) 81.2(3)
Science 82.8(5) 67.6(9) 81.1(5) 81.3(7)

FabNER 52.0(7) 5.5(3) 25.8(6) 18.6(7)
GENIA 46.5(1.2) 27.1(1.4) 46.3(2) 60.9(1.0)

GENTLE 32.0(1.2) 6.8(2) 33.1(6) 20.6(3)
GUM 25.8(2) 6.4(1) 28.6(1) 14.2(3)
i2b2 22.1(2.2) 26.8(1.4) 5.5(2) 29.6(9)

Movie 89.9(1.6) 23.0(6) 71.8(1.2) 46.0(9)
Restau. 57.4(3.1) 4.0(1.0) 51.8(1.0) 32.6(9)

WNUT 17 57.1(7) 74.1(1.2) 41.1(4) 76.6(4)
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(a) OWNER trained on
CoNLL, tested on AI.
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(b) OWNER trained on
Pile-NER, tested on AI.

Figure 6: Confusion matrices of OWNER for MD tested
on AI. The ∅ row shows the false positives, and the ∅
column shows the false negatives per entity type.

5.2 Cross-Domain Capabilities & Synthetic An-
notations

The results in Fig. 5 demonstrate that OWNER works well with
a distant D𝑇 (CoNLL) and with synthetic data (Pile-NER),
as they both lead to better performances than unsupervised
baselines. OWNER (Pile-NER) has a slight 0.7 % advantage
in AMI compared to OWNER (CoNLL).

However, when looking closely, CoNLL and Pile-NER build
models with different behaviors (although similar performances).
In Table 3, we display the precision and recall of OWNER for
mention detection. Overall, OWNER tends to have more
precision when trained on CoNLL and more recall when trained
on Pile-NER. This is expected: the diversity of Pile-NER
helps OWNER detect entities better, while the human quality
of annotations in CoNLL helps OWNER be more precise.
This observation is confirmed when we examine the confusion
matrices in Fig. 6. On one side, Pile-NER leads to better
detections of domain-specific entity types (such as algorithm,
field, metrics, or task), but we also see an increase in false
positives (497 for Pile-NER vs. 151 for CoNLL). On the other
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Table 4: MD performances (F1 %) for different architec-
tures trained on CoNLL and tested on five D𝑇 datasets.
The standard deviation is displayed in parentheses. We
did not repeat the experiment for PURE and SpanProto as
they were very slow to train. Each D𝑇 dataset’s best F1
score is in bold.

AI Liter. Music Politics Science

BIO (OWNER) 60.5(4) 83.9(5) 79.0(2) 80.6(2) 74.4(7)
PURE 39.8 37.1 33.8 32.4 35.7
SpanProto 54.1 62.9 59.6 68.7 59.7
WL-Coref 57.4(8) 68.3(1.7) 66.9(2.1) 72.1(1.3) 63.4(3.3)

side, CoNLL has a slightly better recall for person, location, or
organization, which are precisely the entity types annotated in
this dataset.

As a side note, some performances displayed in Table 3
are low: precision below 10 % for FabNER, GENTLE, GUM,
or Restaurant (CoNLL), and recall below 10 % for i2b2 (Pile-
NER). They are far from ideal and satisfactory for production
deployment and demonstrate the complexity of cross-domain
learning and open-world NER. But the LLM-based baselines
achieve even lower results than OWNER (as displayed in Fig. 5).

The question of higher false positives with Pile-NER is inter-
esting. We manually checked the 497 false positives displayed
in Fig. 6. 53 % of them are correct entities not annotated in AI,
42 % intersect with a true entity (boundary problem), and 5 %
are wrong predictions. Overall, the boundary problem explains
the false positive gap between CoNLL and Pile-NER, probably
resulting from Pile-NER’s imperfect annotations.

The 53 % correct entities not annotated in AI come from
existing entity types (most missing entities are acronyms, for
instance, FPR = false positive rate) and new entity types (not
in the 14 entity types annotated in AI). The fact that OWNER
identifies correct entities of new entity types highlights its
novelty detection capabilities. This behavior cannot be observed
with the other zero-shot and few-shot baselines as they have a
predefined set of entity types.

In conclusion, the cross-domain capabilities of OWNER are
highlighted by the good results of OWNER (CoNLL) on the D𝑇

datasets. Broadly speaking, the manual annotations of CoNLL
bring precise results, and the diversity of Pile-NER provides
better recall at the cost of precision. In a novelty detection or
exploratory scenario, where recall is key, we advise the reader
to use Pile-NER. Additionally, the analysis of the confusion
matrices shows that OWNER identifies entities of novel entity
types that are unknown beforehand.

5.3 BIO Sequence Labeling
In Sect. 3.1, we propose to use a BIO extractor for MD, as
we expect the simplicity of this architecture to bring better
generalizability on new target domains D𝑇 . In Table 4, we
report the F1 score of different MD architectures, trained on
CoNLL and tested on five D𝑇 datasets. We evaluate the
following architectures:

• BIO. It is the architecture implemented by OWNER.

• PURE [91]. A span-based extractor that combines the start
and end embeddings of a candidate span with a perceptron.

• SpanProto [78]. A span-based extractor that uses bilinear
neurons to combine start and end embeddings of a candi-
date span (which provides faster predictions compared to
PURE).

• WL-Coref [19]. A span-based extractor that identifies the
“head” of the entity and recomposes its boundaries using a
convolutional network. This model tackles the quadratic
complexity problem of traditional span-based extractors.

In a fully supervised setting, PURE, SpanProto, and WL-
Coref are shown to be slightly better than BIO sequence labeling
[91, 78, 19]. However, in our unsupervised cross-domain setting,
BIO performs significantly better than span-based extractors,
with an average gap of 40 % with PURE, 15 % with SpanProto,
and 10 % with WL-Coref, while being faster to train. We believe
that the simplicity of the BIO architecture reduces overfitting
and benefits generalizability on new domains. As an aside, this
observation was made by Fang et al. [23], who also use BIO
sequence labeling for their few-shot MANNER model.

5.4 Impact of Embedding Refinement
An important component of OWNER is embedding refinement
(ER), which aims to improve EncLM representations for entity
clustering using contrastive learning. In Table 5, we compare
OWNER entity typing performance without ER and with ER
trained on CoNLL or Pile-NER. We use the gold entity spans
from D𝑇 (no MD) to assess only the effect of ER. This is why
the AMI scores are higher than in Table 1.

We see that ER has a significant positive impact with CoNLL
and Pile-NER on each of the 13 D𝑇 datasets, with an aver-
age AMI gain of 12.8 % for CoNLL and 16.7 % for Pile-NER
compared to OWNER without ER. The gain is particularly
impressive for datasets that are difficult for raw BERT embed-
dings, such as GENTLE, GUM, i2b2, Movie, Restaurant, or
WNUT 17. Pile-NER’s better performances can be explained
by its diversity of entity types (13,000 entity types), which helps
to fine-tune entity embeddings more precisely. Nevertheless,
CoNLL achieves honorable performances despite only having
four entity types. This validates the hypothesis that refining
entity embeddings on D𝑆 with contrastive learning benefits
also distant D𝑇 .

To give a more visual representation of the effects of embed-
ding refinement, we display in Fig. 7 two-dimensional t-SNE
[76] representations of the entity embeddings of the Science
and Restaurant datasets. The entities of Science are already well
isolated without ER (see Table 5). Still, we can notice several
improvements: better separation of discipline, organization,
and academicjournal (CoNLL and Pile-NER); better separation
of chemicalelement and chemicalcompound (Pile-NER); and
the multi-type cluster at the top of the w/o ER figure has dis-
appeared. The effects of ER are more visible with the difficult
Restaurant dataset: without ER, ET cannot discriminate any
entity type, and we see huge improvements with ER on CoNLL
or Pile-NER. In particular, it is interesting to see that ER with
CoNLL leads to a relatively good separation of cuisine, hours,
or price, even though CoNLL does not contain such entities.
The effects are more complete and more visible with Pile-NER.
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Table 5: AMI scores (in %) of OWNER for ET on D𝑇 datasets, without ER and with ER on CoNLL or Pile-NER. ET
is evaluated using gold entity spans. The standard deviation is printed in parentheses. The best AMI for each D𝑇

dataset is in bold.
AI Liter. Music Politics Science FabNER GENIA GENTLE GUM i2b2 Movie Restau. WNUT 17

w/o ER 43.0(1.4) 40.1(6) 47.8(8) 56.0(8) 56.1(9) 18.6(3) 20.3(7) 15.6(5) 19.7(2) 32.1(6) 21.8(5) 11.3(4) 22.5(3)

ER on CoNLL 56.8(1.4) 56.3(1.1) 60.9(5) 65.4(3) 66.7(3) 26.7(7) 26.6(8) 21.5(7) 26.1(5) 47.9(6) 46.6(1.3) 35.8(1.4) 34.3(1.1)
ER on Pile-NER 54.2(7) 63.1(8) 64.2(5) 66.0(1.1) 66.0(9) 24.1(8) 31.7(6) 32.7(5) 37.0(2) 49.4(8) 52.1(8) 41.0(5) 41.1(8)

w/o ER ER with CoNLL ER with Pile-NER
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Figure 7: Two-dimensional t-SNE visualizations of the entity embeddings of OWNER. For each subfigure from left to
right: 1) without ER, 2) ER with CoNLL, and 3) ER with Pile-NER.

In conclusion, ER significantly improves ET performance
with CoNLL and Pile-NER (a gap of resp. 12.8 % and 16.7 %
in AMI). The best results are achieved with Pile-NER due to
its diversity in entity types. ER works well with the distant D𝑇

dataset CoNLL, with noticeable improvements on unseen entity
types. It also shows that ER is beneficial even with a labeled
dataset with a narrow set of entity types (4 for CoNLL).

5.5 Estimation of the Number of Clusters 𝑘̂

As we do not have any information about entity types (contrary
to zero-shot approaches), OWNER has to infer entity types and
their number. In this part, we only consider the brute force
cluster estimation. In Table 6, we display for each D𝑇 dataset its
true number of entity types 𝑘 , the estimated number of clusters
𝑘̂ , the corresponding AMI score with 𝑘̂ (similar to Fig. 5, that
is end-to-end NER), and AMI score with the ideal 𝑘 .

Overall, OWNER tends to overestimate the number of entity
types; this effect is more pronounced with Pile-NER than with
CoNLL. However, compared to UniNER Uns and ChatIE Uns,
OWNER provides estimations that are much closer to the truth.
Regarding Pile-NER, this overestimation behavior can be linked
to its fine-grained entity types12. We can see this tendency in
the visualization of Science in Fig. 7, where the misc class is
divided into multiple small clusters (compared to CoNLL).

AMI scores with the ideal 𝑘 are close to AMI with 𝑘̂ (AMI
gap of 0.8 % for CoNLL and 1.5 % for Pile-NER on average),

12As a reminder, Pile-NER was annotated using UniNER Uns (GPT-
3.5). De facto, Pile-NER exhibits the same fine-grained entity type
weakness as UniNER Uns (GPT-3.5). Fortunately, OWNER partially
mitigates this issue with a more reasonable estimation of the number
of clusters, as shown in Table 6.

meaning that the clusterings are relatively similar from a quali-
tative point of view even with 𝑘̂ ≫ 𝑘 . The long-tail distribution
of the cluster membership explains this. If we take the second
confusion matrix of Fig. 9, a minority of clusters contains most
entities, and the rest contain few specific entities. In fact, the
17 last clusters represent false positives13 and members of the
misc class (by definition, composed of multiple entity types).
It explains why, even with this number of clusters, the perfor-
mances do not plummet because the supplementary clusters
model essentially false positives and composite classes.

5.6 Faster Estimation of the Number of Clusters
𝑘̂

Up to this section, we used the brute force algorithm to estimate
the number of clusters 𝑘̂ . The computational time is acceptable
for the small datasets, but for the biggest D𝑇 datasets (e.g., i2b2
or GUM), it can take up to hours (see Table 8), representing,
in fact, the major part of the run. For instance, the cluster
estimation lasts 13.6 h on average for D𝑆 = Pile-NER and
D𝑇 = i2b2. This motivates the ternary search algorithm we
presented in Sect. 3.2.2.

In Table 7, we display the comparison of the estimation of 𝑘̂
between the brute force algorithm and the ternary search, and
the corresponding NER AMI scores; and in Table 8 we display
the corresponding execution time. We see that the estimation
of 𝑘̂ with ternary search equals the brute force algorithm or is
in the standard deviation range. This results in ternary search
AMI scores virtually identical to brute force scores.

More interesting is the gain in terms of computational time.
As displayed in Table 8, the ternary search is 1.7 to 2.7 quicker to

13That can be correct entities, as we have seen in Sect. 5.2.
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Table 6: Estimation of the number of clusters 𝑘̂ by OWNER using the brute-force approach and AMI scores (in %) for
NER with true 𝑘 and estimated 𝑘̂ . The standard deviation is printed in parentheses. 𝑘 and 𝑘̂ are displayed in green,
and the best AMI score for each D𝑆 and D𝑇 dataset is in bold. We also include the number of entity types found by
LLM-based unsupervised baselines.

AI Liter. Music Politics Science FabNER GENIA GENTLE GUM i2b2 Movie Restau. WNUT 17

k 14 12 13 9 17 12 5 10 11 23 12 9 6

OWNER (CoNLL)
k̂ 10 12(1) 20(2) 23(2) 17(2) 8(2) 20(1) 8 35(1) 50(5) 8 4 8(1)

AMI k̂ 44.3(3) 46.6(5) 50.1(9) 53.7(3) 52.3(6) 14.7(5) 23.5(2) 25.2(5) 25.6(1) 35.7(1.3) 30.3(1.0)12.1(1.5) 24.6(4)
AMI k 44.5(3) 46.4(4) 51.0(3) 56.5(1.9) 52.9(6) 14.8(5) 26.4(6) 25.1(7) 27.0 38.7(9) 29.8(1.0)11.7(1.6) 24.6(3)

OWNER (Pile-NER)
k̂ 18(1) 16(1) 26(1) 32(2) 29 32(3) 35 22(1) 59 197(4) 26 14(2) 16(1)

AMI k̂ 39.4(9) 49.5(8) 52.5(3) 48.5(7) 50.9(4) 23.5(2) 25.3(3) 25.0(4) 26.7(1) 16.2(2) 38.4(8) 27.9(5) 24.0(3)
AMI k 39.2(7) 50.2(6) 54.3(4) 47.8(6) 51.7(5) 25.2(3) 29.0(5) 26.0(3) 28.8(1) 23.1(2) 38.7(9) 28.2(5) 25.1(6)

k̂ estimated by the unsupervised baselines
UniNER Uns

(GPT-3.5)
155 92 115 103 195 292 319 250 830 1,033 176 117 266

ChatIE Uns
(GPT-3.5)

1,427 954 1,074 1,141 1,480 5,108 4,342 1,323 11,840 14,680 1,214 899 1,707

ChatIE Uns
(Llama 3)

197 61 123 74 408 1,276 1,643 374 1,433 6,014 107 88 714

Table 7: Estimation of the number of clusters 𝑘̂ with brute force or ternary search and AMI scores (in %) for NER
with true 𝑘 and estimated 𝑘̂ , when OWNER is trained on Pile-NER. The standard deviation is printed in parentheses.
𝑘 and 𝑘̂ are displayed in green, and the best AMI score for each D𝑇 dataset is in bold.

AI Liter. Music Politics Science FabNER GENIA GENTLE GUM i2b2 Movie Restau. WNUT 17

𝑘 14 12 13 9 17 12 5 10 11 23 12 9 6
brute 𝑘̂ 18(1) 16(1) 26(1) 32(2) 29 32(3) 35 22(1) 59 197(4) 26 14(2) 16(1)

ternary 𝑘̂ 19(1) 18(1) 25(2) 32(3) 28(3) 32(4) 34(2) 23(2) 65(5) 198(4) 24(2) 15(1) 18(1)

AMI 39.2(7) 50.2(6) 54.3(4) 47.8(6) 51.7(5) 25.2(3) 29.0(5) 26.0(3) 28.8(1) 23.1(2) 38.7(9) 28.2(5) 25.1(6)
brute
AMI

39.4(9) 49.5(8) 52.5(3) 48.5(7) 50.9(4) 23.5(2) 25.3(3) 25.0(4) 26.7(1) 16.2(2) 38.4(8) 27.9(5) 24.0(3)

ternary
AMI

39.4(7) 49.2(6) 52.1(3) 49.1(9) 50.6(7) 23.4(2) 25.3(2) 25.0(5) 26.5(2) 16.2(2) 38.7(6) 28.0(3) 24.1(4)

Table 8: Execution time (in s) of the cluster estimation using the brute force or ternary search algorithms when
OWNER is trained on Pile-NER.

AI Liter. Music Politics Science FabNER GENIA GENTLE GUM i2b2 Movie Restau. WNUT 17

brute AMI 88(2) 98(9) 191(23) 236(12) 164(15) 505(29) 390(36) 115(10) 1,823(157) 49,039(214) 276(28) 138(14) 99(11)
ternary AMI 48(1) 52(1) 69(1) 89(3) 69 189(4) 142(5) 65(1) 906(28) 2,440(173) 117(2) 74 57(1)

(÷1.8) (÷1.9) (÷2.8) (÷2.6) (÷2.4) (÷2.7) (÷2.7) (÷1.8) (÷2.0) (÷20.1) (÷2.3) (÷1.9) (÷1.7)
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(b) ET with the ternary search algorithm.

Figure 8: BIC curves computed to estimate the number
of clusters 𝑘̂ , when OWNER is trained on Pile-NER
and tested on i2b2. Each cross represents a computed
clustering. With the brute force algorithm, 500 clusterings
were calculated, and with ternary search, only 21.

run compared to the brute force algorithm, even on the smallest
datasets. The gain is particularly impressive for the large i2b2
dataset with its large 𝑘̂ where the gain is twenty-fold. Initially,
the runs lasted 13.6 h, and with the ternary search, they are
reduced to 41 min. The computational gain is less important
for smaller sets of entity types (although still very significant)
because of the slight rugosity of the BIC curve. This rugosity
forces us to compute multiple clusterings sequentially once
𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 ≤ 5.

The case of the i2b2 dataset is especially interesting. In
Fig. 8, ternary search quickly converges to the minimum value
without evaluating every possible 𝑘̂ . In particular, the range
[0, 140] clusters is eliminated in two steps (5 min), whereas
brute force needs 2 h to evaluate the same interval. Ternary
search finds 𝑘̂ after 21 clusterings, compared to the 500 needed
for the brute-force algorithm (24 times less).

In conclusion, the computational gain of ternary search
is particularly important with large D𝑇 datasets with many
different entity types. It is also relevant for smaller datasets,
bringing a two-fold decrease in calculation time. Empirically,
we find no significant difference in the estimation of 𝑘̂ and AMI
scores between brute force and ternary search.

5.7 Qualitative Analysis
We want to finish this analysis by giving a qualitative overview
of the performances of OWNER. In Fig. 9, we display three con-
fusion matrices of OWNER trained with different D𝑆 datasets
and tested on different D𝑇 .

The three confusion matrices show a relatively clear diagonal,
meaning that OWNER correctly identifies most entity types. It
is an impressive result: without annotated data in D𝑇 nor any
information on entity types or their count, OWNER detects and
structures entities in a scheme similar to the ground truth.

It is interesting to look at the confusions made by OWNER.
OWNER merges country and location (Science and AI); person
and scientist/researcher (Science and AI); enzyme and protein
(Pile-NER Science); task, product, field, algorithm (AI); or
conference, university, organization (AI). OWNER confuses
semantically close entity types, which is a reassuring behavior.
It is also a constraint linked to open-world NER. As we do not
provide the list of entity types, OWNER organizes entities in a
semantically coherent scheme that is a valid typing scheme but
not exactly the dataset annotation schema.

Finally, OWNER organizes false positives and misc entities,
a composite of multiple underlying types. It explains why
OWNER tends to overestimate the true number of entity types.

In conclusion, OWNER organizes entities in a coherent typing
scheme that is close to the true entity types. This analysis also
highlights OWNER’s exploratory abilities. It can identify and
organize entities into meaningful groups without labeled data
in D𝑇 . OWNER efficiently processes unannotated documents
to uncover primary entities and their types, setting the stage for
further refinement through more supervised methods.

6 Conclusion
In this work, we introduce OWNER, our unsupervised and
open-world NER model that transfers knowledge from D𝑆 to
D𝑇 without supervision. The literature review showed that
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Figure 9: Confusion matrices of OWNER for NER tested
on various D𝑇 datasets. Columns and rows were reordered
using the algorithm described in App. B. The ∅ row shows
the false positives, and the ∅ column shows the false
negatives.

unsupervised NER lags behind while significant progress has
been made towards lower resource NER (in particular, zero-shot
NER). OWNER is proposed to be the first NER compatible
with an utterly unsupervised open-world scenario, to provide a
strong baseline, and to stimulate further research. OWNER is
built upon a simple yet innovative architecture with an EncLM
prompting, clustering, and embedding refinement triangle.

Tests on 13 domain-specific datasets demonstrate that
OWNER outperforms LLM-based open-world NERs and re-
mains relevant when compared with state-of-the-art zero-shot
NER models, without requiring prior knowledge of D𝑇 . This
result is impressive, given that the simple EncLM embeddings
of OWNER compete with much larger LLMs. We believe an
essential point for OWNER’s success is its architectural sim-
plicity and parameter efficiency, which achieve state-of-the-art
results.

Ablation studies show that embedding refinement brings
significant performance gains and works well even with a
distant D𝑇 dataset. Ternary search shortens the computational
time needed to estimate the number of clusters considerably
(two times in general and up to twenty times faster on the largest
dataset). Qualitative results demonstrate OWNER’s exploratory
capabilities and ability to organize entities in semantically
coherent clusters close to actual entity types.

For future work, we aim to expand OWNER for use in a low-
resource active learning context [67]. Specifically, we believe
OWNER’s capability to structure entities without supervision
could help bootstrap an active learning cycle.

A second area for research is to combine open-world and
closed-world NER. The objective would be to allow the user
to predefine a typing scheme for entities he is aware of while
leaving the door open to novel unseen knowledge, for which the
model will provide a generated typing structure. Preliminary
work [89, 21, 90] has been done in the related relation extraction
field, but these models are not currently low-resource.
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A EncLM Embeddings Impact
With OWNER, we primarily utilize DeBERTa v3 [29, 30] for
mention detection and BERT [16] for entity typing. In this
section, we evaluate the performances of other popular EncLM
such as RoBERTa [43], ERNIE [73], or ELECTRA [9].

In Table 9, we display the MD performances of various
EncLMs when OWNER is trained on Pile-NER, and in Table 10,
we show the ET performances of the same EncLMs (also on
Pile-NER). Broadly speaking, OWNER works relatively well,
regardless of the EncLM used as a backbone. In fact, all the
evaluated EncLM embeddings lead to better performances than
UniNER Uns (GPT-3.5), ChatIE Uns (GPT-3.5), and ChatIE
Uns (Llama 3). Interestingly, the “older” model, BERT, is
not out of the picture and performs similarly to more recent
alternatives.
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Table 9: MD performances (F1 %) of OWNER trained on Pile-NER, using various EncLM embeddings. The standard
deviation is printed in parentheses. The best F1 for each D𝑇 dataset is in bold. The last column displays the average
F1 across the 13 D𝑇 datasets.

AI Liter. Music Politics Science FabNER GENIA GENTLE GUM i2b2 Movie Restau. WNUT 17 Average

BERT 73.7(5) 76.4(2) 80.3(2) 79.7(5) 78.4(3) 20.0(6) 50.7(3) 23.3(3) 19.0(1) 9.2(3) 56.9(7) 38.4(6) 47.6(6) 50.3
RoBERTa 74.3(5) 79.5(3) 81.9(4) 80.5(2) 78.8(3) 20.5(5) 51.2(5) 23.9(7) 18.9(4) 9.6(4) 52.2(1.9) 39.8(6) 54.2(8) 51.2
ERNIE 73.4(2) 76.0(4) 80.7(2) 80.1(4) 78.0(4) 20.6(2) 51.2(5) 22.6(5) 19.0(2) 9.4(2) 57.9(5) 40.0(7) 48.2(5) 50.5
ELECTRA 73.9(4) 76.3(3) 81.3(2) 79.6(4) 79.2(2) 20.5(3) 51.4(3) 23.1(6) 18.2(3) 9.5(3) 59.6(3) 41.5(6) 48.5(6) 51.0
DeBERTa v3 75.6(5) 81.4(4) 84.6(3) 81.6(3) 80.9(5) 21.2(6) 52.2(4) 25.2(3) 18.9(3) 9.5(1) 56.1(1.1) 39.8(8) 53.4(5) 52.4

Table 10: ET performances (AMI %) of OWNER trained on Pile-NER, using various EncLM embeddings. ET is
evaluated using gold entity spans. The standard deviation is printed in parentheses. The best AMI for each D𝑇 dataset
is in bold. The last column displays the average AMI across the 13 D𝑇 datasets. The number of clusters is estimated
using the ternary search algorithm, which explains why AMI scores are not identical to Table 5 (brute force). They are
nevertheless in the range of standard deviation.

AI Liter. Music Politics Science FabNER GENIA GENTLE GUM i2b2 Movie Restau. WNUT 17 Average

BERT 54.3(3) 64.1(1.0) 64.4(5) 66.2(1.3) 65.9(4) 24.5(5) 32.1(5) 33.8(7) 35.7(1) 50.2(5) 52.0(3) 40.7(8) 40.9(1.2) 48.1
RoBERTa 53.7(8) 63.7(1.1) 64.7(7) 63.3(1.7) 65.7(1.0) 25.0(7) 28.1(4) 34.0(5) 36.2(3) 51.2(7) 47.4(6) 47.2(6) 44.1(5) 48.0
ERNIE 54.2(7) 62.7(1.4) 64.4(9) 63.0(1.2) 65.9(8) 24.7(4) 30.2(5) 33.8(6) 35.6(3) 48.5(3) 54.2(8) 47.3(1.0) 44.2(3) 48.4
ELECTRA 53.6(2) 57.9(2.0) 61.1(1.2) 56.7(1.5) 62.7(1.5) 22.7(7) 26.4(2.6) 32.8(5) 34.1(1.2) 48.5(1.1) 51.8(9) 45.7(1.4) 41.8(6) 45.8
DeBERTa v3 53.0(1.0) 59.0(1.1) 61.6(7) 58.5(1.3) 62.9(8) 25.0(2) 25.4(4) 33.4(3) 34.3(1) 50.8(5) 48.7(6) 47.6(9) 46.7(6) 46.7

For MD, we see an advantage of DeBERTa v3 over the other
approaches, with an average gap of 1.2 % with the second-best
model RoBERTa. We link these better performances to the
richer and broader pre-training dataset compared to the other
EncLM. BERT achieves the worst performances. This explains
why we have chosen DeBERTa v3 as the backbone for MD.

The performances are closer for ET, with BERT, RoBERTa,
and ERNIE nearly indistinguishable (especially given the stan-
dard deviation). ELECTRA and DeBERTa v3 have lower AMI
scores. The behavior of DeBERTa v3 is surprising, as it is
generally recognized as the best-performing EncLM currently
available. The performances of DeBERTa v3 are even worse
without ER (not shown), achieving half of those of BERT with-
out ER. The same conclusion can be drawn with ELECTRA.
DeBERTa v3 and ELECTRA seem to have a less entity-type-
oriented embedding space than BERT. As a result, we have
chosen BERT embeddings for OWNER. ERNIE and RoBERTa
would have also been valid choices.

B Unsupervised Confusion Matrix
A useful tool to qualitatively analyze the performance of a
classifier is the confusion matrix [56]. Each row of the confusion
matrix represents the instances in an actual class (e.g., entity
type), and each column represents the instances in a predicted
class. Thus, the matrix’s diagonal shows correctly predicted
instances, and the lower and upper triangles display the errors
(also called confusions).

However, when implementing models based on unsuper-
vised approaches (typically clustering), where classes are not
predefined, a confusion matrix is harder to interpret. Indeed,
contrary to the supervised case, there is no direct link between
the class IDs and the cluster IDs (meaning the first class does not
necessarily correspond to the first cluster), so there is no clear
interpretable diagonal by default. To improve the readability

and interoperability of a clustering confusion matrix, rows and
columns must be reordered to display a diagonal and group the
confusions together.

This appendix details the method employed to reorder the
rows and columns. We take the example of the first figure of
Fig. 9 (OWNER trained on Pile-NER and tested on Science).
The initial confusion matrix, without processing, is displayed
in Fig. 10 (a). It resembles a starry sky more than a confusion
matrix and is nearly impossible to interpret.

Diagonal Elicitation The first step is to find a diagonal in
the confusion matrix. In a supervised scenario, if the model
performs correctly, most instances are in the diagonal as the
model correctly predicts them. By extension, we want to reorder
the axes so that the unsupervised confusion matrix shows a clear
diagonal: we want to find the “main” cluster corresponding
to each class. For instance, in Fig. 10 (a), most instances of
organization are in cluster 16, most chemicalcompound entities
are in cluster 11, ...

This can be formulated as: “reorganizing the rows and
columns so that the diagonal of the matrix is of maximal
sum”. This corresponds to an assignment problem (except
that the canonical problem involves minimizing the sum). We
solve this assignment problem using a modified version of the
Jonker-Volgenant algorithm14 [36, 10].

The resulting confusion matrix is displayed in Fig. 10 (b). It
displays a clear diagonal that is much more interpretable than the
initial confusion matrix. Nevertheless, some important values
outside the diagonal are still scattered (e.g., person/cluster 14,
astronomicalobject/cluster 22).

Confusion Grouping The second step aims to bring major
confusions closer to make the matrix readable. An ideal
confusion matrix is a band matrix, that is, a sparse matrix

14We employ the SciPy implementation of the algorithm.
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Figure 10: Reordering of the unsupervised confusion
matrix of OWNER for NER trained on Pile-NER and
tested on Science.

where the non-zero entries are confined to a diagonal band. We
propose implementing the reverse Cutthill–McKee algorithm15

[13, 28], which aims to permute a sparse matrix into a band
matrix with a small bandwidth. In practice, not all non-zero
values are interesting (some represent noise or very rare edge
cases), so we propose fixing a threshold (1 % of the total
instances). Below this threshold, the value is not considered
when reordering axes.

We obtain the final confusion matrix of Fig. 10 (c). We
can see that the major confusions are now grouped closer
(e.g., person and scientist, protein and enzyme, university and
organization).

As a side note, the first diagonal elicitation step is optional,
as the reverse Cuthill–McKee algorithm produces a band matrix
(that is, with a diagonal). We have found, in practice, that the
first diagonal elicitation step helped to produce a diagonal with
the maximum sum, thus leading to a clearer interpretation.
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