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We introduce an unsupervised classification framework that leverages a multi-scale wavelet
representation of time-series and apply it to stock price jumps. In line with previous work,
we recover the fact that time-asymmetry of volatility is the major feature that separates
exogenous, news-induced jumps from endogenously generated jumps. Local mean-reversion
and trend are found to be two additional key features, allowing us to identify new classes of
jumps. Using our wavelet-based representation, we investigate the endogenous or exogenous
nature of co-jumps, which occur when multiple stocks experience price jumps within the same
minute. Perhaps surprisingly, our analysis suggests that a significant fraction of co-jumps
result from an endogenous contagion mechanism.

price jumps | classification | endogeneity | mean-reversion | trend | wavelets | co-jumps

Extreme events and cascades of events are widespread occurrences in both natural
and social systems (1). Examples include earthquakes, volcanic eruptions,

hurricanes, epileptic crises (2, 3), epidemic spread, financial crashes (4–6), economic
crises (7, 8), book sales shocks (9, 10), riot propagation (11, 12) or failures in
socio-technical systems (13). Understanding the origin of such events is essential
for forecasting and possibly stabilizing their dynamics.

A widely studied question is the reflexive, self-exciting nature of those shocks.
The concept of financial market reflexivity was introduced by Soros in (14), to
describe the idea that price dynamics are mostly endogenous and arise from internal
feedback mechanisms, as was first surmised by Cutler, Poterba and Summers in
1988 (15) (see also (16)). Extreme events, in particular, often arise from feedback
mechanisms within the system’s structure (1, 17, 18). Quantifying the extent of
endogeneity in a complex system and distinguishing events caused by external
shocks from those provoked endogenously, and more generally identifying different
classes of events, are crucial questions.

Prior research has proposed to differentiate between endogenous and exogenous
dynamics by analyzing the profile of activity around the shock (9, 10, 19, 20), in
particular in the context of financial markets (21–23). It has been observed that
endogenous shocks are preceded by a growth phase mirroring the post event power-
law relaxation, in contrast to exogenous shocks that are strongly asymmetric. The
universality of this result is quite intriguing as they have been observed in various
contexts: intra-day book sales on Amazon (9, 10), daily views of YouTube videos
(20) and intra-day financial market volatility and price jumps (23, 24). Meanwhile,
Wu et al. (25) differentiate exogenous and endogenous bursts of comment posting
on social media using the analysis of collective emotion dynamics and time-series
distributions of comment arrivals.

Furthermore, in complex systems, events can propagate along two directions:
temporally and towards other elements of the system. Financial markets offer an
attractive setting for studying multi-dimensional shocks due to the abundance of
available data, the frequent occurrence of financial shocks and price jumps and
the inter-connectivity of markets. In fact, a recent study by Lillo et al. (26, 27)
demonstrates the frequent occurrence of “co-jumps”, defined as simultaneous jumps
of multiple stocks (as illustrated in Fig. 1) and establishes a correlation between
their prevalence and the inter-connectivity of different markets.

In this paper, we address the problem of classifying financial price jumps (and
co-jumps), in particular measuring their self-exciting character, by analyzing their
time-series using wavelets. We introduce an unsupervised classification based on an
embedding Φ(x) of each jump time-series of returns x(t) into a low dimensional-space
more appropriate to clustering. Such embedding, composed of wavelet scattering
coefficients (see (28) and below), relies on wavelet coefficients of the time-series at
the time of the jump t = 0 and wavelet coefficients of volatility. Such coefficients are
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Fig. 1. Visualization of our co-jumps dataset (295 US stocks, 8 years) (as in
(26, 27, 29)). The horizontal axis corresponds to the day of the co-jump and the
vertical axis gives the time of day. Each circle denotes a co-jump. The size and
color of the circle encode the number of stocks jumping simultaneously (in the same
minute). Inset: number of jumps on a rolling window of 30 days. The maximum is
reached in October 2019 with 2003 jumps.

particularly suitable to characterize (among other properties)
the asymmetry of time-series at multiple scales.

Through a Principal Component Analysis we retrieve
the fact that time-asymmetry of volatility indeed plays an
important role for classification. However, our analysis
identifies two further crucial features for characterizing the
nature of price jumps: local mean-reversion and local trend.
Specifically, mean-reverting jumps are such that pre-jump
and post-jump returns are of opposite signs, whereas trend-
aligned and trend-anti-aligned jumps occur on a sequence of
returns of same sign before and after the jump, but either
aligned with the jump itself, or of opposite sign.

For each jump, our analysis provides a measure of the
volatility asymmetry, the mean-reversion and the trend.
We propose a visualization of our dataset of price jumps
in the form of two 2D projections. For both projections,
one direction characterizes price jumps based on volatility
asymmetry, or “exogeneity score”. The second direction
characterizes jumps either in terms of mean-reversion, or
in terms of alignment with the local trend behavior. One can
then measure the endogeneity of price co-jumps, revealing
that many jumps/co-jumps are not related to news and arise
only due to endogenous dynamics. This is consistent with
the observed power-law distribution of the number of firms
affected by a co-jump, indeed predicted by a simple branching
(or contagion) process.

Surprisingly, we uncover that a significant number of large
co-jumps (affecting a large number of stocks), which might
have been assumed to be caused by a common factor and
thus share analogous dynamics, actually have uncorrelated
returns both pre- and post-jump. This again suggests that
such jumps are mostly of endogenous origin and result from
a contagion mechanism.

The outline of our paper is as follows. Section 1 describes
our dataset of price jumps resulting from Marcaccioli et
al. (23), reviews their supervised classification method based
on news labels, and investigates its limitation. Section 2

presents our unsupervised classification of univariate jump
time-series based on wavelet coefficients. Such classification
identifies three main directions in the dataset, the time-
asymmetry, the mean-reversion and the trend. Finally,
section 3 is devoted to the characterization of the endogeneity
of co-jumps.

1. Supervised classification through endogeneity

Prior work has identified endogeneity as an important feature
for the classification of jumps in financial markets (23, 24).
Given the time-series of a jump, the main challenge is to
efficiently measure such endogeneity.

One can for example look at contemporaneous news
labels to determine whether or not a jump is exogenous.
Indeed, news labels may serve as ground truth to learn a
classification model on the activity profile around a shock. To
exemplify, Fig. S1 (Supplementary Materials) from the work
of Marcaccioli et al. (23), illustrates the time asymmetry
difference between endogenous and exogenous jumps.

In this section, we first introduce the jump detection
method, which allows us to build our dataset. Then, we
present the supervised classification based on news labels
introduced in (23) and show its limitations. This will motivate
an alternative approach in section 2.

A. Jump detection. We refer to (23, 24, 30) for a detailed de-
scription of the method to detect price jumps. The detection
relies on an estimator of “jump-score” x(t) = r(t)/(f(t)σ(t)),
which is the ratio of 1-minute returns time-series r(t) and de-
seasonalized local volatility f(t)σ(t) where σ(t) is an estimator
of local volatility and f(t) an estimator of the intra-day
periodicity (the so-called “U-shape”). Throughout this paper,
our statistical analyses will focus on x(t), or on its “jump-
aligned” version x(t) := x(t)sign(x(0)), where x(0) is the
return corresponding to the jump. In other words, x(t) is the
rescaled return profile in the direction of the jump.

Under the null hypothesis of Gaussian residuals (no jump
hypothesis) |x(t)| converges towards a Gumbel distribution.
A statistical test then allows us to reject the null hypothesis.
The resulting method comes down to detecting price move-
ments deviating by more than 4 standard deviations from
their average value (here equal to zero).

The jump detection is performed on time-series describing
individual stocks dynamics but also on averaged time-series
across stocks belonging to the same sector. Hence, we obtain
price jumps of individual stocks but also sectoral price jumps.

Similarly to Marcaccioli et al. (23), we find that price
jumps are clustered in time. We assume that jumps taking
place within the same “time-cluster” subsequent to an initial
jump are merely replicas of the initial jump. They are likely
to be either of the same dynamics (as they occurred for the
same reason) or endogenously induced by the first jump of the
cluster. We thus discard jumps that follow an initial jump if
the inter-time is statistically unlikely under a null hypothesis
of independent jumps (23). This leads to the same detection
method as in (23) which allows to retrieve an exponential
distribution for the inter-time between two consecutive jumps
(see part II.D of (23)).

From such a collection of price jumps, we can then extract
“co-jumps”. A co-jump is simply defined as a set of jumps
in different stocks occurring in the same minute. Here we
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avoid tackling the question of lagged jumps and consider only
simultaneous jumps (up to the minute resolution).

The price behavior before and after a jump can be used
to classify the jump. In light of Marcaccioli et al.’s findings
(23), which indicate that volatility can begin to rise up to
75 minutes prior to the jump, we adopt a time window of 2
hours centered around the jump occurrence at time t = 0.
Consequently, for each jump we extract a time-series of 119
rescaled returns x(t), corresponding to 1 hour preceding the
jump and 1 hour following the jump.

We implement such detection on 301 US stocks from
January 2015 to December 2022, considering only what
happened between 10:30 and 15:00 in order to avoid special
jumps due to the high activity at the beginning (due to people
reacting to the overnight news) and at the end of the day
(due to market closing). In order to discard major market
shocks, we also remove all co-jumps involving more than 250
stocks, and days on which the FED made an announcement
(1 per month∗). We end up with 43 628 jumps, of which
18 802 belong to one of the 2905 co-jumps, and the remainder
(24 826) are single jumps.

B. Classification based on news labels. In an attempt to
characterize the endogeneity of a jump, one can gather the
date and time of news associated to each stock we consider†

and of the main US announcements‡. According to such
news labels, we might label as “news-related” a jump which
happened within 3 minutes of a news and label as “non-news-
related” any other jump. That would lead to a puny ≈ 4.3% of
the jumps being classified as “news-related” and is illustrated
in Fig. S1 (Supplementary Materials). Hence, as previously
argued in (15, 16, 23, 24, 26), it appears that individual price
jumps and more surprisingly co-jumps themselves are often
not related to news announcements.

However, it is clear that some news may affect a whole
economic sector and lead to a co-jump without appearing in
our considered set of news. An example would be an OPEC
announcement that affects oil prices and in turn ricochets
onto stocks prices, without any of them explicitly showing up
in the news feed. Another vivid example is the impeachment
of the US president D. Trump in September 2019§. Our
“news-related” label is blind to such events. One objective
of our study will be to propose a possible classification of
co-jumps that does not rely on the news feed, see section 3.

C. Classification based on the volatility profile. In (23),
Marcaccioli et al. built a supervised classification of uni-
variate jumps into exogenous and endogenous classes. The
classification relies on parameters derived from fitting |x(t)|
to the following functional form (10):

|x(t)| = 1t<tc

N<

|t− tc|p<
+ 1t>tc

N>

|t− tc|p>
+ d [1]

and on a measure of the asymmetry of the jump, defined as:

Ajump = A> − A<

A> + A<
[2]

∗see FOMC Calendars
†source: Bloomberg
‡source: economic-calendar
§For example, the largest co-jump is related to Nancy Pelosi announcement of a formal

impeachment inquiry into US President Donald Trump. On 2019-09-24, at 14:13, 248 stocks saw
their price jump in the same minute.

where A</> :=
∑

t<0/t>0 |x(t) − mint<0/t>0(x(t))| and d

denotes the baseline volatility. Such an indicator means
that when the activity is stronger before (resp. after)
the jump, one has Ajump < 0 (resp. Ajump > 0). The
classification is then obtained as a logistic regression of
the news label (endogenous/exogenous) by the parameters
(Ajump, p<, p>, N<, N>, tc). Exogenous jumps appear as
strongly asymmetric jumps with little activity ahead of the
jump, i.e. Ajump > 0, whereas self-exciting endogenous jumps
are much more symmetric with Ajump ≈ 0 (23).

The above approach, based on news labels, presents several
limitations:

• As discussed above, news labels might miss some relevant
economic news, so the resulting price jumps might be
wrongly labeled as “non news-related”.

• Exogenous jumps could have two types of dynamics: if
the exogenous shock is a complete surprise, there should
indeed be no activity before the jump. However, if the
announcement is planned or if there was some news
leakage, there might be a growth of activity before the
jump. In this case, one would wrongly classify a news-
related jump as endogenous based on its approximately
symmetric activity profile.

In light of such limitations and in order to uncover new classes
of jumps, we opt in the rest of the paper for an unsupervised
classification which significantly improves upon the method
of (23) while still leaving open some ambiguities, as we will
see below.

Although news labels do not reveal the whole truth about
the endogenous nature of a jump, we will henceforth still
call “news-related” jumps that occurred within 3 minutes of
a news present in our database and “non news-related” all
the others.

2. Classification of single jumps using wavelets

The rescaled returns time-series around a jump x(t) ∈ RT

is inherently noisy. Relevant features Φ(x) ∈ Rq must be
extracted to effectively distinguish different classes of jumps.
Such features should be selected carefully, in particular, they
should include time-asymmetry measures. Indeed, authors
in (9, 10, 19, 20, 23) show that the jumps mostly differ in
their time-asymmetry: endogenous jumps tend to be more
symmetric around the jump than exogenous ones. But what
are the other possibly relevant features?

In this section, we embrace a signal processing approach
to discover important features of univariate jumps and unveil
new classes of jumps that are prevalent in the data.

A. Wavelet and scattering coefficients. Wavelet filters have
been used to analyze, classify and detect transient events,
see e.g. (31–35). A complex wavelet filter ψ(t) is a filter
whose Fourier transform ψ̂(ω) =

∫
ψ(t) e−iωt dt, is real. It is

localized both in time and Fourier domains, see Fig. 3. It has
a fast decay away from t = 0 and a zero-average

∫
ψ(t) dt = 0.

We write ψ(t) = Reψ(t)+i Imψ(t) where Reψ(t) and Imψ(t)
are its real and imaginary parts. They are respectively even
and odd functions:

Reψ(−t) = Reψ(t) and Imψ(−t) = −Imψ(t). [3]

Aubrun, Morel et al. PNAS — October 14, 2024 — vol. XXX — no. XX — 3
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Fig. 2. Classes of price jumps (synthetic examples). Each column shows an example of a class of jumps (price and log-return time-series). The three first classes (anticipatory,
endogenous, exogenous) are separated by measuring volatility asymmetry. The three last classes (mean-reverting, trend-anti-aligned, trend-aligned) are identified by analyzing
the signed returns around the jump. See Fig. S9 for examples of true observed jumps.

t = 0

ReψImψ

ω = 0 π 2π

ψ̂

Fig. 3. Filter used to analyze jump time-series. Left: complex Battle-Lemarié wavelet
ψ(t) as a function of t. Right: Fourier transform ψ̂(ω) as a function of ω.

The wavelet coefficients Wjx(t) compute the variations of the
signal x around t at scale 2j , for j = 1, . . . , J with

Wjx(t) := x ⋆ ψj(t) where ψj(t) = ψ(2−jt). [4]

where ⋆ denotes the convolution: x ⋆ y(t) :=
∫
x(t −

u)y(−u) du.
The sign of the jump sign(x(0)) and its amplitude |x(0)|

vary, but they are not necessarily informative for their
classification. To remove this source of variability we consider
the jump-aligned time-series

x(t) = sign(x(0))x(t) [5]

and we further normalize the wavelet coefficients (4) by the
corresponding “volatility” σj of the full time-series, defined as
σ2

j =
〈
|x ⋆ ψj(t)|2

〉
t
, where ⟨·⟩t denotes the empirical average

over time t.
From Eq. (3), one can see that if x is an even signal i.e.

x(−t) = x(t) then ImWjx(t) ≡ 0. This property is key to
detect asymmetry of a signal at different scales.

Volatility information can be extracted by taking a
modulus. The time-series |Wjx(t)| provides the volatility
of the signal at scale 2j . This volatility can be asymmetrical
in t = 0. In order to quantify it, we again consider the wavelet
coefficients at t = 0

Wj2 |Wj1x|(t) := |x ⋆ ψj1 | ⋆ ψj2 (t). [6]

Our representation for univariate jumps in this paper
is thus composed of wavelet coefficients (4) at t = 0 and

scattering coefficients (6) at t = 0

Φ(x) =
(
Wjx(0) , Wj2 |Wj1x|(0)

)
. [7]

For a time-series of size T , it contains less than (log2 T )2/2
coefficients which represents few coefficients. In our case,
T = 119 and we chose J = 6, which yields 42 coefficients (21
real parts and 21 imaginary parts). The normalized scattering
features Φ(x) (Eq. (7)) are invariant to sign changing and to
dilation

Φ(−x) = Φ(x) and Φ(λx) = Φ(x).

which means we do not aim at discriminating jumps neither
based on their sign nor on their amplitude.

In order to classify price jumps, we are interested in
Principal Component directions of the 42-dimensional vector
Φ(x) in the dataset. This method, called kernel PCA (36),
relies on the linear separation power of our scattering
coefficients Φ(x). We considered several directions, i.e.
combinations of scattering coefficients, and found three salient
features: the time-asymmetry of the volatility, the mean-
reversion and the trend behavior of the price around the
jump.

B. First Direction D1: Volatility asymmetry.

B.1. Three types of jumps. The first PCA direction (called
D1 henceforth) is a linear combination of the 15 coeffi-
cients ImWj2 |Wj1x|(0) in Eq. (7), which characterizes time-
asymmetry of the volatility profile at multiple scales 2j2 ,
confirming a previous analysis that postulated this asymmetry
to be relevant (23). Such a linear combination allows one to
embed each jump time-series into a one dimensional space,
which quantifies the endogenous nature of each jump. In fact,
Fig. 4 (see also Fig. S2 in Supplementary Materials) displays
average profiles |x(t)| along the “endogenous direction” D1.
One can visually verify that such a representation discrimi-
nates jumps according to the asymmetry of their profiles as
measured by Ajump (Eq. (2)): the D1 direction continuously
separates asymmetric jumps with dominant activity before
the shock from asymmetric jumps with dominant activity

4 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Aubrun, Morel et al.
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Fig. 4. Average absolute profiles |x(t)| of jumps along direction D1 (sliced into
five bins, delimited by quantiles 0.1, 0.25, 0.35, 0.9). From left to right: anticipatory
jumps, endogenous jumps and exogenous jumps.

From this analysis, three types of jumps can thus be
defined:

• Symmetric jumps, with an pre-shock excitation activity
that approximately mirrors the post-shock relaxation
activity. These were called “endogenous jumps” in (23):
increased activity before the jump is in fact responsible
for the jump itself, with some decay of activity thereafter.
The symmetry of the profile for endogenous jumps is in
fact predicted by a Hawkes process description of the
self-exciting mechanism, see (10, 23).

• Asymmetric jumps with dominant activity after the
shock. These were called “exogenous jumps” in (23):
the market reacts after unexpected news, but not before.

• Asymmetric jumps with dominant activity before the
shock. This type of jumps, which we call “anticipatory”,
was quite unexpected and was not discussed in (23).

In order to validate the above analysis, we created
synthetic time-series with volatility profiles of varying time-
asymmetry and applied our classification method. Results of
this benchmark case are shown in Supplementary Materials
(Fig. S4 and Section 1), and fully confirm that the D1 direc-
tion indeed separates jumps according to their asymmetry
Ajump.

B.2. Discussion. Using the above classification, we find that
a large proportion (∼ 50%) of our sample exhibit positive
asymmetry and thus should, at least naively, be considered
as exogenous jumps. This seems in contradiction with the
results of (23), where exogenous jumps were found to be a
minority, and with a fraction of jumps associated to a news
found to be 4.3%, as already quoted above. Two arguments
can explain such a difference.

• The main one is the fact that our analysis includes all
jumps involved in a sector jump (corresponding to 24%
of all jumps) whereas those jumps were discarded in
(23). Sector jumps are such that many stocks of the
same industry jump simultaneously. While some of these
jumps are likely due to major exogenous shocks – like
macro-economic announcements – that affect a whole
economic sector or even the whole market, we argue in
section 3 that these jumps can actually be induced by
a jump of one particular stock of the sector, which is
deemed as “news” in and by itself. In any case, taking
these sector jumps into account mechanically increases
the count of jumps with a positive D1 score. In the
present study, we chose to keep these co-jumps and

study their statistics, to which we will specifically turn
in section 3.

• As already noted above, the classification of single jump
profiles in (23) relies on the goodness of fit of power law
function Eq. (1), and as such, was only conducted on a
smaller sample for which such a fit is acceptable (∼ 5000
jumps out of ∼ 37000 jumps).

The appearance of “anticipatory jumps”, where the asymme-
try parameter Ajump (see Eq. (2)) is negative, came somewhat
as a surprise to us. One possible interpretation is that these
jumps are in fact also endogenous, with a pre-shock self-
exciting dynamics and very little “after-shocks”. Indeed,
if such jumps are immediately deemed endogenous by the
market, it might make sense that activity quickly reverts
back to normal. This would simply mean that it is necessary
to extend the Hawkes framework, which currently predicts
a symmetric profile, to adequately describe all endogenous
shocks. Such extensions could involve generalizing the marks
distributions within the Hawkes model, as discussed in (37–
40).

Another possibility is that such events correspond to
news/exogenous events whose timing is expected by the
market, or if there was some leakage ahead of the news, both
leading to increased activity before the actual release time.
Now, if the actual news content turns out to be insignificant,
it would again make sense that the market activity quickly
wanes off. We in fact do find a very small fraction of news-
related jumps with D1 < 0, see in Fig. 6, bottom graph.

C. Second Direction D2: Mean-Reversion.

C.1. Capturing Mean-Reversion. We observed that coefficients
ImWj1x(0) (7) for fine scales, i.e. small j1, are consistently
chosen by the leading PCA directions. They amount
to multiplying the jump-aligned time-series x(t) by the
imaginary filter Imψ1(t) (see Fig. 3) and averaging over t.
Such coefficients capture the asymmetry of the return profile
shortly before and shortly after the jump, and define what
we will call below direction D2.

A typical time-series that maximizes this coefficient is thus
characterized by a positive value of x(−1) and a negative
value of x(1). In other words, large positive values along
the D2 coordinate capture mean-reverting return profiles,
i.e. positive (resp. negative) returns before a positive
(resp. negative) jump that become negative (resp. positive)
immediately after the jump.

Large negative values along the D2 coordinate, on the
other hand, also capture mean-reverting return profiles, but
in this case mean-reversion starts with (or is triggered by?)
the jump itself, and not after the jump.

Now that we identified a potentially discriminating direc-
tion using PCA, we transition to a simpler filter tailored to
capture short time mean-reversion, depicted in Fig. 5. This
filter is then applied to the jump-aligned time-series x(t)

D̃2(x) := x ⋆ ψMR(0), [8]

where the tilde indicates that we have simplified the true
second PCA direction and only retained the component
spanned by ψMR.
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Fig. 5. Handcrafted filters for measuring the mean-reversion (filter ψMR) or the trend
(filter ψTR) character of a jump. Average profiles along resulting mean-reversion and
trend directions are shown in Fig. 7 and Fig. 8.

C.2. A 2D representation of jumps. Based on the first volatility
asymmetry direction D1 and the mean-reversion direction D̃2,
we are in a position to propose the 2D representation of jumps
shown in Fig. 6 (top), in which the horizontal axis corresponds
to D1 and the vertical axis corresponds to the mean-reversion
index D̃2. Visually, news-related jumps are mostly to the
right of the projection, corresponding to increased volatility
after the jump, as expected. This is confirmed by the plot in
Fig. 6 (bottom).

Fig. 6. Top graph: Projection of jumps in our dataset onto the endogenous direction

D1 (horizontal axis) and mean-reverting direction D̃2 (vertical axis) Middle graph:
Projection of our dataset on the endogenous direction D1 (horizontal axis) and
trend direction D̃3 (vertical axis). Each point represents a jump, the blue color
corresponds to news-related jumps according to the classification of Section B, the
oranges are jumps involved in a co-jump of size greater than 2 and non news related
and the greens are all the other jumps. The vertical and horizontal lines represent
the following quantiles: 0.05, 0.35, 0.65, 0.95. Bottom graph: ratio of “news-related”
jumps along the endogenous direction D1, based on a direct classification using
the news feed (rolling ratio every 2000 jumps). This ratio clearly increases as we
move to positive values of D1.

In order to illustrate the discriminating power of such
coefficient, Fig. 7 displays the average profiles of x(t) along
the D̃2 axis. One can see that jumps with a high coefficient
D̃2 (rightmost graph) are characterized by a strong pre-
jump trend aligned with the jump, followed by a change
of sign in the next minute after the jump (as also shown in
Supplementary Materials, Fig. S5).

The leftmost graph, on the other hand, shows relatively
mild pre-jump trends opposite to the jump, followed by
stronger trends in the direction of the jump, not very different
from the cases corresponding to quantiles between 0.1 and
0.5. In our dataset, 60% of the jumps have a positive mean-
reversion score D̃2 > 0; we refer to Fig. S6 (Supplementary
Materials) for the full distribution of D̃2.

To confirm this observation and ascertain that it is not
attributable to spurious effects in the data processing, we
looked deeper into these jumps. To get a better understanding
of the mechanisms at play, we investigated what happens
at tick-by-tick scale in the Limit Order Book. We show in
Fig. S7 (Supplementary Materials) two illustrative examples.
We again observe, at a different time resolution, a strong
mean-reversion behavior induced by order placement. Note
that both exogenous, or endogenous jumps can have such
mean reverting behavior, as clear from the 2D representation
Fig. 6.

In fact, a mean reverting behavior can be expected both
following an exaggerated response to a news release, or after
a self-initiated jump with no discernible catalyst. This is
confirmed by Fig. S8 (Supplementary Materials) which shows
positive average values of D̃2 for all levels of endogeneity D1,
except for strongly exogenous jumps (large values of D1 > 0),
where the mean-reversion disappears (D̃2 ≈ 0).

−5 0 5
t

−5 0 5
t

−5 0 5
t

Fig. 7. Mean-reverting profiles. Average jump-aligned return profiles x(t) =

sign(x(0)) x(t) along the mean-reverting direction D̃2 (sliced into four bins,
delimited by quantiles 0.1& 0.9). Left-most graph: price jumps mean-revert on
previous trends. Right-most graph: prices mean-revert after the jump.

Note finally that mean-reversion is characterized by a V-
shape price profile (see Fig. S7 in Supplementary Materials),
which has recently been used as a criterion to detect price
jumps in time-series ((41)).

D. Third DirectionD3: Trend. In the previous section, we have
defined a filter ψMR that detects mean-reversion, but is by
construction orthogonal to trends, i.e. post-jump returns
continuing in the same direction as pre-jump returns. This
feature can be naturally captured by the trend filter ψTR
shown in Fig. 5, which is orthogonal to the mean-reversion
filter ψMR. This filter is then applied to the jump-aligned
profile x(t) to get the following trend score

D̃3(x) := x ⋆ ψTR(0). [9]

A large positive value of D̃3(x) therefore describes a persistent
trend aligned with the direction of the jump. If such jumps
exist, we refer to them as “trend-aligned” jumps. A large
negative value of D̃3(x) indicates that the jump goes against
the pre- and post-jump trend. If such jumps exist, we refer
to them as “trend-anti-aligned” jumps.
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Fig. 8. Trending profiles. Average jump-aligned return profiles x(t) =

sign(x(0)) x(t) along the trend direction D̃3 (again sliced into four bins, delimited
by quantiles 0.1 & 0.9). Left-most graph: anti-aligned trends. Right-most graph:
aligned trends.

Fig. 8 shows that both classes of jumps do indeed exist:
the average profiles in the first and last quantiles in Fig. 8
do conform to expectations. Furthermore we directly observe
many stylized examples such as the one reported in Fig.
S9 (Supplementary Materials). As for the mean-reversion
indicator, we can represent all jumps in 2D plane based on D1
and D̃3 (see the bottom graph in Fig. 6). Visually, trending
news-related jumps appear to be mostly aligned with the
jump (top-right corner), although anti-aligned trends can
also be spotted for moderate values of D1. Different profiles
of x(t) corresponding to the grid are shown in Fig. S10
(Supplementary Materials).

E. Preliminary Conclusions. Let us summarize the results
obtained by our unsupervised approach so far. First, our
proposed 2D projections provide an embedding of a jump
according to three meaningful, intuitive properties: its
endogenous nature, its mean-reversion character or its trend
character. On top of the separation between exogenous
and endogenous jumps, our clustering method revealed
new classes of jumps, some of which we did not expect a
priori: anticipatory jumps, mean-reverting jumps, trend-
aligned and trend-anti-aligned jumps. Identifying additional
interpretable classes of jumps might be possible by considering
more expressive wavelet-based embeddings such as Scattering
Spectra recently used in the context of financial time-
series (42, 43). However, our attempts so far seemed to
mostly recover directions which overlap with the volatility
time-asymmetry and mean-reverting directions.

3. Classification of co-jumps

As mentioned above, a “co-jump” is defined as a collection
of jumps across several stocks, occurring in the same minute.
The number S of assets involved in the co-jump is referred
to as the “size” of the co-jump. Co-jumps reveal inter-
connectivity and contagion in financial markets (26, 27, 44).
As such, studying them – in particular their possible endoge-
nous nature – is a crucial question for investors and regulators
alike. This section aims at investigating whether co-jumps are
created through endogenous dynamics or exogenous shocks.

To assemble our co-jump dataset we consider the same
dataset of jumps as in the previous section. We end up with
2905 co-jumps, the size of which varies from 2 stocks to 248
stocks. The co-jumps size distribution, is shown in Fig. 9a.
Quite remarkably, the tail of this distribution is well fitted
by a truncated power-law S−1−τ exp(−ε2S) with exponent
τ = 1/2, with a cut-off parameter ε = 0.077, see Fig. 9a, inset.
Such a value for τ can be rationalized within the framework
of classical critical branching processes (45), as if co-jumps
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Fig. 9. Statistics on co-jumps. (a) Main: Distribution of co-jumps size i.e. number
of stocks involved in a co-jump. Inset: Cumulative distribution of co-jumps size for
co-jumps with min(D1) < 0 and min(D1) < D1 − 1σ, defining the LL and
LR regions in Fig. 12. Inset: cumulative distribution in log-log coordinates, with a
fit obtained corresponding to a truncated power-law S−1−τ exp(−ε2S) for the
probability distribution function. We find that the best fit parameters are τ = 0.5
and ε = 0.077. (b) Average sign of jumps involved in a co-jump, showing that most
co-jumps are composed of jumps in the same direction.

were the result of a contagion mechanism, with ε the distance
to the critical point. Such a power-law behaviour was in fact
already noted in previous works: in Ref. (24) on a US data
set from 2004 to 2006, in (27) from 2001 to 2013 and in (29)
from 2013 to 2018.

Furthermore, the signs of the jumps involved in a co-jump
are, most of the time, all aligned, i.e. different stocks jump
in the same direction, as shown in Fig. 9b.

The first stage of co-jump characterization is to classify
jumps according to their endogeneity coordinate along the
D1 direction. In Fig. 10, we highlight the coordinates of
three particular co-jumps in the 2D projections introduced in
the previous section. Each color point is a stock involved in
one of the three co-jumps. Let us comment on each of these
three cases in turn:

• The blue co-jump, with 29 stocks involved, has most
of its elements in the right side of the 2D projection,
suggesting an exogenous, news driven shock. However,
one of the jump is below the 0.35 quantile and therefore
appears endogenous. This might be a mis-classification
because of the inherent noise in our D1 exogeneity score.
An alternative interpretation, in line with a contagion
mechanism, might be that this particular stock jumped
for no particular reason and this created a surprise to
which other stocks reacted.

• The pink co-jump, with 19 stocks involved, staunchly
belongs to the anticipatory class – which we believe to
be of endogenous nature, as explained above. Co-jumps
with a negative or positive but moderate maximum value
of the D1 score can thus be deemed endogenous.

• The yellow co-jump, with 9 stocks involved, has most
of its elements in the intermediate “endogenous” region,
except one which is classified as exogenous. This might
be either again a mis-classification because of the inherent
noise in our D1 exogeneity score, or else a stock that
was not part of the anomalous pre-jump activity but is
drawn into the jump through contagion.

From these cursory observations, one may propose three
natural indicators for classifying co-jumps:

1. The average value of the individual exogeneity score D1
over all jumps belonging to a given co-jump, see Fig. 11.
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Fig. 10. Projections of 3 co-jumps along our 2D projections. Yellow co-jump: one
jump is exogenous and the others are more endogenous. Pink co-jump: all jumps
of the co-jumps are endogenous and are trend-aligned. Blue co-jump: Most jumps
appear to be exogenous except one. Those jumps are also trend-anti-aligned.

2. The maximum value of the individual exogeneity scoreD1
over all jumps belonging to a given co-jump: if the most
exogenous jump is still deemed endogenous, the whole
co-jump is classified as endogenous (see distribution in
Fig. S11, Supplementary Materials).

3. The minimum value of the individual exogeneity score
D1 over all jumps belonging to a given co-jump: if the
most endogenous jump is still deemed exogenous, the
whole co-jump is classified as exogenous (see distribution
in Fig. S12, Supplementary Materials).

Fig. 12 represents the normalized minimum value of
exogeneity score D1 over all jumps of a given co-jump as
a function of the normalized average value of exogeneity score
D1 over all jumps of a given co-jump (co-jump indicator 3. as
a function of co-jump indicator 1.). The normalization is
such that Fig. 12 can be read in units of standard deviation
of the exogeneity score D1 for co-jumps of same size, i.e. σ
is the average of the standard deviation of the score D1 over
co-jumps with same size. The size and color of a point depict
the size of the co-jump. The gray shaded region represents
jumps with insignificant differences between the mean and
the minimum value of the D1 score.

Co-jumps with negative minimum and average values
of exogeneity score D1 (lower left quadrant of Fig.12, LL)
can be deemed endogenous, whereas co-jumps with positive
minimum and average values of exogeneity score D1 (upper
right quadrant of Fig.12, UR) can be deemed exogenous.

The lower right quadrant (LR) represent the most intrigu-
ing co-jumps. Indeed, according to their average score D1
those co-jumps should naively be classified as exogenous,
however they contain at least one strongly endogenous co-
jump. It might be that those endogenous jumps, whose
pre-activity starts while most other stocks are still quiet, are
interpreted by the market in and by themselves as news. Such
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Fig. 11. Exogeneity score D1 of co-jumps in our dataset, obtained by averaging the
exogeneity score D1 of each jump involved in a co-jump. Large co-jumps tend to
have a higher average score (in red) but, surprisingly, there are many large co-jumps
with pale color that would be classified as endogenous. See discussion in the text.

surprise triggers all other jumps – which therefore appear
as exogenous, with no special pre-jump activity but without
being related to any news.

Note that the largest co-jumps are in the LR region; our
interpretation in terms of a contagion mechanism would then
naturally explain the truncated power-law distribution of size
S−3/2 shown in Fig. 9a.

There are obviously also large sector wide co-jumps that
are truly news-related – upper-right quadrant of Fig. 12. For
instance, the significant co-jumps highlighting the year 2019
mostly exhibit a negative average (exogenous) and are related
to the announcements during the US vs China trade war.

Conversely, some co-jumps (20% of our sample) involve
only jumps exhibiting a symmetric or anticipatory profile (LL
region of Fig. 12). Those co-jumps are usually S = 2 stocks
co-jumps (76%), but their size can go up to S = 87 stocks.

Hence, the most striking conclusion of this section is that
many large co-jumps are in fact explained by endogenous
dynamics and propagate across stocks, rather than being
due to impacting external news. A(n) (in)famous example
of such propagation is the flash crash of May 6th 2010,
where the S&Pmini crashed in less than 30min, due to a
sell algorithm set with an excessively high execution rate.
This crash triggered a price drop in other US stocks. Here,
our results suggest that this synchronization phenomenon
is not such a rare event and actually happens quite often
(26, 44).

This finding is further supported by examining the
correlation of the individual jump time-series composing a co-
jump (see section 3 in Supplementary Materials). Naively, one
would expect large co-jumps to be exogenous, i.e. induced by
news. As a result, the stocks involved in the co-jump should
all share the same profile around the jump, as in the left
graph of Fig. S13 (Supplementary Materials) for example. In
fact, Fig. S14 (Supplementary Materials) shows that there
remain many co-jumps whose constituting univariate jump
profiles are weakly correlated (see Section 3 in Supplementary
Materials for more details). We also refer the reader to
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of the co-jump. The grey area represents the zone between min(D1) = D1 and
min(D1) = D1 − 1, corresponding to co-jumps where the difference between
the minimum and the average D1 score is less than 1σ. Here, we only consider
co-jumps with a size strictly greater than 2. LL, LR & UR stand for lower left, lower
right and upper right.

additional statistics on co-jumps in Supplementary Materials.
For example, Fig. S15 (Supplementary Materials) shows that
the sector jumps are not all exogenous, as discussed in Section
2B.

4. Conclusion

Thanks to an unsupervised approach based on wavelet scatter-
ing coefficients, we have identified three main directions along
which price jumps can be classified. The first, well-known
direction relates to the time-asymmetry of the volatility of the
price around the jump which emerges as dominant in a PCA
sense, and results in three classes of jumps, exogenous (with
activity after the jump) symmetric and “anticipatory”. We
have argued that the last two cases correspond to endogenous
events. Thanks to this classification we have shown that a
large portion of the jumps are endogenous or anticipatory
jumps, confirming – but also making much more precise – the
main conclusions of (15, 16, 23, 24).

We also evidenced that mean-reversion and trend are
important features for classification. This allowed us to
identify three additional classes of jumps, “mean-reverting”,
“trend-aligned” and “trend-anti-aligned” which concerns a
significant portion of the dataset.

Extending our analysis to co-jumps, we have gathered
several pieces of evidence that a large proportion of these
co-jumps should also, quite surprisingly, be classified as
endogenous in the sense that they seem to originate from the
contagion of one single endogenous jump triggering the jump
of possibly many others, or even the whole market (15, 16).
One signature of such a scenario is the power-law distribution
of co-jump sizes, which is indeed close to that predicted by a
critical branching (contagion) process. Such a broad, power-
law distribution of co-jump sizes was noted previously for
different datasets in (24, 27, 29). Further work should focus
on higher frequency data that would allow one to dissect more

precisely the contagion mechanism and ascertain that many
large co-jumps are indeed not triggered by exogenous news,
but related to the close-knit nature of financial markets that
may bring them close to critical fragility, as argued many
times in the past, see e.g. (18, 46–48) and refs. therein., and
(49–51) for dissenting views.

Unlike parametric fit of the time-series, the wavelet
scattering embedding is defined and can be computed for any
time-series. As such, our study could be transposed to other
fields as well, such as fracture surfaces (52, 53) for example.
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