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Mineral-associated organic carbon (MAOC) constitutes a major fraction of global soil 181

carbon (C), and is assumed less sensitive to climate than particulate organic C (POC) due 182

to protection by minerals. Despite its importance for long-term C storage, the response of 183

MAOC to changing climates in drylands, which cover more than 40% of the global land 184

area, remains unexplored. Here we assess topsoil organic C fractions across global 185

drylands using a standardized field survey in 326 plots from 25 countries and six 186

continents. We find that soil biogeochemistry explained the majority of variation in both 187

MAOC and POC. Both C fractions decreased with increases in mean annual temperature 188

and reductions in precipitation, with MAOC responding similarly to POC. Therefore, our 189

results suggest that ongoing climate warming and aridification may result in unforeseen C 190

losses across global drylands, and that the protective role of minerals may not dampen 191

these effects.192

193

Soils in drylands—the largest set of biomes of the planet —store 646 Pg of organic C, more than 194

all living vegetation on Earth 1,2. This vast soil organic C pool supports essential ecosystem 195

services, including food provision and water and climate regulation for more than 2.5 billion 196

people 3,4. Yet, temperature increases and precipitation reductions forecasted for many dryland 197

regions are expected to disrupt the balance of soil organic C, accelerating microbial 198

decomposition, reducing plant C inputs into the soil, and resulting in more CO2 emissions to the 199

atmosphere 5,6.200

The sensitivity of organic C in soils (sensu ref. 7) to temperature and precipitation at201

timescales relevant to climate change mitigation is thought to be controlled largely by 202

interactions with soil minerals, which restrict the accessibility of microbial decomposers by 203
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encapsulating and adsorbing organic matter 8–10. Plant-derived materials at early stages of 204

decomposition are the main constituents of the mineral-unprotected, particulate organic C (POC) 205

fraction of soil organic matter 9. The POC fraction is thus directly affected by changes in plant C 206

inputs into the soil and is more exposed to microbial decomposition than the organic component 207

of the mineral-associated organic C (MAOC) fraction, which has, therefore, a lower turnover rate208

11,12. As a result, large scale meta-analyses and observational studies suggest that POC is more 209

sensitive to changes in climate, and particularly to warming, than MAOC 7,13–16. Because of the 210

typically large ratio of soil minerals to organic matter in drylands, MAOC is expected to 211

dominate over POC, potentially driving a high persistence of soil organic C in these ecosystems212

7,10,17. However, no studies to date have examined the relationship of POC and MAOC with213

climate across the diverse environmental gradients that characterize global drylands. 214

Investigating this relationship is particularly timely and relevant, as it would significantly reduce 215

the uncertainty surrounding the land carbon-climate feedback. Additionally, it would provide 216

valuable insights for adapting soil carbon-related ecosystem services to ongoing climate change.217

Here we evaluated how mean annual temperature and precipitation relates to POC and 218

MAOC contents across global drylands after accounting for major biotic (net primary 219

productivity, vegetation type, woody cover, plant and herbivore richness, and grazing pressure) 220

and soil biogeochemistry (clay and silt contents, pH, chemical index of alteration, exchangeable 221

Ca, non-crystalline Al and Fe, available N and P, and microbial biomass C) factors known to 222

potentially affect soil organic C content by regulating C inputs and stabilization processes 5,18. To 223

do so, we surveyed in situ 326 plots from 98 dryland ecosystems located in 25 countries from six 224

continents (Extended Data Fig. 1). Our survey spans the broad gradients of temperature, 225

precipitation, aridity, soil properties, vegetation types, and grazing pressures that can be found 226
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across drylands worldwide (Extended Data Tables 1 and 2) 19,20. At each site, we collected 227

topsoil samples (0-7.5 cm) from areas both covered (322) and not covered (326) by perennial 228

vegetation from two to four plots located across a local gradient of extensive grazing pressure 229

(648 samples in total, see Methods). We subjected all samples to a size fractionation procedure 230

to separate and quantify C content in POC and MAOC pools 9,21. Using these data, we tested the 231

hypothesis that MAOC, being protected by minerals, is less sensitive than POC to increases in 232

temperature and decreases in precipitation 7,10,16,22. We also hypothesize that the presence of 233

vegetation mitigates declines in soil C, particularly POC, by increasing soil C inputs. 234

235

MAOC dominates soil organic C and is sensitive to climate236

Our results show that MAOC was the dominant soil organic C fraction in drylands globally (Fig. 237

1a). In particular, median MAOC content was 5.2 g C kg-1 soil, equivalent to 66% of the total 238

soil organic C content, whereas median POC content was 2.3 g C kg-1 soil. This quantification 239

falls within the range of soil organic C content (MAOC and POC) commonly found in drylands, 240

and is relevant to improve the performance of emerging models of soil organic C formation and 241

persistence using POC and MAOC frameworks 2, 23–25.242

Contrary to our hypothesis, we found that MAOC and POC were equally sensitive to 243

differences in climate across global drylands. In particular, both MAOC and POC were 244

negatively associated with increasing temperature and decreasing precipitation to a similar 245

extent, as indicated by the similar slopes of the associations (Fig. 1bc). These results were 246

supported by the lack of a significant interaction between the effects of temperature and 247

precipitation and the type of fraction (MAOC versus POC) tested by a linear mixed-effects 248

model (Fig. 1d, see Methods). Based on the results from this model, we estimated that POC and 249
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MAOC contents significantly declined with temperature at an average rate of 3.2% per ºC (95% 250

confidence interval (CI): 1.8, 4.6) and increased with precipitation at an average rate of 6.6% per 251

100 mm (95% CI: 0.6, 12.6).252

Warming accelerates the microbial decomposition of soil organic matter, and precipitation 253

reduction constrains plant production and organic matter inputs into the soil 5,26. Our results are, 254

therefore, consistent with previously reported reductions in soil organic C content with 255

increasing temperature and reducing precipitation across terrestrial ecosystems 27–29. However,256

and contrary to expectations of smaller sensitivity of MAOC versus POC to changes in climate 257

observed in more mesic systems 14,15, our findings based on a space-for-time substitution 258

highlight that the MAOC and POC fractions may decrease at similar rates in response to climate 259

warming and precipitation reduction across global drylands. Therefore, they suggest that the 260

current paradigm of mineral protection may not determine soil C persistence in dryland261

ecosystems 8,30–32. The apparent lack of protection by minerals, which contrasts with what was 262

observed in mesic systems richer in organic matter, was consistent across the range of soil 263

organic C content found in drylands (Extended Data Fig. 2). There is recent evidence that 264

MAOC is controlled not only by C stabilization in soil organo-mineral complexes, but also by 265

changes in C inputs driven by climate 15. In drylands, not only precipitation reduction but also 266

warming may increase water deficit, which may decrease plant productivity 5, C inputs into the 267

soil and C accumulation into the MAOC fraction. These is also evidence that dryland soils 268

maintain a high oxidative potential during dry periods, mainly through the stabilization of 269

enzymes, which result in a rapid organic matter decomposition in wet periods 28,29 and may 270

further limit C inputs to the MAOC fraction.271

272
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Vegetation buffers soil C declines with warming273

Both POC and MAOC contents were higher in soil beneath perennial vegetation (Fig. 2). We 274

further observed that as mean annual temperature increased, POC and MAOC contents275

decreased, but to a lesser extent, beneath vegetation. Conversely, as mean annual precipitation 276

increased, both contents increased in a similar manner in open areas and in areas under the 277

canopy of perennial vegetation (Fig. 2). These results are important because they suggest that the 278

presence of vegetation buffers, but does not fully compensate for, the negative effects of higher 279

temperature on soil C fractions. While the buffering effect of vegetation did not completely 280

counteract the vulnerability of organic C pools to increasing temperatures, our findings indicate 281

that management practices aimed at protecting vegetation in drylands may help to maintain soil 282

organic C stocks in global drylands and reducing their losses in response to a changing climate.283

284

Coupling of POC and MAOC in drylands285

We found that POC and MAOC contents were strongly correlated across global drylands (r = 286

0.83, n = 326, P < 0.001; Fig. 3a). These results strongly suggest that both fractions remain 287

highly coupled in drylands despite their different levels of putative protection against 288

decomposition by microorganisms.289

Variance partitioning of linear mixed-effects models and random forest analysis showed that 290

the order of importance of the group of factors that explained most of the variation of POC and 291

MAOC across global drylands was essentially the same for both organic C fractions (Fig. 3b, 292

Extended Data Fig. 3). Soil biogeochemistry, above climate and biotic factors, was the most 293

important predictor of both POC and MAOC contents. Both C fractions were negatively 294

associated with soil pH and positively associated to exchangeable Ca, available N and P, and 295
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microbial biomass C contents; additionally, MAOC was associated positively with clay and silt 296

and non-crystalline Al and Fe contents (Extended Data Fig. 4). Slightly-acidic-to-neutral soils 297

generally feature higher nutrient availability and more fertility than alkaline soils 33, which may298

thus favor soil organic C accumulation in drylands through increased plant-derived C inputs and 299

microbial activity. The prevalent role of soil fine texture and non-crystalline Al and Fe in MAOC 300

formation has been widely documented in the literature 31. Sorption of organic matter to mineral 301

surfaces is known to be promoted by the relatively high specific surface area and charge of clay 302

and silt, while non-crystalline Fe and Al phases are also known to form strong associations with 303

organic matter 31.304

The coupling of POC and MAOC observed here for drylands may be, however, disrupted in 305

more productive terrestrial ecosystems, where higher plant inputs may result in larger POC 306

contents 13–15. In contrast to experimental manipulation studies 14, our work addresses the 307

vulnerability of soil C fractions using a space-for-time substitution. Further research into the 308

pace of the climate-induced changes and the causality of the associations found in our study is 309

thus warranted.310

311

Concluding remarks312

By using a global standardized field study and by focusing exclusively on dryland ecosystems, 313

our work expands previous efforts to understand abiotic and biotic drivers of POC and MAOC 314

along large geographical gradients, which have either been based on literature syntheses, which 315

use datasets that are inherently heterogenous, or have focused on ecosystems other than drylands 316

16. Our study generated highly standardized field data on the POC and MAOC fractions of 317
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dryland soils worldwide, along with their major predictors. These data significantly expand 318

existing global databases and can be used to refine current soil organic C models.319

Our findings suggest that ongoing changes in climate, particularly warming, may adversely 320

affect both unprotected and mineral-protected soil C content in drylands to a similar extent. The 321

results obtained also indicate that maintaining vegetation cover can mitigate, but not fully 322

counteract, the negative impacts of rising temperatures on soil organic C fractions. Our study 323

enhances our understanding of how POC and MAOC contents in soil respond to key abiotic and 324

biotic drivers, revealing that mineral protection has limited potential to sustain organic C storage 325

in dryland soils in the face of ongoing global warming. The novel insights about dryland soil C 326

pools and their sensitivity provided here could facilitate much-needed advances in our model 327

representation of dryland ecosystems and their response to climate change.328
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Figure captions380

381

Fig. 1 | Distribution of soil organic carbon (C) contents in particulate organic C (POC) and 382

mineral-associated organic C (MAOC) fractions and their relationships with climate in 383

global drylands. a, Boxplot of POC and MAOC contents. Box, 1st, and 3rd quartiles; central 384

horizontal line, median; upper vertical line end, largest value smaller than 1.5 times the 385

interquartile range; lower vertical line, smallest value larger than 1.5 times the interquartile range 386

(n = 326 plots). b-c, Relationships between POC and MAOC contents and mean annual 387

temperature (MAT, b) and precipitation (MAP, c). Lines and shading represent linear regressions 388

and 95% confidence intervals. d, Summary of a linear mixed-effects model, controlling for biotic 389
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factors and soil biogeochemistry (see Methods). The panel shows coefficients (circles) and 95% 390

confidence intervals (CI, bars) for main and interaction effects of C fraction type (binary 391

variable, either POC or MAOC) and climate (MAT and MAP) on POC and MAOC contents. 392

The variance explained (R2) by the fixed and random effects relative to the total variance was 393

77% and 12%, respectively (n = 634 POC and MAOC observations). Carbon fraction contents 394

were natural-logarithm transformed, and all the predictors were standardized. The positive 395

coefficient of C fraction type (MAOC vs. POC) indicate that MAOC contents are significantly 396

greater than POC contents (P < 0.001). For the observed negative association of MAT and 397

positive association of MAP with C content (P < 0.001 and P = 0.039 respectively), negative 398

coefficients for the interaction of C fraction type with MAT and MAP indicate that increasing 399

MAT has a stronger negative effect on MAOC than on POC contents (P = 0.053), while 400

decreasing MAP has a stronger negative effect on POC than on MAOC (P = 0.181).401

Fig. 2 | Relationships between climate and particulate organic C (POC) and mineral-402

associated organic C (MAOC) contents in soils under the canopy of the dominant perennial 403

vegetation (V) and in open areas (O) across global drylands. a-d, Relationships between POC 404

and mean annual temperature (MAT, a) and precipitation (MAP, c), and between MAOC and 405

MAT (b) and MAP (d) in both O and V microsites. Lines and shading represent linear 406

regressions and 95% confidence intervals (n = 326 and 322 for O and V, respectively). e, 407

Coefficients (dots) and 95% confidence intervals (bars) of linear mixed-effects model illustrating 408

the fixed main and interaction effects of MAT, MAP, and the presence of vegetation cover (V vs. 409

O) on POC and MAOC contents (n = 648 V and O areas). The variance explained (R2) by the 410

fixed and random effects relative to the total variance was 30% and 55%, respectively, for POC, 411

and 32% and 61%, respectively, for MAOC.412

Fig. 3 | Coupling and drivers of particulate organic C (POC) and mineral-associated 413

organic C (MAOC) in global drylands. a, Relationship between POC and MAOC contents. 414

Dots represent individual dryland plots, with the colors of the dots illustrating their aridity (1 –415

annual precipitation/potential evapotranspiration) values. The line and shading represent the 416

fitted linear regression and 95% confidence interval, respectively. b, Variance explained (R2) by 417

linear mixed-effects models for POC and MAOC contents partitioned into the fraction 418

attributable to unique and shared among groups of drivers (climate: mean annual temperature 419

and mean annual precipitation; biotic factors: net primary productivity, type of vegetation, 420
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woody cover, plant richness, grazing pressure, and herbivore richness; and soil biogeochemistry: 421

clay and silt, pH, chemical index of alteration, exchangeable Ca, non-crystalline Al and Fe, 422

available N and P, and microbial biomass carbon). The variance explained (R2) by the fixed and 423

random effects relative to the total variance was 69% and 20% for POC (n = 317) and 84% and 424

11% for MAOC (n = 317), respectively.425
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Methods506

Global field survey and soil sampling. Fieldwork was conducted from January 2016 to 507

September 2019. A total of 326 plots distributed across 98 study sites in 25 countries from all 508

continents except Antarctica (Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, 509

China, Ecuador, Hungary, Iran, Israel, Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, 510

Palestine, Peru, Portugal, South Africa, Spain, Tunisia, and United States of America) and 511

encompassing the wide range of vegetation, soil, climate, and grazing pressure levels found in 512

drylands worldwide were surveyed using a common and standardized protocol 19,20.513

At each site, we gathered field data within multiple 45 m x 45 m plots situated along a 514

gradient of grazing pressure, encompassing high (n = 98), medium (n = 97), and low (n = 88) 515

pressure levels, as well as ungrazed areas (n = 43). To establish the grazing gradients, in 90 out 516

of the 98 sites surveyed, we strategically positioned these plots at varying distances from 517

artificial watering points, which are usually created in drylands to supply introduced livestock 518

with permanent water sources 34. The closer the plot to the permanent water source, the more 519

intense the grazing 34,35. In the remaining eight sites, local variations in grazing pressure 520

gradients were ascertained by observing different paddocks featuring varying grazing intensities.521

See ref. 20 for additional details on the characterization and validation of the local grazing 522

pressure gradients established.523

A portable Global Positioning System was used to record the coordinates and elevation of 524

each plot, which were standardized to the WGS84 ellipsoid for visualization and analyses. 525

During the dry season at each site, four soil cores (145 cm3) from 0 to 7.5-cm depth (topsoil) 526

were collected from five 50 × 50-cm quadrats randomly placed in areas under the canopy of the 527

dominant perennial vegetation and five placed in open areas not covered by perennial vegetation. 528
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The soil cores were homogenized and composited to form a sample representative of the soil 529

under the dominant vegetation and a sample representative of the soil in open areas within each 530

plot. The soil samples were passed through a 2-mm sieve. A portion of each soil sample was air-531

dried and used for organic matter fractionation and texture and pH analysis, and another portion 532

was stored at -20 °C and used for microbial biomass C analysis. A portion of the air-dried soil 533

samples was ground with a ball mill for additional chemical analysis.534

Soil organic carbon fractionation and quantification. All the soil samples, a total of 648 (326 535

from open areas and 322 from under the canopy of the dominant vegetation), were subjected to a 536

size fractionation method 21,36 to separate the POC (not protected by minerals from microbial 537

decomposition) and MAOC (protected by minerals) fractions. Aggregates were dispersed by 538

adding 30 mL of sodium hexametaphosphate (5 g L-1) to 10 g of soil and shaking with an 539

overhead shaker for 18 h. After dispersion, the mixture was thoroughly rinsed through a 53-µm 540

sieve, to separate the POC (> 53 µm) and MAOC (< 53 µm) fractions using an automated wet 541

sieving system. The isolated fractions were oven-dried at 60 ºC, weighed, and ground with a ball 542

mill. The whole soil samples and the POC and MAOC fractions were analyzed for organic C 543

contents by dry combustion and gas chromatography using a ThermoFlash 2000 NC Soil 544

Analyzer (Thermo Fisher Scientific, MA) after removing carbonates by acid fumigation 37.545

Climate data. Mean annual temperature and mean annual precipitation data were obtained from 546

WorldClim 2.0 38 a high resolution (30 arc seconds or ~ 1 km at the equator) database based on a 547

large number of climate observations and topographical data for the 1970-2000 period. Aridity 548

index (ratio of average annual precipitation to potential evapotranspiration) data were obtained 549

from the Global Aridity Index and Potential Evapotranspiration Climate Database v3 39. Aridity 550

was calculated as 1 – aridity index.551
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Vegetation and herbivore richness survey. Each plot was classified as grassland, shrubland, or 552

forest by identifying the dominant type of vegetation. Net primary productivity (NPP) was 553

estimated using the mean annual Normalized Difference Vegetation Index (NDVI) averaged 554

monthly values between 1999 and 2019 at a resolution of 30 m from Landsat 7 Enhanced 555

Thematic Mapper Plus (ETM+) 40. The cover of perennial vascular plants (plant cover) was 556

measured along four parallel 45-m transects separated by 10 m and oriented downslope during 557

the peak of the growing season using the line-intercept method 19,41,42. Woody cover was 558

measured in 25 contiguous quadrats (1.5 m × 1.5 m) placed in each transect (100 quadrats per 559

plot). Plant richness was the total number of unique perennial species found along the quadrats 560

and transects surveyed. The richness of herbivores was quantified at each plot using dung data 561

collected systematically in situ along the four 45-m transects established as described in ref. 20.562

Soil analyses. All the bulk soil samples were analyzed as follows. Clay and silt contents were563

determined by sieving and sedimentation 43. Soil pH was measured in a water suspension at a 564

soil-to-water ratio of 1:2.5 44. The chemical index of alteration, which is an indicator of the 565

degree of weathering, was calculated as the molecular proportion of Al2O3 versus Al2O3 + CaO + 566

Na2O + K2O 45, using total Al, Ca, Na, and K contents and after correcting Ca for soils with 567

carbonates 18; total Al, Ca, Na and K contents were determined by inductively coupled plasma 568

atomic emission spectroscopy (ICP-AES) after digestion in nitric and perchloric acids 44,46. 569

Exchangeable Ca content was determined by ICP-AES after extraction with ammonium acetate 570

at pH 7.0 44,47. Non-crystalline Fe and Al contents were determined by ICP-AES after extraction 571

with acid ammonium oxalate 48. Available N (ammonium and nitrate) content was determined by 572

extraction with 0.5 M K2SO4 and the indophenol blue method using a microplate reader 49. 573
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Available P content was determined by the Olsen method 50. Microbial biomass C was 574

determined by substrate-induced respiration 51 using an automated microrespirometer 52.575

Statistical analyses. We compared the content of MAOC with that of POC in global dryland 576

soils controlling for confounding factors, and tested the hypothesis that the effects of climate577

(mean annual temperature and precipitation) on POC and MAOC contents depends on (interacts 578

with) the C fraction type. For these analyses, we aggregated soil data for open and vegetation 579

covered areas by plot using plant cover area as a weighting factor, and fitted a linear mixed-580

effects model on the response of C content with C fraction type as a binary categorical predictor 581

(either MAOC or POC). In the fixed-effects term of the model, we also included mean annual 582

temperature, mean annual precipitation, and the interactions of mean annual temperature and 583

mean annual precipitation with C fraction type, as well as key biotic (net primary productivity, 584

type of vegetation, woody cover, plant richness, grazing pressure, and herbivore richness) and 585

soil biogeochemical (clay and silt, pH, chemical index of alteration, exchangeable Ca, non-586

crystalline Al and Fe, available N and P, and microbial biomass C) covariates to control for 587

confounding factors. In the random term of the model, we incorporated an intercept structure 588

with plot nested within site as a categorical variable to account for the lack of independence in 589

the residuals due to the paired POC and MAOC separation and the plot sampling design. We 590

checked whether the fit of this linear mixed-effects model improved by including quadratic terms 591

of mean annual temperature, mean annual precipitation, and both mean annual temperature and 592

precipitation, using the Akaike information criterion (AIC) and likelihood ratio tests. None of the 593

quadratic models tested was a significantly better fit to the data (χ² (1) < 1.0, P > 0.3) than the 594

linear model (lowest AIC).595
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To examine separately the variance of POC and MAOC contents explained by the groups of 596

predictors (climate: mean annual temperature and mean annual precipitation; biotic factors: net 597

primary productivity, type of vegetation, woody cover, plant richness, grazing pressure, and 598

herbivore richness; soil biogeochemistry: clay and silt, pH, chemical index of alteration, 599

exchangeable Ca, non-crystalline Al and Fe, available N and P, and microbial biomass C), we 600

built two linear mixed-effects models (one for POC and another one for MAOC) with site as a 601

random categorical variable. These two separate models were used to assess the importance of 602

the different groups of predictors in explaining either POC or MAOC, and not to test statistically 603

for differences in the size of the effects of the predictors between POC and MAOC. To support604

the linear mixed-effects models, we tested the importance of the same groups of predictors of 605

POC and MAOC using random forest regression modeling 53. In particular, we built two random 606

forest models, one for POC and one for MAOC, combining 500 trees, and quantified the607

importance of each predictor by computing the increase in mean squared error across trees when 608

the predictor was permuted.609

We tested whether the presence of vegetation cover interacted with the effects of temperature 610

and precipitation also by linear mixed-effects modeling. For this purpose, we built two linear 611

mixed-effects models, one for POC content and another one for MAOC content in areas under 612

the canopy of the dominant perennial vegetation and open areas, with vegetation cover as a 613

binary predictor and plot nested within site in the random term.614

For all the linear mixed-effects models, POC, MAOC, exchangeable Ca, non-crystalline Al 615

and Fe, available N and P, and microbial biomass C were natural-logarithm transformed to 616

reduce the skewness of the data. To compare effect sizes, all the numeric predictors were 617

standardized by subtracting the mean and dividing by two standard deviations, and the binary 618
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variables (C fraction type and vegetated vs. open areas) were rescaled to -0.5 and 0.5 54. The 619

coefficients of the models were estimated by the restricted maximum likelihood approach, 95% 620

confidence intervals were calculated, and P-values were computed based on Satterthwaite 621

approximation 55. The validity of the assumptions of normality, homoscedasticity and linearity622

were examined using residual plots. The generalized variance inflation factors (GVIFs) were 623

computed to check for multicollinearity among predictors (GVIF values were less than 3 in all 624

cases, suggesting that multicollinearity was low 56). All statistical analyses were performed using 625

R 57 and the R packages arm 58, ggplot2 59, lme4 60, lmerTest 55, partR2 61, patchwork 62, 626

rnaturalearth 63, randomForest 64, sf 65, terra 66, and viridis 67.627

628

Data availability629

The data associated with this study are publicly available in 630

https://figshare.com/s/8aeac2300650181f2c86 (https://doi.org/10.6084/m9.figshare.24678891) 68.631
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