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Evaluation of a multi-arm multi-stage
Bayesian design for phase II drug selection
trials – an example in hemato-oncology
Louis Jacob1,2, Maria Uvarova3, Sandrine Boulet3, Inva Begaj3 and Sylvie Chevret1*

Abstract

Background: Multi-Arm Multi-Stage designs aim at comparing several new treatments to a common reference, in
order to select or drop any treatment arm to move forward when such evidence already exists based on interim
analyses. We redesigned a Bayesian adaptive design initially proposed for dose-finding, focusing our interest in the
comparison of multiple experimental drugs to a control on a binary criterion measure.

Methods: We redesigned a phase II clinical trial that randomly allocates patients across three (one control and two
experimental) treatment arms to assess dropping decision rules. We were interested in dropping any arm due to
futility, either based on historical control rate (first rule) or comparison across arms (second rule), and in stopping
experimental arm due to its ability to reach a sufficient response rate (third rule), using the difference of response
probabilities in Bayes binomial trials between the treated and control as a measure of treatment benefit. Simulations
were then conducted to investigate the decision operating characteristics under a variety of plausible scenarios, as a
function of the decision thresholds.

Results: Our findings suggest that one experimental treatment was less efficient than the control and could have been
dropped from the trial based on a sample of approximately 20 instead of 40 patients. In the simulation study, stopping
decisions were reached sooner for the first rule than for the second rule, with close mean estimates of response rates
and small bias. According to the decision threshold, the mean sample size to detect the required 0.15 absolute benefit
ranged from 63 to 70 (rule 3) with false negative rates of less than 2 % (rule 1) up to 6 % (rule 2). In contrast, detecting
a 0.15 inferiority in response rates required a sample size ranging on average from 23 to 35 (rules 1 and 2, respectively)
with a false positive rate ranging from 3.6 to 0.6 % (rule 3).

Conclusion: Adaptive trial design is a good way to improve clinical trials. It allows removing ineffective drugs and
reducing the trial sample size, while maintaining unbiased estimates. Decision thresholds can be set according to
predefined fixed error decision rates.

Trial registration: ClinicalTrials.gov Identifier: NCT01342692.
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Background
Adaptive designs for clinical trials that use features that
change or “adapt” in response to information generated
during the trial to be more efficient than standard ap-
proaches [1] have been the focus of an abundant statis-
tical literature since the 1970s. Among the wide range of
adaptive designs, multi-arm multi-stage (MAMS) designs
aim to compare several new treatments (multi-arm) to a
common reference treatment to select or drop any treat-
ment arm to move forward when evidence exists based on
interim analyses (multi-stage). These designs have also
been referred to as selection designs in phase II/III trials
[2], randomized phase II screening trials [3] or select-drop
designs [4]. Similarly to other adaptive designs, MAMS
designs aim to decrease the time and number of patients
required to move experimental treatments from develop-
ment to a definitive assessment of benefit compared to
the traditional approach, in which each drug is assessed
through separate controlled trials. Improving the effi-
ciency of clinical trials has been of prime interest in the
development of anticancer therapies because multiple
candidate anticancer agents are available for screening
simultaneously due to the acceleration of drug devel-
opment [3, 5]. However, although MAMS trials have
gained popularity, they are still poorly used by practi-
tioners. Notably, because of the number of arms and
stages, MAMS trials appear more complex in design,
conduct, and data analysis, with a broad variety of pro-
posed versions [6–8]. All these proposed MAMS trials
are faced with the issue of multiple testing due to com-
parisons between active treatments and control treat-
ment, or pairwise between all arms. Moreover, this
multiplicity issue is increased by the repeated testing,
resulting in stopping either the trial or merely the rele-
vant arm, with a focus on sequential futility boundaries
for lack of benefit adjusted so that the overall family-
wise error rate is or is not controlled at a pre-specified
α level.
We aimed at assessing how a Bayesian MAMS design

may appear as an alternate way of handling such issues.
Indeed, Bayesian designs are an efficient way to achieve
valid and reliable evidence in clinical trials, given that
the interpretation of the data is unrelated to preplanned
stopping rules and is independent of the number of
interim views [9, 10]. Such Bayesian approaches for
MAMS trials have been rarely used, notably with one
proposal for normal outcomes [11]. To allow a direct
and simple use of the Bayes approach, we focused on
the probability of success in binomial trials, restricting
our considerations to conjugate beta priors. Moreover, it
can then be easily updated along the trial, and allowance
for early stopping for futility can be made. This setting
of Bayes binomial trials was also recently used to com-
pare the Bayesian approaches to frequentist hypothesis

testing in two-arm clinical trials [12]. Actually, our ap-
proach could be also viewed as an extension to the
MAMS trials with binary outcomes of that proposed by
Zalavsky for two-arm trials [12]. Indeed, both ap-
proaches use similar beta-binomial modeling (with in-
tegers [12] or not as beta parameters), and posterior
difference of beta as the quantity of interest for deci-
sion making. However, while Zalavsky [12] focused on
deriving one-sided superiority and non-inferiority Bayesian
tests and their closeness to frequentist approaches, we pro-
vided stopping rules as decision-tools for interim analyses
due to the MAMS design, as Xie et al. did [13]. The scope
for extending this approach to the comparison of different
arms of experimental treatments against one control was
considered below.
This paper was motivated by a phase II randomized

controlled trial to compare on a binary outcome meas-
ure, two experimental drugs with conventional azaciti-
dine treatment for myelodysplastic syndrome patients, in
which the main objective was to drop the experimental
inefficacious arm. The trial was designed using a modi-
fied two-stage Simon’s design [14], allowing with small
sample sizes of 40 patients per arm in the first stage to
control the type I error accurately at the pre-specified
level of 0.15 with a statistical power of 0.80. At the end
of this first stage, no decision of dropping any arm was
made. We wondered whether the use of a Bayes ap-
proach may have modified the design, and subsequent
analyses.
Thus, the objective of this paper was to redesign the

Bayesian adaptive design originally proposed by Xie, Ji
and Tremmel for seamless phase I/II trials [13], focusing
on the comparison of multiple experimental drugs to a
control drug on a binary criterion measure.
First, we applied our design to the real dataset from

the ongoing phase II randomized trial conducted on 120
patients that motivated this work. Then, we assessed its
performance using a simulation study. Some discussion
and conclusions are finally provided.

Methods
Motivating example
We used data from a phase II clinical trial of an inter-
national study conducted in 120 patients with myelodys-
plastic syndrome (MDS) who were randomized across
three treatment arms. Although the original design was
non-Bayesian [14], we reanalyzed data from the first
stage of this trial to illustrate the interest of Bayes ap-
proaches. Because the trial is still ongoing in a second
stage, no further details about the treatment arms will
be provided. Each group of 40 patients received one of
the following treatments: A (reference treatment, control
group), B or C (two combinations of new drugs with
the reference treatment, experimental groups). It was
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hypothesized that the response rate in the control
group would be 0.30 and that a response rate of at least
0.45 would indicate that a combination was sufficiently
promising to be included in further studies.

Bayesian multi-Arm multi-stage design
Let X denote the treatment arm, where X = 0 is the con-
trol arm, and X = 1, …, K denote K distinct new drugs to
be tested. Suppose that n patients are randomly allocated
to each of the (K + 1) arms. For simplicity, let us con-
sider a balanced design, although any imbalanced fixed
design could be considered.
Consider a binary outcome, Y, where Y = 1 denotes a

response to treatment and Y = 0 denotes the absence
of a response. The observed number of responses
among the nk patients allocated to arm k is given by
yk ¼

Pn
i¼1yi1i∈k , where 1i∈k denotes the indicator func-

tion (1i∈k ¼ 1 if the ith patient has been allocated to
arm k, and 0 otherwise). Note that the selection does
not need to involve a measure of efficacy [2], so that
response could be defined according to a toxicity grading
scale.
We used a Bayesian inference framework, where πk ¼ P
Y ¼ 1jX ¼ kð Þ denotes the probability of response in the
arm X = k (k = 0, …, K). Using a beta Be(ak , bk ) prior for
πk, the posterior probability of πk is still a beta distribution
given by Be(ak + yk , bk + nk � yk ) due to the natural con-
jugate property of the beta family for binomial sampling.
The main aims of MAMS trials are to, over a range of

K new treatments, select those that prove sufficiently
efficacious and avoid those drugs that are unexpectedly
ineffective. Let yki denote the number of responses
observed at stage i among the nki patients randomly
allocated to arm X = k (k = 0, …, K).
Thus, several stopping decision criteria were proposed,

derived from the proposals of Xie [13].
First, the inefficacy of each drug was assessed by com-

parison to some historical minimal value of interest,
which was originally called the “minimum required
treatment response rate” (MRT) by Xie et al. [13]. Thus,
the futility rule (denoted as Rule 2 in [13]) is defined by
the following posterior probability:

P πk < p0jyki; nki
� �

> γ1 ð1Þ

where p0 denotes the MRT usually defined from some
historical control rates, and γ1 is some threshold of a
“high” probability of inefficacy.
In randomized phase II settings, the selection of a new

drug is based on evaluating the potential benefits of the
experimental treatment over the control arm [15]. Thus,
one may consider dropping a new drug from further
studies only if there is a rather low posterior probability
that this drug is beneficial over the control by some

targeted minimal level while on the opposite selecting
the drug if there is sufficient information to declare that
one treatment is better than the other, that is when its
benefit reaches a so-called “sufficient treatment response
rate” (STR). Two resulting decision criteria and stopping
rules were defined from the posterior distribution of the
difference in response rates of the experimental over the
control arm at the ith stage as follows:

P πk−π0 > △ jyki; nki
� �

< γ2 ð2Þ

P πk−π0 > δ�jyki; nki
� �

> γ3 ð3Þ

In the original paper [13], Eq. (2) is referred to as Rule 3,
with Δ set at the “targeted difference in response rate”, and
Eq. (3) is referred to as Rule 4, with δ� set at the STR.
However, whereas Xie [13] used the Eq. (2) to define
expansion for the seamless phase I/II design, in the
present study, we only considered select/drop decisions
due to the phase II design. More specifically, Eq. (2)
attempts to assess the futility of experiencing experi-
mental arm k given the posterior probability that its
response rate compared to that observed in the con-
trol arm is below some decision threshold; such a
rule (2) can be considered as the posterior probability
of the alternative hypothesis, as commonly used to
evaluate the success of an experiment. Thus, such a
rule was proposed to provide an answer closest to the
frequentist setting where one wishes to test the null
against the alternative. Note that when Δ = 0, the
equation (2) reduces to the posterior probability that
the experimental treatment is better than the control,
a quantity that was first proposed in the setting of
phase 2 single arm clinical trials [15] and more re-
cently used to provide adaptive randomized allocation
probability [16, 17]. By contrast, Eq. (3) aims at quan-
tifying the posterior probability that response rate in
experimental arm k is above that of the control arm by
some sufficient treatment response rate. From a practical
perspective, the alternative hypothesis in terms of differ-
ences in response rates that aim for better performance
(or non-inferiority) could be considered, and appear very
natural in the clinical environment.
Contrary to the posterior density given in (1), the

second and third rules involve the difference of two beta
distributions ( πk and π0 , respectively), which is no
longer a beta distribution but a complicated distribution
as reported in [12]. This difference has been computed
in relation to Appell’s hypergeometric functions [18, 19];
otherwise, a normal approximation has been proposed;
however, when the difference between the sample
proportions is small, the approximate probability is not
equal to the exact probability [19]. Exact calculation is
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possible in a few special cases [20], while numerical
integration is usually performed, like in [12, 15]:

Pðπk < π0 þ d yk ; nk ; y0; n0
�� �

¼
Z p−d

0

F πk þ djak þ yk ; bk þ nk−yk
� �

� f pja0 þ y0; b0 þ n0−y0ð Þdp
ð4Þ

where F(|a,b) and f(|a,b) are the cumulative distribution
function and the density of the beta random variable
π ~ Be(a,b), respectively.

The priors
Regarding the prior on the response probability, πk;
k ¼ 0; …;K, the amount of past information is likely
different according to the randomization arm. While
it is expected that the elicitation of the prior on π0

could be based on previous trial results and expert opinion,
that on πk; k > 0, is likely to be less informative.
First, the use of flat non-informative priors was moti-

vated by several considerations. It allows the posterior to
be dominated by the data rather than by any prior over-
optimistic views regarding the experimental arms. Thus,
it insures that critical amount of clinical information is
required as a basis for deciding whether the experimen-
tal arm will be administered to a large number of
patients in a Phase III clinical trial. Moreover, such
domination by the data allows the trial results to be used
by others who have their own priors [15].
However, it is widely recommended to use different

prior densities to assess the robustness of the trial
results. Thus, we performed sensitivity analyses to the

prior choice, using distinct beta distributions reflecting
increased amount of prior information throughout the
effective sample size (ESS) [21]. Given the ESS of a beta
Be(a,b) prior is given by ESS=a+b, one may modifying
the beta parameters for modifying the prior variance
while the prior mean is fixed, providing sensitivity
analyses to the prior information translated into a sam-
ple size (Fig. 1). Prior mean was either “enthusiastic” or
“skeptical”, as we did previously [22]. These terms
“enthusiastic” and “skeptical” priors refer to either the
optimistic view of a beneficial treatment effect at least
equal to that expected when planning the trial, or to the
pessimistic view of no treatment effect as compared to the
control [23]. Both priors allow encompassing the hetero-
geneity in physician prior opinion before to the trial.

Decision thresholds
To be applied, some arbitrary constants (further denoted
as “design parameters”) must be defined. First, the
choice of the minimal response rate (p0) could be guided
by some historical controls or the clinical experience of
the control group in the disease under study, and the
response rate under the null hypothesis is commonly
chosen in uncontrolled Phase II trials. Second, we
choose Δ ¼ 0 as a targeted minimal response rate; this
value represents no difference between the treatments.
δ� ¼ 0:15 was chosen as a sufficient response rate; this
value would reflect a clinically important treatment
effect. Both values delineate the underlying null and
alternative hypotheses in a frequentist framework.
Otherwise, the number of design stages, that is, the

frequency of the computation of the rules described
above that conduct stopping decisions, should be
defined. Moreover, the threshold values γ1; γ2 and γ3
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Fig. 1 Guide calibration of the prior variance according to the prior mean and the prior information translated into the so-called effective sample size
(ESS) – For instance, when prior mean is 0.50, the variance is 0.125, 0.083, 0.042, and 0.027 for a prior effective sample size of 1, 2, 5 and 10, respectively
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are statistical quantities that should be set to some pre-
determined values allowing for the good performance of
the design, likely related to the quantity of information
in the trial (thus, of the entire sample size). Xie in 2012
[13] suggested that γ1 and γ3 should be high (>0.8), and
γ2 should be at most 0.10. Obviously, such values widely
govern the occurrence of false positive (or negative)
decisions. Nevertheless, larger than traditional values of
false positive rates are commonly used in MAMS
settings, up to 0.50 at the first stage [8], notably because
one wishes to make decision on dropping arms early
while maintaining a low false negative decision rate.
Thus, we first proposed to compute the decision rules

after every observed response in the trial and then
attempt to define some criteria for design choices, and
their impact in terms of sample size.

Results
Illustrative case study
We first apply the proposed design to the phase II
randomized trial with K=2 new drugs compared against
the control. The Jung trial design [14] was based on

p0=0.30 and δ=0.15, with type I and type II errors fixed
at 0.15 and 0.20, respectively. Of the 120 enrolled pa-
tients, 44 (36.7 %) exhibited a response, including 15 in
arm A, 13 in arm B, and 16 in arm C, resulting in ob-
served response rates of 0.3750, 0.3250 and 0.40,
respectively.
Bayes analyses were applied, first using in each arm

non-informative beta priors either the Jeffreys prior
Be(1/2,1/2) or the uniform prior Be(1,1) resulting in
ESS=1 or 2, respectively. Then, as reported above, a
sensitivity analysis to the prior choice was performed;
for the control arm, only skeptical priors - centered on
the null (prior mean=0.3) hypothesis- were used, while
both skeptical and enthusiastic – centered on the alter-
native (prior mean=0.45) hypothesis- priors were de-
fined. Prior effective sample size was set at 10 in control,
and varied from 1 or 5 in experimental arms.
Figure 2 displays the prior and posterior distribution

of response rates in each randomized arm at the end of
enrollment, illustrating how the posterior distribution of
each experimental arm was not markedly affected by the
prior information as translated into the (prior) effective
sample size or its location. At the end of the trial,
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Fig. 2 MDS trial- Sensitivity analyses of the distribution of response rate in each treatment arm according to the prior choice in terms of location
(non-informative centered on 0.5, skeptical centered on 0.3 or enthusiastic centered on 0.45) and effective sample size (ESS ranging from 1–5 in
experimental arms up to 10 in control). Upper plots display the prior densities while lower plots display the posterior densities. The left plots refer
to the non-informative situation in which all of the three priors are uniform over [0,1] (Be (1,1)) or distributed according to Jeffreys prior (Be (1/2,1/2);
the middle and right plots refer to the situations in which the priors were either skeptical (middle plots) or enthusiastic (right plots); each uses various
effective sample sizes (ESS) denoting various amounts of prior information
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according to the prior, the posterior mean response rate
ranged from 0.3600 to 0.3810 in arm A, from 0.3222 to
0.3389 in arm B, and from 0.3889 to 0.4056 in arm C
(Table 1).
We retrospectively applied the decision rules defined

in (1)-(3) with threshold values set at 0.9, 0.1 and 0.9,
respectively. Figure 3 displays the evolution of the pos-
terior probabilities and stopping criteria over time, when
using non-informative priors.

The application of the first stopping criterion does not
allow either arm to be eliminated, indicating that there is
a small probability that either response rate is below the
historical response rate of 0.30; indeed, the posterior esti-
mates were close to and mainly above 0.30, except for arm
B, where the response rate was lower than those of the
other two arms for the 20 first enrolled patients (Fig. 2,
left). This finding was illustrated in the second criterion
computed over the trial, where the cut-off threshold of the

Table 1 MDS results – Sensitivity analyses

Prior ESS Posterior mean Decision criteria

Arm A B C A B C A B C B C B C

Rule 1 Rule 1 Rule 1 Rule 2 Rule 2 Rule 3 Rule 3

MLE 0 0 0 0.3750 0.3250 0.4000

Non informative 1 1 1 0.3780 0.3293 0.4024 0.1505 0.3576 0.0863 0.3198 0.5906 0.0286 0.1197

2 2 2 0.3810 0.3333 0.4048 0.1384 0.3346 0.0789 0.3223 0.5894 0.0281 0.1161

Sk eptical 10 1 1 0.3600 0.3244 0.3976 0.1900 0.3833 0.0971 0.3575 0.6437 0.0310 0.1340

10 5 1 0.3600 0.3222 0.3976 0.1900 0.3885 0.0971 0.3465 0.6437 0.0262 0.1340

10 1 5 0.3600 0.3244 0.3889 0.1900 0.3833 0.1074 0.3575 0.6148 0.0310 0.1099

Enthusiastic 10 1 1 0.3600 0.3222 0.3889 0.1900 0.3885 0.1074 0.3465 0.6148 0.0262 0.1099

10 5 1 0.3600 0.3280 0.4012 0.1900 0.3640 0.0889 0.3716 0.6570 0.0338 0.1422

10 1 5 0.3600 0.3389 0.4012 0.1900 0.2996 0.0889 0.4128 0.6570 0.0393 0.1422

The first line refers to the maximum likelihood estimate of response probability of each treatment arm, while the other lines refer to Bayes posterior estimates
with computed decision criteria based on different combinations of the priors
MLE maximum likelihood estimate, ESS effective sample size, Decision criteria use p0=0.3, Δ=0, δ*=0.15: p0 refers to the minimum required treatment response
rate of the first rule (Eq. 1); Δ to the targeted difference of the second rule (Eq. 2), and δ* to the sufficient treatment response rate of the third rule (Eq. 3)
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second decision criterion was crossed for arm B after 5,
13, 14, 18, and 22 enrolled patients in that arm, illustrating
a low (<0.10) posterior probability that the response rate
in that arm was above that observed in the control. As ex-
pected, the third decision criterion never required that the
study be stopped with the conclusion that the benefit of
any experimental arm was at least the 0.15 expected. Note
that all the three decision criteria at the end of the trial
were slightly affected by the prior, with close values that
do not modify any decision (Table 1).
These findings suggest that arm B could have been

dropped from the trial based on a sample of approxi-
mately 20 instead of the 40 actually recruited patients,
although further results (with a sample size of at least 25
patients) do not confirm such a decision. This could be
related to some “drift” towards improved response rates
over the course of the trial. This may also point out that
the probability in Eq. (2) can be highly variable in the
beginning of the trial when the number of patients is
small, resulting in possibly false decisions [17].
We thus decided to assess the performances of this

approach and more specifically to assess the quantity of
information required to drop an ineffective arm or an

efficacious arm, according to decision thresholds related
to false decision probabilities.

Simulation study
Simulation settings
Once the Bayesian design has been structured, statisticians
use simulations and adjust tuning parameters to comply
with a set of targeted operating characteristics. Thus, we
assessed the operating characteristics of the proposed
MAMS design through simulations that mimic the MSD
trial, although with clear-cut ineffective or effective drugs,
and in which stopping decision criteria (1)-(3) were applied.
We considered several situations of drug inefficacy,

that is, when the benefit in terms of response rate was
null or below that expected of 0.15 (true benefit set at 0,
0.05, and 0.10 compared to an expected response rate of
0.30), and situations of drug efficacy (true benefit at
0.15, 0.20, 0.25, 0.30 and 0.45, over the 0.30 expected
response rate). Moreover, among the K=2 new drugs,
several scenarios combining these various treatment
benefits were distinguished, either similar across new
drugs or not. The first scenario simulated the case in
which the efficacies of treatments B and C were similar

Table 2 Simulation results in terms of absolute bias based on a fixed sample size for increasing benefit of the experimental arm– all
priors on pk (k=A,B,C) are non-informative Be (1,1) priors; p0=0.30; n=40 or 100 patients per arm

Sample size True benefit Posterior mean estimate biases Mean square errors Decision criterion 1 Criterion 2 Criterion 3

dB pA pB pA pB A B B B

40 0.00 0.0086 0.0090 0.0048 0.0048 0.4850 0.4835 0.5012 0.1414

0.05 0.0082 0.0078 0.0048 0.0052 0.4854 0.2982 0.6358 0.2399

0.10 0.0100 0.0042 0.0050 0.0054 0.4798 0.1632 0.7440 0.3518

0.15 0.0097 0.0014 0.0049 0.0055 0.4798 0.0753 0.8352 0.4803

0.20 0.0098 −0.0001 0.0049 0.0057 0.4795 0.0297 0.9028 0.6132

0.25 0.0096 −0.0013 0.0049 0.0056 0.4800 0.0093 0.9477 0.7322

0.30 0.0095 −0.0049 0.0049 0.0055 0.4804 0.0027 0.9731 0.8271

0.35 0.0088 −0.0070 0.0048 0.0051 0.4841 0.0005 0.9886 0.8999

0.40 0.0109 −0.0087 0.0048 0.0047 0.4749 0.0001 0.9958 0.9477

0.45 0.0092 −0.0116 0.0049 0.0043 0.4808 0.0000 0.9984 0.9755

100 0.00 0.0042 0.0032 0.0020 0.0020 0.4863 0.4925 0.4960 0.0460

0.05 0.0037 0.0030 0.0020 0.0022 0.4885 0.2156 0.7042 0.1363

0.10 0.0040 0.0014 0.0020 0.0023 0.4866 0.0661 0.8503 0.2896

0.15 0.0038 0.0012 0.0020 0.0024 0.4881 0.0128 0.9404 0.4925

0.20 0.0040 −0.0003 0.0020 0.0024 0.4858 0.0015 0.9807 0.6875

0.25 0.0027 −0.0009 0.0020 0.0023 0.4947 0.0001 0.9950 0.8473

0.30 0.0046 −0.0017 0.0020 0.0023 0.4836 0.0000 0.9989 0.9362

0.35 0.0042 −0.0032 0.0020 0.0022 0.4856 0.0000 0.9998 0.9792

0.40 0.0032 −0.0037 0.0020 0.0021 0.4922 0.0000 1.0000 0.9952

0.45 0.0036 −0.0047 0.0020 0.0018 0.4897 0.0000 1.0000 0.9992

N is the sample size; pA, pB and pC refer to the posterior means of response probability in arms A, B and C, respectively; dB refers to the true benefit of B over A
in terms of response probability. Bold data refer to the null hypothesis of absence of any treatment difference (dB=dC=0), or to the alternative hypothesis of an
expected true 0.15 benefit of treatment B (dB=0.15)
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to that of treatment A ( πB ¼ πC ¼ πA ). In further
scenarios, we simulated the case in which only arm B
was more efficient than A (πC ¼ πA; πB ¼ πA þ dB). In
the latter, we simulated the cases where both B and C
treatments had a higher probability of response than
A (πC ¼ πA þ dC; πB ¼ πA þ dB).
We simulated samples of n patients. In each simulation,

the treatment arm was generated from a multinomial
distribution mult( n; 13 ;

1
3 ;

1
3 ), and the response-indicating

efficacies were generated from Bernoulli distributions
B(πk).
For each scenario, data were analyzed using Bayesian

inference. The priors of πk were non-informative beta
Be(1,1). Posterior probabilities in (1) were easily
obtained as beta cumulative density functions, whereas
those of (2) and (3) required numerical integration –see
Eq. (4). We first computed those criteria for fixed sam-
ple sizes. Then, any arm could be dropped if evidence
suggested that it was unlikely to be effective (futility
rules 1 and 2) or if sufficient evidence of effectiveness
over the control had already been determined (rule 3).
Furthermore, to take into account the high variability in

differences of beta distributions based on small samples
[16], those rules only applied once at least 15 patients
had been enrolled in each arm.
A total of N=10,000 independent replications were

performed, with the results averaged across the N re-
peated simulations. In all simulations, design parame-
ters were set to be constant at p0=0.30, △ ¼ 0 and
δ� ¼ 0:15 unless otherwise specified.
All analyses were performed using the R statistical

software (http://www.R-project.org/).

Simulation results
Threshold calibration
To determine the decision thresholds, as suggested by
Xie [13], some simulations were first performed, con-
sidering a 2 fixed parallel arm designs based on n=40
and n=100 patients per arm (Table 2). In all cases,
biases were low, mainly below 0.01 (when n=40) or
0.005 (when n=100), with lower mean square errors
(MSEs). The first decision criterion, that is, the posterior
probability that the response rate was lower than 0.3 was
nearly equal to 0.5 in the control arm or when there was
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no drug benefit (dB=0), as expected, and then decreased
from 0.30 (when dB=0.05 and n=40) down to 0.01 (when
dB=0.25) to reach 0 when dB=0.45. In parallel, the
difference between the probabilities of a response for B
over the control arm A increased with the benefit of B.
Moreover, a larger sample size led to a higher probability
of detecting a smaller benefit, so that for a given bene-
fit, the decision threshold depends on the amount of
information.
We thus computed the three decision criteria according

to the true benefit of the experimental arm (dB ranging
from −0.2 to 0.45) and to the sample size (ranging from
10 to 100 patients per arm), each based on 10,000 inde-
pendent replications (Fig. 4). Left plots of Fig. 4 quantify
to what extent the stopping rule (1) is influenced by the
sample size and the actual benefit of the experimental
treatment arm – beside the threshold cut-off value, ex-
pectedly. Notably, it shows that a threshold of 0.95 with
samples of n=40 patients per arm, allows on average arms
with response rates below 0.15 of that expected to be
dropped, while those with response rates below 0.10
could be dropped only when the sample size reached
n=100. Similarly, when the experimental arm is com-
pared to the control (middle plots), rule 2 evaluating
the futility of trial continuation, with a 0.05 threshold,

allows on average arms with a response probability at
least 0.20 below that of control to be dropped when
the sample size was n=40, and those with response
probability 0.15 below to the control when n=100. In
contrast, a threshold of 0.95 for rule 3 (right plots)
will enable one to determine that the benefit of the
experimental over the control is at least 0.40 with
n=40, and nearly 0.30 with n=100.
Obviously, when the threshold values were less

stringent, the increased ability of the design in dropping
less different arms compared to the control could be
counterbalanced by its increase propensity of dropping
efficacious arms. This was the further aim of the simu-
lation study to assess those false (positive or negative)
decision rates.

Assessing false decision rates
Tables 3, 4 and 5 summarize the simulation results for
the arms dropped at the end of the first stage and the
absolute bias in their treatment effect estimates on the
definitive outcome at the stopping decision based on
rules 1, 2 and 3, respectively, when the sample size was
set at n=40, 100 per arm, and the threshold values were
set at stringent values, that is, of γ1 ¼ 0:95, γ2 ¼ 0:05
and γ3 ¼ 0:95:

Table 3 Simulation results for dropping treatment arms based on the first rule (R1) and the absolute bias for such arms in the
estimated treatment effect at the time of dropping decision– all priors on pk (k=A,B,C) are non-informative beta(1, 1) priors, when
decision threshold is set at 0.95

Sample size True benefit Posterior mean estimate biases Enrolled sample sizes % Early stopping

dB dC pA pB pC nA nB nC A % early B % early C

40 −0.20 0.00 −0.0051 0.0305 −0.0063 36.3504 15.0121 36.3180 15.32 % 96.09 % 15.15 %

−0.15 0.00 −0.0058 0.0061 −0.0057 36.2548 21.3829 36.3305 15.43 % 79.69 % 15.19 %

−0.10 0.00 −0.0063 −0.0066 −0.0062 36.3540 27.9657 36.3594 15.20 % 53.98 % 15.36 %

−0.05 0.00 −0.0056 −0.0076 −0.0072 36.2719 33.0725 36.2428 15.44 % 30.66 % 15.86 %

0.00 0.00 −0.0050 −0.0057 −0.0063 36.2726 36.4040 36.4653 15.77 % 15.11 % 14.85 %

0.05 0.00 −0.0073 −0.0034 −0.0049 36.2420 38.1107 36.3738 15.75 % 7.33 % 15.23 %

0.10 0.00 −0.0077 −0.0011 −0.0049 36.2214 39.1845 36.3761 15.91 % 2.92 % 14.88 %

0.15 0.00 −0.0044 −0.0008 −0.0070 36.4279 39.6107 36.2580 14.86 % 1.35 % 15.47 %

0.20 0.00 −0.0044 −0.0016 −0.0060 36.3945 39.8325 36.3640 15.06 % 0.55 % 15.29 %

100 −0.20 0.00 −0.0206 0.0305 −0.0205 84.2873 15.4339 84.3159 22.80 % 99.99 % 22.82 %

−0.15 0.00 −0.0188 −0.0007 −0.0203 84.7484 24.5031 84.4050 21.95 % 99.27 % 22.22 %

−0.10 0.00 −0.0202 −0.0212 −0.0197 84.4487 43.6230 84.5338 22.31 % 85.84 % 22.44 %

−0.05 0.00 −0.0191 −0.0276 −0.0199 84.8712 66.7741 84.3454 21.99 % 52.46 % 22.57 %

0.00 0.00 −0.0216 −0.0207 −0.0216 84.0536 84.2135 83.8033 22.86 % 22.67 % 23.36 %

0.05 0.00 −0.0203 −0.0115 −0.0196 84.6003 93.1786 84.7271 22.28 % 8.66 % 22.24 %

0.10 0.00 −0.0194 −0.0050 −0.0202 84.6521 97.3946 84.1845 21.94 % 3.08 % 22.76 %

0.15 0.00 −0.0194 −0.0023 −0.0202 84.8085 98.9283 84.6060 22.00 % 1.20 % 22.06 %

0.20 0.00 −0.0199 −0.0024 −0.0215 84.5757 99.4983 84.1044 22.02 % 0.56 % 22.94 %

pA, pB and pC refer to the posterior means of response probability in arms A, B and C, respectively; p0=0.3 (minimum required treatment response rate). Bold data
refer to the null hypothesis of absence of any treatment difference (dB=dC=0), or to the alternative hypothesis of an expected true 0.15 benefit of treatment B (dB=0.15)
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As expected, when the treatment was less efficacious
than expected, the first rule allowed the trial to be
stopped early in 30.7–52.5 % of cases when the absolute
difference in response rates was 5 %, to 96–99 % of cases
when the absolute difference was down to 20 % (Table 3).
The mean sample size required to detect inefficacy was
25 patients for a decrease of 0.15 in response rates,
down to 15 for a 0.20 decrease. Otherwise, the false
negative stopping rates due to this first rule in the case
of beneficial treatment were low, with values of approxi-
mately 15–23 % when there was no benefit, less than
10 % when the benefit was 5 %, and less than 1 % for
higher benefits (Table 3).
To handle the control arm, rule 2 was then applied to

detect the lack of treatment benefit (Table 4). Com-
pared to the previous first rule, a decision of stopping
early in case of actual lower response rates in the ex-
perimental group than in the control group appears to
be reached similarly for small differences, with, for in-
stance, a decision to stop in 32 % of cases compared to
31 % in the case of a 5 % response rate below that of
the control for n=40 and in 46 % of cases compared to
52 % for n=100. In contrast, false negative decisions of
dropping the arm were increased compared to rule 1 in

the same situation; for instance, for a minor benefit of
5 %, the second rule incorrectly proposes stopping for
futility in 13–16 % of cases compared to 7–9 % based
on the first rule when n=40 and n=100, respectively.
Expectedly, when γ2 ¼ 0:10, the results were modified,
with lower false decision rates (Table 6).
Finally, when evaluating the third rule in detecting

true benefits, the average sample sizes were decreased
to about 10 patients per arm when the absolute benefit
increased to 45 %, while the false positive rate was only
6–7 % in the case of no benefit, likely related to the
threshold probability of γ3 ¼ 0:90 (Table 5). As expected,
these figures were modified when using a less stringent
probability threshold of γ3 ¼ 0:80 where the false positive
rate reached 18–20 % in absence of any benefit (Table 7).

Discussion
There has been increasing evidence that the effectiveness
of clinical trials can be improved by adopting a more in-
tegrated model that increases flexibility and maximizes
the use of accumulated knowledge. We focused this
work on adaptive MAMS designs to select effective
drugs among a fixed set of new drugs compared to a

Table 4 Simulation results for dropping treatment arms based on the second rule (R2) and the absolute bias for such arms in the
estimated treatment effect at the time of dropping decision – all priors on pk (k=A,B,C) are non-informative beta(1,1) priors, when
decision threshold is set at 0.05

Sample size True benefit Posterior mean estimate biases Average sample sizes % Early stopping

n dB dC pA pB pC A B C B C

40 −0.20 0.00 0.0446 0.0410 −0.0036 34.7688 19.0005 34.1757 83.18 % 20.90 %

−0.15 0.00 0.0407 0.0196 −0.0049 35.4230 23.9111 34.1465 65.96 % 21.12 %

−0.10 0.00 0.0384 0.0076 −0.0045 36.0178 28.2528 33.9857 47.31 % 21.51 %

−0.05 0.00 0.0325 0.0004 −0.0039 36.8988 31.7086 34.2757 31.84 % 20.67 %

0.00 0.00 0.0289 −0.0046 −0.0034 37.5750 34.3312 34.2628 20.68 % 20.55 %

0.05 0.00 0.0262 −0.0053 −0.0046 38.1404 35.9159 34.2368 13.61 % 21.01 %

0.10 0.00 0.0212 −0.0068 −0.0038 38.6097 37.1804 34.2661 8.79 % 20.81 %

0.15 0.00 0.0184 −0.0079 −0.0043 39.0075 38.0515 34.3098 5.79 20.69 %

0.20 0.00 0.0163 −0.0098 −0.0051 39.2281 38.5864 34.2477 4.01 % 20.85 %

100 −0.20 0.00 0.0458 0.0362 −0.0144 80.7525 22.0750 80.0766 99.05 % 26.36 %

−0.15 0.00 0.0427 0.0103 −0.0153 81.9307 34.6011 79.9595 91.50 % 26.58 %

−0.10 0.00 0.0418 −0.0063 −0.0152 83.5055 51.2404 79.0897 71.48 % 27.30 %

−0.05 0.00 0.0344 −0.0142 −0.0153 87.6493 67.8997 80.1142 46.17 % 26.49 %

0.00 0.00 0.0277 −0.0161 −0.0157 90.8189 79.7603 79.7672 26.62 % 26.82 %

0.05 0.00 0.0247 −0.0149 −0.0154 93.1423 86.5031 79.4970 15.96 % 26.65 %

0.10 0.00 0.0202 −0.0130 −0.0157 95.3857 91.6455 78.7749 9.26 % 27.54 %

0.15 0.00 0.0154 −0.0119 −0.0155 96.8064 94.2754 79.4074 6.15 % 27.04 %

0.20 0.00 0.0112 −0.0100 −0.0147 97.8693 96.1853 80.1669 4.03 % 26.14 %

pA, pB and pC refer to the posterior means of response probability in arms A, B and C, respectively; Δ=0. Bold data refer to the null hypothesis of absence of any
treatment difference (dB=dC=0), or to the alternative hypothesis of an expected true 0.15 benefit of treatment B (dB=0.15)
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control. So-called screening or select/drop designs aim
at proposing changes in treatment regimens with the
possible elimination of a treatment group based on in-
formation derived from accumulated data. Such designs
appear particularly useful for rapidly evolving interven-
tions and drugs, especially when outcomes occur suffi-
ciently soon to permit adaptation of the trial design.
This setting in which several treatments are compared
to a single control allows heterogeneity in patient popu-
lations and disease courses to be considered [24, 25].
However, the heterogeneity in objectives, design, data
analysis, and reporting of these multi-arm randomized
trials has recently been highlighted [26]. Moreover, in as-
certaining which treatment modalities are most effective,
the presence of K experimental arms also introduces
complexity. We used a binary outcome measure, given
that it appears to be the most widely used endpoint in
phase II trials. Of note, such a binary criterion in MAMS
has been used only in frequentist designs [6, 27].
Indeed, most of the proposed MAMS designs, including

optimal designs, used a frequentist framework for inference

[4–8, 14, 28]. The application of Bayesian adaptive design
methods has recently been advocated to maximize the
knowledge-creating opportunity of a learning phase study
[13]. Surprisingly, although several designs have used Bayes-
ian adaptive allocation methods[17, 29], Bayesian adaptive
designs in terms of sample size or treatment allocation have
been proposed mainly in the early phases of cancer drug
development, notably in the setting of seamless phase I/II
trials [13]. In the MAMS setting, Bayesian adaptive phase II
screening designs have been proposed only for selecting/
dropping arms using normal outcome measures [11], and
more frequently by modifying the allocation probabilities
to each arm. For instance, to select among treatment com-
binations of multiple agents, patients were adaptively allo-
cated to either one of the treatment combinations based
on posterior probabilities of all hypotheses of superiority
of each combination based on a continuous endpoint
[29]. Even when comparing MAMS designs to adap-
tive randomization designs, only the latter were based
on Bayesian inference, whereas the former used test
statistics from grouped sequential methods [27].

Table 5 Simulation results evaluating Rule 3 when the threshold probability is set at 0.90

Sample size True benefit Posterior mean estimate biases Average sample sizes % Early stopping

dB dC pA pB pC A B C B C

40 −0.15 0.00 0.0092 0.0182 0.0254 39.9621 39.8136 37.9895 0.54 % 6.45 %

−0.05 0.00 0.0088 0.0237 0.0272 39.8054 38.8511 37.8795 3.56 % 6.90 %

0.00 0.00 0.0085 0.0254 0.0270 39.6095 37.9435 37.9783 6.69 % 6.53 %

0.05 0.00 0.0089 0.0324 0.0250 39.5103 36.5882 38.0288 11.66 % 6.37 %

0.10 0.00 0.0062 0.0384 0.0264 39.2740 34.3440 38.0311 19.85 % 6.37 %

0.15 0.00 0.0056 0.0416 0.0254 39.0452 31.9203 38.0610 29.96 % 6.22 %

0.20 0.00 0.0049 0.0451 0.0256 38.8153 28.6999 37.9511 42.93 % 6.61 %

0.25 0.00 0.0051 0.0423 0.0254 38.5798 25.0534 37.9815 57.41 % 6.60 %

0.30 0.00 0.0052 0.0369 0.0250 38.4489 21.2180 38.0583 71.85 % 6.33 %

0.35 0.00 0.0037 0.0261 0.0270 38.2338 17.3342 37.9999 83.87 % 6.49 %

0.40 0.00 0.0039 0.0098 0.0265 38.0706 14.1594 37.8966 92.38 % 6.79 %

0.45 0.00 0.0035 −0.0115 0.0266 38.0738 11.1299 37.9628 97.64 % 6.54 %

100 −0.15 0.00 0.0029 0.0093 0.0226 99.8389 99.4843 94.1617 0.55 % 6.49 %

−0.05 0.00 0.0031 0.0169 0.0237 99.3256 96.7377 93.7367 3.55 % 6.94 %

0.00 0.00 0.0020 0.0233 0.0222 99.0139 93.7839 94.1902 6.91 % 6.48 %

0.05 0.00 0.0013 0.0322 0.0224 98.3338 89.3276 94.1794 12.36 % 6.48 %

0.10 0.00 0.0012 0.0405 0.0227 97.6239 82.2664 94.1533 21.90 % 6.50 %

0.15 0.00 −0.0009 0.0509 0.0234 96.5788 71.2643 94.0376 37.94 % 6.60 %

0.20 0.00 −0.0025 0.0578 0.0235 95.7497 56.8519 94.0065 59.48 % 6.66 %

0.25 0.00 −0.0025 0.0577 0.0230 95.1262 41.9689 93.9749 79.99 % 6.71 %

0.30 0.00 −0.0030 0.0473 0.0235 94.5634 29.7273 93.9678 92.99 % 6.71 %

0.40 0.00 −0.0025 0.0119 0.0239 94.0066 15.1126 93.8206 99.84 % 6.79 %

0.45 0.00 −0.0027 −0.0110 0.0227 94.2995 11.7989 94.1851 100.00 % 6.48 %

pA, pB and pC refer to the posterior means of response probability in arms A, B and C, respectively; δ*=0.15. Bold data refer to the null hypothesis of absence of
any treatment difference (dB=dC=0), or to the alternative hypothesis of an expected true 0.15 benefit of treatment B (dB=0.15)
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We decided to focus on the select/drop decisions
while preserving the equilibrium of sample allocation
across arms. We first use stopping rules based on the
posterior probability of inefficacy (or of over-toxicity),
as previously performed in closed settings [30, 31].
Indeed, nearly all phase III trials include pre-specified
inefficacy/futility interim monitoring rules to stop the trial
early if the interim results strongly suggest that the experi-
mental treatment has no benefit over the control [32]. In
contrast, a phase II analysis in a phase II/III trial requires
more evidence that the experimental treatment works
better than the control [2]. Thus, we use the difference of
response probabilities between the treated group and con-
trol group as a simple Bayesian conditional measure of
evidence regarding the treatment benefit. This method
has been poorly used in a Bayesian context [12], possibly
because the precise prior density of the difference of two
independent beta is unknown. However, some analytical
works have been published [18–20], and more recently,
software to calculate the probability that one random vari-
able is greater than another has been provided (http://
biostatistics.mdanderson.org/SoftwareDownload/). When
this density can be approximated, it can be used in several
important applications. This illustrates how Bayesian
methods give direct answers to the questions that most
people want to ask, such as “which treatment is the best”
[10]. Moreover, the Bayesian tools enable decision making

based on the difference in response probabilities and the
quantification of probabilities of benefit of each possible
arm, which are more informative and transparent than p-
values. It could be combined with the adaptive design
methodology to provide a very flexible and efficient deci-
sion making process [33].
Due to the multiplicity of arms, we considered as the

primary motivating design that of Xie et al. [13] who fo-
cused on multiple dose levels, though our approach was
close to that proposed by Zalavsky et al. for tow-arm tri-
als [12]. Nevertheless, this exemplifies the large interests
and clinical applications of such Bayesian designs, unfor-
tunately still underused in clinical practice [34].
Since a common concern in Bayesian data analysis is

that an inappropriately informative prior may unduly
influence posterior inferences, we reran the analyses
using different priors, possibly distinguishing various
amounts of previous information across randomized
arms as quantified by the effective sample size. This
slightly modified the results of the clinical trial. We re-
stricted our considerations to conjugate beta priors so
that the prior probabilities of tested hypotheses could
be transformed into Bernoulli trials with a theoretical
(effective) sample size. This appeared an important
issue when applying Bayesian methods in settings with
a small to moderate sample sizes such as those pro-
posed for MAMS [21].

Table 6 Simulation results evaluating Rule 2 when the threshold probability is set at 0.10

Sample size True benefit Posterior mean estimate biases Enrolled sample sizes % Early stopping

dB dC pA pB pC A B C B C

40 −0.20 0.00 0.0625 0.0585 −0.0123 30.6959 13.8404 29.9078 92.23 % 34.59 %

−0.15 0.00 0.0601 0.0311 −0.0120 31.2312 18.3044 29.5173 79.84 % 35.56 %

−0.10 0.00 0.0567 0.0107 −0.0119 32.3427 22.4957 29.6238 63.89 % 35.43 %

−0.05 0.00 0.0506 −0.0027 −0.0126 33.5772 26.5306 29.7194 48.34 % 35.68 %

0.00 0.00 0.0480 −0.0122 −0.0123 34.5352 29.3818 29.5852 35.89 % 35.74 %

0.05 0.00 0.0386 −0.0166 −0.0109 35.7946 32.2020 29.7191 25.14 % 35.03 %

0.10 0.00 0.0337 −0.0178 −0.0107 36.7805 34.2756 29.8086 17.75 % 34.52 %

0.15 0.00 0.0300 −0.0176 −0.0122 37.6091 35.9146 29.5542 12.22 % 35.64 %

0.20 0.00 0.0268 −0.0180 −0.0111 38.1120 36.8978 29.8112 8.92 % 34.91 %

100 −0.20 0.00 0.0704 0.0581 −0.0229 66.7855 15.4632 65.8818 99.60 % 42.83 %

−0.15 0.00 0.0673 0.0252 −0.0230 68.2876 23.4374 66.0635 96.28 % 42.43 %

−0.10 0.00 0.0601 0.0007 −0.0229 71.7312 36.8674 66.5112 84.36 % 42.43 %

−0.05 0.00 0.0571 −0.0160 −0.0231 75.3970 51.5977 65.8379 64.18 % 43.02 %

0.00 0.00 0.0467 −0.0237 −0.0240 81.2572 66.4872 65.8151 42.25 % 42.95 %

0.05 0.00 0.0379 −0.0255 −0.0233 86.5612 76.7592 66.9099 27.22 % 41.95 %

0.10 0.00 0.0338 −0.0241 −0.0242 89.8261 83.4433 64.7309 18.46 % 43.92 %

0.15 0.00 0.0279 −0.0229 −0.0232 92.3335 88.1690 66.3140 12.66 % 42.48 %

0.20 0.00 0.0234 −0.0208 −0.0245 94.1323 91.5214 65.5106 8.98 % 43.34 %

pA, pB and pC refer to the posterior means of response probability in arms A, B and C, respectively; Δ=0. Bold data refer to the null hypothesis of absence of any
treatment difference (dB=dC=0), or to the alternative hypothesis of an expected true 0.15 benefit of treatment B (dB=0.15)
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Conclusions
Regardless of its inference, adaptive trial design is a
methodologically sound way to improve clinical trials
but adds significant complexity. This approach re-
quires boundary parameters to be chosen for stopping
decisions: Xie et al. in 2012 [13] reported the use of
a high criterion for action (γ2 =0.9) as a default value
based on a maximum cohort size of 36 (with 24
treated with the active dose and 12 treated with pla-
cebo), although calibration is often required. Thus, we
calibrated the values of these thresholds according to
the simulation study. Indeed, the choice of these
thresholds is highly dependent on our desire to
control false decision in either direction, as typically
considered in early trial phases. Otherwise, combining
stopping rules 1 and 2 appears to be another option
to improve such a control [33].
Finally, this adaptive Bayesian approach in which

existing information at the time of trial initiation is

combined with data accumulating during the trial has
also been used to identify the treatments that are
most beneficial for specific patient subgroups [35–38].
Such an approach, in the line of personalized medi-
cine, appears to be an interesting research area to
explore in the MAMS setting.
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Table 7 Simulation results evaluating Rule 3 when the threshold probability is set at 0.80

Sample size True benefit Posterior mean estimate biases Enrolled sample sizes % Early stopping

dB dC pA pB pC A B C B C

40 −0.15 0.00 0.0083 0.0320 0.0562 39.5748 38.6963 33.8148 3.64 % 18.64 %

−0.05 0.00 0.0063 0.0495 0.0568 38.7270 35.8578 33.7310 12.09 % 18.95 %

0.00 0.00 0.0049 0.0555 0.0581 38.1052 33.9250 33.5867 18.38 % 19.20 %

0.05 0.00 0.0016 0.0632 0.0563 37.5141 31.3987 33.8662 26.92 % 18.51 %

0.10 0.00 −0.0008 0.0691 0.0570 36.8763 28.0621 33.8537 38.65 % 18.55 %

0.15 0.00 0.0001 0.0720 0.0578 35.9576 24.3662 33.6137 51.87 % 19.22 %

0.20 0.00 −0.0002 0.0673 0.0561 35.5246 20.7723 33.8744 64.82 % 18.40 %

0.25 0.00 −0.0017 0.0575 0.0568 34.9601 16.9213 33.7372 77.56 % 18.91 %

0.30 0.00 −0.0043 0.0409 0.0575 34.3862 13.5320 33.6114 87.33 % 19.19 %

0.35 0.00 −0.0016 0.0196 0.0560 34.5481 10.7458 34.0309 94.31 % 17.94 %

0.40 0.00 −0.0033 −0.0069 0.0547 34.2171 8.5161 33.9205 97.80 % 18.43 %

0.45 0.00 −0.0023 −0.0372 0.0542 34.1941 6.8534 33.9756 99.23 % 18.33 %

100 −0.05 0.00 0.0032 0.0229 0.0559 98.8583 96.4597 82.6701 3.69 % 18.83 %

−0.05 0.00 −0.0006 0.0433 0.0563 96.1819 89.1834 82.5699 11.51 % 18.92 %

0.00 0.00 −0.0038 0.0577 0.0571 94.3563 82.2688 82.2694 19.21 % 19.14 %

0.05 0.00 −0.0060 0.0689 0.0570 92.3215 73.7509 82.5095 29.51 % 19.02 %

0.10 0.00 −0.0075 0.0778 0.0567 89.5994 63.0008 82.5545 43.27 % 18.97 %

0.15 0.00 −0.0088 0.0822 0.0574 87.6736 49.5431 82.5278 61.69 % 18.88 %

0.20 0.00 −0.0102 0.0771 0.0530 86.2653 37.2856 83.2202 77.99 % 18.15 %

0.25 0.00 −0.0113 0.0636 0.0558 84.2998 25.2895 82.5265 91.74 % 19.02 %

0.30 0.00 −0.0112 0.0448 0.0576 83.4348 17.4124 82.3130 97.39 % 19.14 %

0.35 0.00 −0.0114 0.0204 0.0558 83.0775 11.9089 82.5449 99.58 % 18.89 %

0.40 0.00 −0.0102 −0.0073 0.0552 83.3131 9.0623 82.9624 99.95 % 18.47 %

0.45 0.00 −0.0111 −0.0375 0.0585 82.5830 6.9659 82.3697 100.00 % 19.09 %

pA, pB and pC refer to the posterior means of response probability in arms A, B and C, respectively; δ*=0.15. Bold data refer to the null hypothesis of absence of
any treatment difference (dB=dC=0), or to the alternative hypothesis of an expected true 0.15 benefit of treatment B (dB=0.15)
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