
HAL Id: hal-04735408
https://hal.science/hal-04735408v1

Preprint submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective Quadratic Error Bounds for Floating-Point
Algorithms Computing the Hypotenuse Function

Jean-Michel Muller, Salvy Bruno

To cite this version:
Jean-Michel Muller, Salvy Bruno. Effective Quadratic Error Bounds for Floating-Point Algorithms
Computing the Hypotenuse Function. 2024. �hal-04735408�

https://hal.science/hal-04735408v1
https://hal.archives-ouvertes.fr

Effective Quadratic Error Bounds for

Floating-Point Algorithms Computing the

Hypotenuse Function

Jean-Michel Muller Bruno Salvy

May 7, 2024

Abstract

We provide tools to help automate the error analysis of algorithms
that evaluate simple functions over the floating-point numbers. The aim
is to obtain tight relative error bounds for these algorithms, expressed as
a function of the unit round-off. Due to the discrete nature of the set
of floating-point numbers, the largest errors are often intrinsically “arith-
metic” in the sense that their appearance may depend on specific bit pat-
terns in the binary representations of intermediate variables, which may
be present only for some precisions. We focus on generic (i.e., parameter-
ized by the precision) and analytic over-estimations that still capture the
correlations between the errors made at each step of the algorithms. Using
methods from computer algebra, which we adapt to the particular struc-
ture of the polynomial systems that encode the errors, we obtain bounds
with a linear term in the unit round-off that is sharp in many cases. An
explicit quadratic bound is given, rather than the O()-estimate that is
more common in this area. This is particularly important when using
low precision formats, which are increasingly common in modern proces-
sors. Using this approach, we compare five algorithms for computing the
hypotenuse function, ranging from elementary to quite challenging.

1 Introduction

1.1 Motivation

Floating-Point (FP) arithmetic is ubiquitous in numerical computing: almost all
High-Performance Computing applications rely on it. However, FP arithmetic
is inherently inexact. The impact of individual rounding errors on the final
result of a computation is very often small but can sometimes be catastrophic
(see e.g., [2, Chapter 1], [38]). It is therefore important to be able to obtain
bounds on the error that can occur when running a given numerical program.

Assuming all variables remain in the so-called “normal domain”, the relative
error of each individual arithmetic operation can be bounded by a constant u,

1

ar
X

iv
:2

40
5.

03
58

8v
1

 [
m

at
h.

N
A

]
 6

 M
ay

 2
02

4

that depends only on the floating-point format being used (more detail is given
in Section 1.2). Consequently, the natural and most commonly adopted way to
obtain error bounds is to “propagate” these individual bounds iteratively. For
example, the following very simple program computes the product of three FP
numbers a, b, and c by two successive multiplications:

d = a * b;

f = d * c

The computed value of f satisfies

abc(1− u)2 ≤ f ≤ abc(1 + u)2.

This simple approach has proved fruitful since the pioneering work of Wilkin-
son [45]. It has made it possible to obtain numerous results [23]. Unfortunately,
it suffers from two drawbacks:

1. Very often, it leads to a large overestimation of the real maximum error.
First, because some operations are errorless: examples are the subtraction
of FP numbers that are close to each other (Lemma 2.1), or multiplications
by powers of 2. Second, and probably more important, the bound u on
the relative error of an operation is sharp only if its result is very close
to (and above) a power of 2 (see Section 1.2). Even for fairly simple
programs, this cannot happen for all intermediate variables because they
cannot realistically be viewed as “independent” (just consider computing
3xy by first computing xy and then multiplying the resulting value by 3:
you cannot have xy and 3xy very close to a power of 2 at the same time);

2. When the size of the analyzed program becomes large (more than a few
operations), the expressions obtained by propagating the individual error
bounds become too large and complex to be easily manipulated by paper-
and-pencil calculations, with several consequences. The first one is that
the proofs of the theorems that give the bounds are long, tedious, and thus
error-prone, with the unpleasant consequence that one is never quite sure
of their correctness because few people read them in detail. The second
consequence is that to avoid this complexity, it is tempting to “simplify”
the intermediate bounds at each step, so that they become looser.

Our goal is to alleviate these drawbacks by (partly) automating the computation
of error bounds, using modern computer algebra tools. We believe that this
approach would be beneficial in a number of ways:

Reusability: when designing and analyzing numerical algorithms, one of-
ten wants to compare slightly different variants. “Re-playing” the automatic
computation of the error bound with a new variant is easily done.

Tighter bounds: modern computer algebra tools can readily manipulate com-
plex expressions, so that intermediate simplifications are much less often needed,
with the result that the final bounds are often tighter than those obtained from
paper-and-pencil calculations.

2

Trust: automatically generating bounds, together with their proofs, which
are correct by construction would greatly reduce the likelihood of an error re-
maining unnoticed. Faced with a similar problem, Muller and Rideau use formal
proofs [36]. This is also the case for Gappa [18] and Real2Float [34] mentioned
below. These approaches complement our own, and a natural next step will be
to have the computer algebra tool generate a certificate to be validated by the
formal proof system. At this stage however, we are not sufficiently confident in
our implementation to trust its results blindly. For this reason, we give both
the results given by our implementation and a human-readable proof of them,
or in some cases weaker bounds that those found automatically.

1.2 Basics of Floating-Point Arithmetic

We give the definitions that are relevant for this study. We refer to surveys
and books for more information on floating-point arithmetic [11, 20, 35, 39].
Throughout this article, we assume a radix-2 FP system parameterized by its
precision p and its extremal exponents emin and emax. That is, an FP number
is of the form

x =M × 2e−p+1, (1)

where M and e are integers satisfying

|M | ≤ 2p − 1 and emin ≤ e ≤ emax. (2)

The FP number x is said normal if |x| ≥ 2emin , and subnormal otherwise. The
largest finite FP number is Ω = (2p − 1) · 2emax−p+1, and the normal domain is
the range 2emin ≤ |t| ≤ Ω.

As the exact sum, product and quotient of two FP numbers (or the square
root of a FP number) are not, in general, FP numbers, they must be rounded.
In the following, we assume that the rounding function is round-to-nearest,
noted RN, which is the default1 in the IEEE 754 Standard on Floating-Point
Arithmetic [25]. That is, each time a ⋆ b (resp.

√
a) is computed, where a

and b are FP numbers and ⋆ ∈ {+,−,×,÷}, what is returned is RN (a ⋆ b)
(resp. RN (

√
a)). The absolute error due to rounding to nearest a real number

t, |t| ≤ Ω is bounded by half the distance between two consecutive FP numbers
in the neighborhood of t. That distance, called unit in the last place (ulp) of t
is

ulp(t) :=

{
2emin−p+1 if |t| < 2emin+1

2⌊log2 |t|⌋−p+1 otherwise.
(3)

Assume that t belongs to the normal domain. There exists k ∈ Z, k ≥ emin

such that t ∈ [2k, 2k+1). The absolute error due to rounding t is bounded by

|t− RN(t)| ≤ 1

2
ulp(t) = 2k−p, (4)

1More precisely, the default in the IEEE-754 Standard is round-to-nearest ties-to-even, see
for instance [35] for more explanation.

3

Figure 1: Left: absolute error (in ulps) of rounding to nearest x ∈ [12 , 16]. Right:
relative error (in multiples of u = 2−p) of rounding to nearest x ∈ [12 , 16]. Both
pictures assume a binary floating-point system with p = 5.

and therefore, the relative error due to rounding t is bounded by∣∣∣∣ t− RN(t)

t

∣∣∣∣ ≤ u, (5)

where u := 2−p is the unit round-off.
It is obvious that Eq. (4) ⇒ Eq. (5), but the reverse is not true. Still,

although it conveys less information than Eq. (4), Eq. (5) is used more often
than Eq. (4) in both paper-and-pencil and automated error analysis, because it is
easier to manipulate relative errors when analyzing long sequences of operations.
However, it is unlikely that near-optimal error bounds can be obtained using
only Eq. (5), except for very short and simple algorithms. Figure 1 shows the
absolute and relative errors resulting from rounding a real number t ∈ [1/2, 16].
The absolute error bound 0.5ulp is approached in the immediate vicinity of all
real numbers, while the relative error bound u is approached only slightly above
powers of 2. As a consequence, obtaining a near-optimal bound using Eq. (5)
solely requires the existence of input values for which almost all intermediate
variables in the computation under consideration are slightly above a power of 2.
While this may happen for very simple algorithms such as Algorithm 1 below,
it is unlikely to happen for more complex algorithms.

1.3 Which kind of error bounds?

Generic and analytic bounds Our aim is to determine relative error bounds
that we term as generic and analytic for algorithms that typically contain at
most a dozen or so arithmetic operations. We use these terms to denote that
the bounds are expressed as a continuous function of u that bounds the error
for all u that are less than some specified umax > 0. To be more specific, we are

4

interested in obtaining generic quadratic bounds, i.e., generic analytic bounds
of the form

αu+ βu2, u ≤ umax. (6)

We look for “best possible” generic quadratic bounds: for u ≤ umax we want to
minimize α, and whenever possible, for that best α we want to minimize β. In
particular, we do not want to return approximate bounds, such as those of the
form “αu + O(u2)” that are frequent in numerical analysis,2 because they do
not allow to guarantee that the error will be less than some well-defined value.
To accomplish this, as said above, utilizing solely the relative error model (5)
will not always be adequate. Instead, we often need to use the absolute-error
model (4), in conjunction with particular properties of the set of FP numbers
such as Lemma 2.1 or Lemma 2.4 below.

Consider, for a given algorithm an (absolute or relative) error bound B(u)
and the (most likely unknown) worst case error W(u). We call the bound B

• asymptotically optimal if W(u)/B(u)→ 1 as u→ 0;

• sharp (for u ≤ umax) if W(u) ≥ 0.999B(u) for some values of p3.

The exact motivation for a careful error analysis and the underlying hy-
potheses it uses may vary greatly from author to author, and this can influence
the type of bound one looks for. As regards motivation for computing numerical
error bounds, one can cite:

• Choosing between different algorithms: if two different algorithms are
available to solve the same problem, one may wish to make an informed
choice of the algorithm that has the best balance performance/accuracy.
This requires that the error bounds be sharp (but approximate bounds
could do).

• Careful implementation optimization: There is a comprehensive range of
FP formats, ranging from 16-bit “half-precision” formats to the 128-bit
“quad-precision” binary128 format. Since numbers represented in the
small formats are processed faster, there is a temptation to use the small
formats whenever possible [1]. As the small formats have significantly
larger individual rounding errors, this requires sharp error bounds.

• Certainty: floating-point arithmetic is also used in critical numerical soft-
ware (e.g., software embedded in transportation systems). For critical
applications, it is sometimes essential to be sure that the numerical error
does not exceed a certain limit. In such cases, the sharpness of the error
bounds is not always needed, but certainty is paramount: approximate
bounds are to be avoided.

2Such approximate bounds are of course very useful in many applications, but we mainly
target the small algorithms that implement the “basic building blocks” of computing, for
which guaranteeing upper bounds on the error is important.

3The constant 0.999 is of course arbitrary.

5

Genericity versus optimality The genericity of the error bounds avoids
having to repeat the analysis for all possible FP formats. However, looking
for generic bounds may mean giving up on optimality. The “best possible”
generic analytic bound will sometimes not be sharp, because rounding errors
are inherently “arithmetic”: they may depend on specific bit patterns in the
binary representations of intermediate variables, which may be present only
for some values of p. Consider for example the computation of x2 − 2 using
a multiplication followed by a subtraction, i.e., what is actually computed is
RN(RN(x2) − 2)). Under the (generally accepted) conjecture [6] that

√
2 is a

2-normal number4 (which implies than any given bit string appears infinitely
many times in its binary representation), the behaviour of the algorithm is very
different for x = RN(

√
2) and the other values. The following properties hold:

(P1) in precision-p arithmetic, if x ̸= RN(
√
2) then the relative error of the

computation is less than or equal to
√
2/2 ≈ 0.707;

(P2) for infinitely many values of p, the largest relative error of the computation
(hence attained for x = RN(

√
2)) is 1. This is found by choosing p such

that just after the first p bits of the binary expansion of
√
2 there is either

the bit-string 000 or the bit string 111 (the normality conjecture implies
that there are infinitely many such p). In such cases, for x = RN(

√
2),

RN(x2) = 2 so that the computed result is zero;

(P3) for infinitely many values of p, the relative error of the computation for
x = RN(

√
2) is less than 128/(112

√
2 − 49u), which is less than 0.876

as soon as u ≤ 1/4 (i.e., p ≥ 2). This is found by choosing p such that
just after the first p bits of the binary expansion of

√
2 there is either the

bit-string 10000 or the bit string 01111.

Let B(u) be a generic analytic bound. (P2) implies that there are values of
u arbitrarily close to 0 for which the largest error is 1. For these values we must
have B(u) ≥ 1 and since B is continuous by hypothesis, B(0) ≥ 1 so that for
any ϵ > 0 there exists u0 > 0 such that for u < u0, we have B(u) ≥ 1− ϵ. But
(P1) and (P3) imply that there are infinitely many values of p for which the
largest relative error is less than 0.876, implying that B(u) is not asymptotically
optimal (and not even sharp).

1.4 Recent results

Recent results in computer arithmetic Rump revisited the classical error
bounds for recursive summation and dot product [40], showing that the usual
“O(u2)” terms which appear in the literature are not necessary. This prowess
led to similar improvements for other problems such as summation in arbitrary
order, polynomial evaluation, powers and iterated products, LU factorization,

4There is an unfortunate conflict of scientific terminology between the fields of computer
arithmetic and number theory here: the word “normal” used here has no correlation with its
usage in other parts of the article.

6

etc [41]. In this vein, Jeannerod and Rump proved optimal bounds for square-
root and division [27], recalled in Lemma 2.4 below. These bounds offer precise
control over the accuracy of fundamental operations. They are obtained through
a delicate analysis of the discrete structure of the set of the FP numbers, which
we do not attempt to automate here.

Recent work on automatic analysis Various tools have been proposed
for computing error bounds on the result of numerical programs. Noteworthy
tools include Fluctuat [21] (based on abstract interpretation), FPTaylor and
SATIRE [42, 17] (based on Taylor forms), Gappa [18] (based on interval arith-
metic and forward error analysis), VCFloat2 [4] (based on interval arithmetic
and a Coq tactic that recursively decomposes expressions), and Real2Float [34]
(based on semidefinite programming and the use of (5)). They are very efficient
in their respective domains (for instance Fluctuat and SATIRE can address
rather large programs, Gappa and Real2Float can generate formal proofs or
formally provable certificates, thence giving very good confidence on the ob-
tained results). In general, they are somehow limited to a given precision (e.g.,
double-precision) and cannot return a bound of the form (6) valid with any
u ≤ umax. Moreover, the ability of handling large programs comes at the ex-
pense of bounds that may significantly exceed the optimal ones.

1.5 Contribution

Our approach is complementary to the works mentioned above. We provide
generic analytic bounds parameterized by the unit round-off u. They are com-
puted in such a way that some of the correlations between the errors in the
intermediate steps are taken into account. This often yields tighter bounds than
those provided by previous tools, at the expense of heavy computations. This
limits our approach to the small programs that implement functions considered
as “basic building blocks” of numerical computation, such as the hypotenuse
considered in this article, for which it makes sense to spend much computing
time in order to derive a sharp bound that will be reused many times, in many
applications.

Running example: the hypotenuse function We illustrate our approach
with a gallery of algorithms for the computation of

√
x2 + y2, presented in

Section 4. A basic example is provided by the following naive program:

sx = x*x;

sy = y*y;

sigma = sx + sy;

rho1 = sqrt(sigma);

Assuming that the compiler does not change the sequence of instructions
of the program, and that the arithmetic operations and the square root are
rounded to nearest, what is actually computed is expressed by Algorithm 1
below.

7

Algorithm 1 The naive algorithm for the Hypot function. It takes 4 FP oper-
ations, and approximates

√
x2 + y2 with relative error better than 2u.

1: sx ← RN(x2)
2: sy ← RN(y2)
3: σ ← RN(sx + sy)
4: ρ← RN(

√
σ)

Assuming no underflow or overflow occurs, and just using Eq. (5) on each
statement yields the relative error bound 2u+u2. This is the classical 2u+O(u2)
error bound of the literature [24]. Jeannerod and Rump improved that bound
by showing that the relative error is actually less than 2u [27]. Both bounds
are asymptotically optimal [26]. As a first example of our approach, we show in
Section 5 that the error is bounded by

2u− 8

5
(9− 4

√
6)u2 < 2u− 5

4
u2, u ≤ 1/4. (7)

Main tool: Polynomial Optimization By the very nature of the FP num-
bers, the error is a discontinuous function of u (and u = 2−p itself only takes
discrete values). However, the sharp error bounds that are known for the basic
operations are all continuous functions of u and, even better from the computer
algebra point of view, algebraic functions (being obtained by combinations of
+,×,÷,√). Thus an algorithm can be seen as the description of a semi-algebraic
set: a subset of Rn defined by polynomial equalities and inequalities. In the spe-
cific example of Algorithm 1, the equations are

sx = x2(1 + uϵsx), sy = y2(1 + uϵsy),

σ = (sx + sy)(1 + uϵσ), α2 = σ, ρ = α(1 + uϵρ),
(8)

with each ϵi bounded in absolute value by 1/(1 + u). In general, tight bounds
on these quantities ϵi are obtained by a step-by-step analysis of the program: in
some cases they follow from a refinement of the relative error bound Eq. (5); in
other cases knowledge of an interval containing the value allows the use of the
tighter absolute error bound Eq. (4). In our example, this system of equalities
and inequalities defines a small tube-like region of dimension 7 in R12: here,
the dimension 12 comes from one variable for the unit round-off u, one for each
input x, y, one for each of the variables of the algorithm (sx, sy, σ, ρ), one for
each ϵi and one for the square-root α. A computation reveals that the projection
of this region on the (u, x, y, ρ)-coordinate space is simply the region between

the surfaces ρ =
√
x2 + y2/(1+u)2 and ρ =

√
x2 + y2(1+2u)2/(1+u)2. From

there, it is easy to deduce the bound in Eq. (7).
For less straightforward algorithms, obtaining a bound becomes an optimiza-

tion problem: find the maximum and the minimum of ρ/
√
x2 + y2 − 1 in the

domain defined by the equations and inequalities obtained from analyzing the
program. This is an instance of the polynomial optimization problem, which

8

consists in computing the maximum or the minimum of a variable that satisfies
a given system of polynomial equations and inequalities. At this level of gen-
erality, this problem is well understood in terms of algorithms and complexity,
see e.g., [37, 28, 7], but also very expensive. For large algorithms, one has no
choice but to compute approximations to the optimal values; this is the ap-
proach taken by Real2Float [34]. We focus here on testing the limits of what
can be computed exactly. Our approach exploits the specific structure of the
problem as much as we can and is described in Section 3.

Prototype Implementation We have written a simple Maple implemen-
tation of the approach described in this article5. On the example above, its
behaviour is as follows:
> Algo1:=[Input(x=0..2^16,y=0..2^16,_u=0..1/4),

> s[x]=RN(x^2),s[y]=RN(y^2),sigma=RN(s[x]+s[y]),rho=RN(sqrt(sigma))]:

> BoundRoundingError(Algo1);

2 u+

(
72

5
− 32

√
6

5

)
u2

The algorithm is first stated with ranges for its inputs (currently the program
only handles finite ranges, which is not much of a problem for the hypotenuse
function, but might make the analysis somehow difficult for other functions).
The name _u is used for the unit round-off. The procedure first makes several
decisions concerning intermediate rounding errors; next, it computes a bound
on the linear part of the error bound. Finally, the procedure computes an upper
bound on the quadratic part once this linear part is fixed. This is the bound
from Eq. (7). Thus in a way the input of our code is an algorithm and its output
is a theorem giving an upper bound on its relative error. However, as mentioned
above, since this is only a prototype, in this article we do not trust the output
blindly. Instead, we use it as a statement of a theorem and give a paper proof,
obtained mostly from following the intermediate steps of the code, so that the
proof can be checked by a human reader.

1.6 Structure of the article

In Section 2, we recall special cases where the bounds Eq. (4) and Eq. (5)
on the errors of individual operations can be improved due to some structural
properties of the set of the FP numbers. Then, Section 3 describes the computer
algebra algorithms we use for analyzing numerical programs. Section 4 presents
several algorithms that have been proposed in the literature for evaluating the
hypotenuse function. These algorithms are analyzed in Sections 5 to 9. We
discuss these results in Section 10. The most technical parts of the analyses are
deferred to Appendices A to C.

5A Maple session available on arXiv with this article includes all its examples.

9

Acknowledgements This work is partly supported by the ANR-NuSCAP
20-CE-48-0014 project of the French Agence nationale de la recherche (ANR).
We are grateful to Mohab Safey El Din for giving us access to recent versions of
his software, to Guillaume Melquiond for his help with Gappa and to Ganesh
Gopalakrishnan and Tanmay Tirpankar for their help with Satire.

2 Bounds for Floating-Point Operations

Some structural properties of the set of FP numbers cannot be disregarded if
tight error bounds are desired. An illustration is given by Lemma 2.1 below: if
two FP numbers a and b are close enough, then computing a − b results in no
error. In such a case, utilizing Eq. (4) or Eq. (5) to bound the error would be
a significant overestimation. A simpler example is multiplications by powers of
two, which are exact operations as long as underflow and overflow are avoided.

Lemma 2.1 (Sterbenz’ Lemma [43]). If a and b are floating-point numbers
satisfying a/2 ≤ b ≤ 2a then b − a is a floating-point number, which implies
RN(b− a) = b− a.

In a similar spirit, the following result of Boldo and Daumas [10, Thm. 5] is
helpful to deal with the error in a square-root computation.

Lemma 2.2 (Exact representation of the square root remainder [10]). In binary,
precision-p, FP arithmetic with minimum exponent emin, let s = RN(

√
t), where

t is a FP number. The term t − s2 is a FP number if and only if there exists
a pair of integers (m, e) (with |m| ≤ 2p − 1) such that s = m · 2e−p+1 and
2e ≥ emin + p− 1.

An almost immediate consequence of Eq. (3) is the following slight improve-
ment of Eq. (5).

Lemma 2.3 (Dekker-Knuth’s bound [32]). If t ̸= 0 is a real number in the
normal domain, then the relative error due to rounding satisfies∣∣∣∣ t− RN(t)

t

∣∣∣∣ ≤ v with v =
u

1 + u
. (9)

This bound was obtained by Dekker in 1971 [19] for the error of some oper-
ations in binary FP arithmetic. It was given by Knuth in its full generality [32].
But it is seldom used: most authors use the very slightly looser (but simpler)
bound (5). In our context where the analyses are performed by a computer, we
use Eq. (9) when appropriate.

Relative error for specific operations Jeannerod and Rump [27] have
showed that while the bound (9) is optimal for addition, subtraction and mul-
tiplication, it can be improved for division and square root. For these two
operations, they give the following optimal bounds, of which we make heavy
use.

10

Lemma 2.4 (Jeannerod-Rump bounds [27]). When the precision p is at least 2,
the relative error of a (correctly rounded) square root is bounded by

1− 1√
1 + 2u

; (10)

the relative error of a division in binary FP arithmetic is bounded by

u− 2u2. (11)

The first bound is general; the second one holds only in base 2, which is our
setting in this article.

3 Computer algebra algorithms for tight analy-
sis of numerical programs

We focus here on the analysis of straight-line programs operating over floating-
point numbers. We assume that the basic operations in these programs are +,
−, ×, ÷, √. and the FMA operation (which evaluates an expression ab+ c with
one final rounding only and is available on all recent processors). Hence, such a
program is a sequence of instructions, the ith one of which has one of the forms

vi := wj × wk + wℓ or vi := wj ÷ wk or vi :=
√
wj , (12)

where wj , wk, wℓ are either variables vm with m < i, or input variables, or con-
stant floating-point numbers. For the first of the three forms (which corresponds
to the FMA operation), taking some of the variables to be 0 or 1 recovers ad-
dition and multiplication. By convention, the last instruction defines the result
of the algorithm, whose relative error is to be bounded. The analysis proceeds
in three steps: a step-by-step analysis of the instructions of the program; an
asymptotic analysis of an upper bound on the relative error as the precision
tends to infinity (or equivalently, as u tends to zero); an actual bound on the
quadratic term in the relative error when using the asymptotic bound found for
its linear part. We now review these steps in more detail.

3.1 Step-by-step analysis

This is the step where knowledge of the FP numbers from Sections 1.2 and 2
is used. It consists of an inductive construction of a system of polynomial
equations and a system of inequalities.

First, a system I0 of linear inequalities is initialized with the known informa-
tion on the ranges of the input variables, plus the inequalities 0 < u ≤ umax for
the unit round-off (see Section 2). The initial system of polynomial equations
is the empty set: S0 = ∅.

The analysis proceeds instruction by instruction, constructing new systems
of equations and inequalities Si and Ii from Si−1 and Ii−1. Let ti be the right-
hand side of the assignment in the ith instruction of the algorithm from Eq. (12).

11

This step aims at bounding the rounding error in the assignment vi := ti by
analyzing ti using the systems Si−1 and Ii−1.

No error The best situation is when that error can be determined to be 0.
This happens either when ti is a constant floating-point number that does not
depend on the input variables, when a multiplication by a power of 2 is per-
formed, or when Sterbenz’ Lemma 2.1 or Lemma 2.2 are found to apply6. As we
construct only polynomial equations, the system Si is then obtained by adding
one of the following to Si−1:

vi = wj × wk + wℓ or viwk = wj or v2i = wj . (13)

In the last case, we also add vi ≥ 0 to Ii−1 to obtain Ii. Otherwise, Ii = Ii−1.

Absolute error The next best situation is when one can determine ulp(ti)
exactly. For this, one determines the minimal and maximal values of ti given the
equations and inequalities in Si−1 and Ii−1. If these bounds allow to determine
ℓi = ⌊log2 |ti|⌋ exactly, then the system is enriched with an absolute error bound :
in Eq. (13), vi is replaced by

vi + 2ℓi+1ϵiu, (14)

and the system of inequalities is complemented with −1 ≤ ϵi ≤ 1.

Relative error In the remaining cases, the systems are enriched with a rela-
tive error bound:

vi = (wj × wk + wℓ)(1 + ϵiu), −bDK ≤ ϵi ≤ bDK (15)

or viwk = wj(1 + ϵiu), −b÷ ≤ ϵi ≤ b÷, (16)

or v2i = wj(1 + ϵiu)
2, −b√ ≤ ϵi ≤ b√, vi ≥ 0, (17)

and the relevant equation and inequality among

(1 + u)bDK = 1, b÷ = u− 2u2,

u(1 + 2u)b2√ − 2(1 + 2u)b√ + 2 = 0, b√ ≥ 0,
(18)

that come from Lemmas 2.3 and 2.4.

3.2 Polynomial optimization

The end result of the step-by-step analysis is a system of polynomial equations
and a system of polynomial inequalities, where each statement of the algorithm
brings one equation in one or two new variables (two being the general case
when the error is not zero) and a certain number of inequalities.

6That part of the analysis is not fully implemented currently, but the user can give this
information to our program.

12

At each stage of the step-by-step analysis and when bounding the relative
error on the last variable, we need to find the minimum or maximum of a
quantity defined by the system. Without loss of generality and up to adding
equations to the system, we can assume that the quantity to be maximized or
minimized is the last variable vm introduced in the system.

As mentioned in the introduction, this problem is well-understood in terms
of algorithms and complexity but also very expensive. In practice, even with
efficient software such as Mohab Safey el Din’s Raglib library7, which relies
on Faugère’s FGb library for Gröbner bases8, we could not obtain our bounds
directly using general-purpose approaches, except for the simplest algorithms.

Instead, we take an approach that exploits two characteristics of our systems
of polynomial equalities and inequalities:

1. As the unit round-off u is typically small compared to the other variables
of the program, the set of inequalities describes a small tube-like semi-
algebraic set around the exact value the variables take at u = 0;

2. Being produced by the step-by-step analysis described above, the set of
polynomial equalities we start with has a triangular structure.

Free and dependent variables. We distinguish two types of variables in
these systems: the free variables are the variables ϵi encoding the absolute
or relative errors, the input variables and the unit round-off u; the dependent
variables are those whose value is fixed once the free ones are fixed. Initially,
they correspond to the variables vi defined by the algorithm itself, as well as
the bound variables from Eq. (18).

The optimization is a recursive process where at each step one equation is
added to the system, making one of the free variables dependent and maintaining
the triangular nature of the system. At the end, no free variables are left and
the optimum is found among finitely many values. We now describe this process
in more detail.

Gradient. As the system Sm obtained by the step-by-step analysis is trian-
gular, by repeated use of the chain rule, the gradient of the last variable um
with respect to the free variables is obtained as a vector of rational functions in
all variables. Equivalently, this can be computed by automatic differentiation.

Recursive optimization. The optimization is a recursive search of extrema.
It is performed by looping through the free variables and trying to detect
whether the sign of the partial derivative with respect to one of them can be
decided (see Section 3.3). If this is the case, a new equation is added to the
system, setting this variable to its extremal value from Eq. (18) and one gets
an expression in one variable less to be optimized. When the decision cannot
be reached for any of the free variables, then we pick one of the variables ϵi

7https://www-polsys.lip6.fr/~safey/RAGLib/
8https://www-polsys.lip6.fr/~jcf/FGb/index.html

13

https://www-polsys.lip6.fr/~safey/RAGLib/
https://www-polsys.lip6.fr/~jcf/FGb/index.html

(heuristic choices are made) and use a branch-and-bound method, optimizing
the polynomial in each of the three cases ∂um/∂ϵi = 0 or ϵi equal to its extremal
values. The new systems have one variable less.

3.3 Sign decisions

Being able to quickly decide the sign of a polynomial in the domain of opti-
mization gives a substantial speed-up in the computation by removing many
branches in the optimization tree. This is where we use the fact that several of
the variables live in a small domain. Several techniques are used to help this
decision.

Factorization of multivariate polynomials over the rationals is well under-
stood in theory [31, 44] and works well in practice. It is not needed by the
algorithms but allows to reduce the degrees and possibly the number of vari-
ables of the polynomials whose signs have to be decided.

Interval arithmetic can be applied since for each variable, be it free or
dependent, we have bounds at our disposal that have been computed during
the step-by-step analysis. In some cases, this is sufficient to decide the sign.

Small number of variables occur near the bottom of the recursion tree. A
classical way to decide that a polynomial in one variable does not vanish inside
a given interval is to use Sturm sequences. These are available in all major
computer algebra systems.

For a univariate algebraic expression A(x), e.g., a combination of +,×,÷,√
applied to constants and one variable x, it is easy to construct by induction a
nonzero bivariate polynomial Q(x, y) such that Q(x,A(x)) = 0. Then a suf-
ficient condition for A not to vanish in a given interval is that the constant
term Q(x, 0) does not vanish there. This reduces the problem to that of a poly-
nomial in one variable. While this is only a sufficient condition, this method
saves a significant amount of time when it applies.

3.4 Regular chains

We take advantage of the triangular shape of the system constructed by the step-
by-step analysis of Section 3.1 using regular chains. These were studied initially
by Lazard [33] and Kalkbrener [30] and a large number of efficient algorithms
have been developed since [5, 14, 15, 16, 13, 3].

We first recall the basic notions. The polynomials belong to K[x1, . . . , xn]
for an algebraically closed field K. K can be the field C of complex numbers,
but usually, the coefficients of the polynomials are rational functions in the free
variables with rational coefficients, while the variables xi are the dependent
variables. An order xn > · · · > x1 is fixed on the variables. The leading
variable of a polynomial is the largest variable on which it depends. A set T of

14

polynomials is triangular when the polynomials have pairwise distinct leading
variables.

The coefficient of highest degree of a polynomial with respect to its leading
variable is called the initial of the polynomial. The product of the initials of a
triangular set T is denoted hT . Three geometric notions are relevant: the zero
set V (T) ⊂ Kn of zeros of T ; the quasi-component W (T) = V (T) \ V (hT) and
its Zariski closure W (T).

Regular chains are defined inductively. An empty triangular set T is a regular
chain. Otherwise, if Tmax is the element of a triangular set T with the largest
leading variable, T is a regular chain when T ′ := T \ {Tmax } is a regular chain
and the the initial hmax of the polynomial Tmax is regular in the sense that
W (T ′) =W (T ′) \ V (hmax).

The following example illustrates all these notions.

Example 3.1. Consider a program that would perform the sequence of assign-
ments

t2 :=
√
2t1, t3 := t21/t2. (19)

For the second assignment not to raise an error, it is necessary that t2 ̸= 0. The
computed values are such that the point (t1, t2, t3) is part of the solution set of
the polynomial system

T = {t22 − 2t21, t3t2 − t21}.

This is a regular chain for the order t3 > t2 > t1. Its solution set is the union
of two curves: V (T) = C1 ∪ C2, with

C1 = {(±
√
2t, 2t, t) | t ∈ C}, C2 = {(0, 0, t) | t ∈ C}.

The product of initials in T is hT = t2 and thus the quasi-component is just
the first curve minus a point: W (T) = C1 \ {(0, 0, 0)}. All values computed by
Eq. (19) belong to W (T). Finally, the Zariski closure recovers the missing point
and W (T) = C1.

3.5 Application to Error Analysis

The systems of equations constructed during the step-by-step analysis of Sec-
tion 3.1 are actually regular chains. The field one starts with is the field of
rational functions K0 := Q(u, i1, . . . , iℓ) in u the unit round-off and i1, . . . , iℓ
the input variables.

Starting from Ii−1 a regular chain in Ki−1[v1, . . . , vi−1] for the order v1 <
· · · < vi−1, the chain is enriched by the relevant equation from Eq. (13), Eq. (14)
or Eqs. (15) to (17), while the field Ki is Ki−1 when it is detected that no error
occurs and Ki−1(ϵi) otherwise. The new variable vi is set to be larger than vi−1

in the ordering; the main variable of the new polynomial is thus vi, so that the
system is triangular; its initial is 1, except in the case of a division where it
is wk. In that situation, removing V (wk) is expected, as it corresponds to a
division by 0. Thus, computing quasi-components is desired in our setting.

15

The construction of the regular chains used during the optimization is differ-
ent. This occurs during the step-by-step analysis to determine the extremal val-
ues of the variables or during the computation of relative error bounds. During
such an optimization, new equations involve free variables that become depen-
dent and are removed from the current field of coefficients. These new dependent
variables are appended to the list of dependent variables in descending order : if,
before the optimization, the system defines the variables vm > vm−1 > · · · > v1,
during the optimization the variables are given by a regular chain T that also
defines f1 > · · · > fk−1 with the fi formerly free variables and v1 > f1.

The introduction of a new variable fk is through a polynomial p(fk). The
equation p(fk) = 0 indicates that a derivative is 0, or that one of the ϵi, one of
the input variables, or the unit round-off u is assigned one of its possible extremal
values. A new field K̃ is defined with one variable less so that the previous one
is K̃(fk). At this stage, the current regular chain T is 1-dimensional over the
current field, as all dependent variables except fk are given by a polynomial
in the chain. An important issue is that it is not sufficient to consider the
intersection W (T) ∩ V (p(fk)), for which many algorithms are available, but we
need to know the closure W (T)∩ V (p(fk)). As an illustration of the difference,
if the current system is

T = [2t3t
2
1 − 2(t1 + 1)t2 − 2t21 + 3t1 + 2, t22 − t1 − 1]

with t3 > t2 > t1, then the intersection W (T) ∩ V (t1) is empty, whereas
W (T) ∩ V (t1) = {(0, 1, 11/8)}. The fact that our construction always involves
1-dimensional regular chains lets us compute these closures thanks to an algo-
rithm by Alvandi et al. [3], implemented in the function LimitPoints of the
Maple package RegularChains[AlgebraicGeometryTools].

4 A gallery of algorithms for the hypotenuse

Our running example is the calculation of the hypotenuse function (x, y) 7→√
x2 + y2. We now present various algorithms for that function that we use to

illustrate our approach, each with its own motivation and merits. The naive
algorithm (Algorithm 1) is simple, fast, and fairly accurate: when no under-
flow/overflow occurs, the absolute error is bounded by 1.222 ulp, as shown by
Ziv [46], and the relative error is bounded by 2u. However, Algorithm 1 suffers
from a serious drawback: intermediate calculations can underflow or overflow,
even if

√
x2 + y2 is far from the underflow or overflow thresholds. Such spuri-

ous underflows or overflows can result in infinite or very inaccurate output. For
instance, assuming we use the binary64 (a.k.a. “double precision”) format of
the IEEE 754 Standard,

if x = 2600 and y = 0 the returned result is +∞ (because the computation
of x2 overflows) whereas the exact result is 2600;

if x = 65 × 2−542 and y = 72 × 2−542 the returned result is 96 × 2−542

whereas the exact result is 97× 2−542.

16

The usual solution to overcome this problem is to scale the input data, i.e.,
to multiply or divide x and y by a common factor such that overflow becomes
impossible and underflow becomes either impossible or harmless. This is for
instance what Algorithm 2 below does, in a rather straightforward way.

To counter spurious overflow, one can divide both operands by the one with
the largest magnitude. This gives the well-known Algorithm 2, which is used
for example in Julia 1.1. Spurious underflow is not completely avoided, but if
one of the input variables (say, y) is so small in magnitude before the other one

that |y/x| is below the underflow threshold, then
√
x2 + y2 is approximated by

|x| with very good accuracy, so that the result returned by the algorithm is
excellent. Unfortunately, as we are going to see, Algorithm 2 is significantly less
accurate than Algorithm 1.

Algorithm 2 The simplest scaling for the Hypot function: divide both operands
by the one with the largest magnitude.

1: if |x| < |y| then
2: swap(x, y)
3: end if
4: r ← RN(y/x)
5: t← RN(1 + r2)
6: s← RN(

√
t)

7: ρ2 = RN(|x| · s)

Beebe [8] suggests several solutions to compensate for the loss of accuracy
in Algorithm 2 (using an adaptation of the Newton-Raphson iteration for the
square root). One of them is Algorithm 3 below, whose first 6 lines are exactly
the same as those of Algorithm 2. As shown in Section 7, it does more than
just compensate for the loss of accuracy due to the scaling: it has a better final
error bound than Algorithm 1.

Algorithm 3 Improvement of Algorithm 2 suggested by Beebe [8].

1: if |x| < |y| then
2: swap(x, y)
3: end if
4: r ← RN(y/x)
5: t← RN(1 + r2)
6: s← RN(

√
t)

7: ϵ← RN(t− s2)
8: c← RN(ϵ/(2s))
9: ν ← RN(|x| · c)

10: ρ3 ← RN(|x| · s+ ν)

Borges [12] presents several algorithms, including the very accurate Algo-
rithm 4 below. It does not address the spurious under/overflow problem (one

17

has to assume that a preliminary scaling by a power of 2 has been done).
The Fast2Sum and Fast2Mult algorithms called by Algorithm 4 are well-known
building blocks of computer arithmetic (see for instance [11]). Here we just need
to know that Fast2Mult(x, y) (resp. Fast2Sum(x, y)) delivers a pair (a, b) of FP
numbers such that a = RN(xy) (resp. a = RN(x + y)) and b = xy − a (resp.
b = (x + y) − a). As shown in Section 8, this algorithm is almost optimal in
terms of relative error (we obtain a relative error bound slightly above u).

Algorithm 4 Borges’ corrected “fused” algorithm [12, Algorithm 5].

1: if |x| < |y| then
2: swap(x, y)
3: end if
4: (shx, s

ℓ
x)← Fast2Mult(x, x)

5: (shy , s
ℓ
y)← Fast2Mult(y, y)

6: (σh, σℓ)← Fast2Sum(shx, s
h
y)

7: s← RN
(√
σh
)

8: δs ← RN(σh − s2)
9: τ1 ← RN(sℓx + sℓy)

10: τ2 ← RN(δs + σℓ)
11: τ ← RN(τ1 + τ2)
12: c← RN(τ/s)
13: ρ4 ← RN(c/2 + s)

Kahan [29] gives the fairly accurate Algorithm 5 below. It avoids spurious
underflows and overflows. Although we do not discuss these matters here, it
also has the advantage of correctly setting the various IEEE 754 exception flags
(underflow, overflow, inexact). It has the kind of size where automation of the
analysis becomes a necessity if one is not satisfied with loose error bounds.

These algorithms are sorted by order of complexity of their analysis. We
now deal with them in order, introducing the new problems and solutions one
at a time.

5 Algorithm 1: Straightforward Analysis

As mentioned in the introduction, the relative error of Algorithm 1 is bounded
by 2u and that bound is asymptotically optimal. We now show how this result
is derived by our approach, and how a small term 5

4u
2 can be subtracted from

the previous bound.

Step-by-step analysis The result of a step-by-step analysis was given in
Eq. (8). It follows that the relative error ρ/

√
x2 + y2 − 1 equals

R =

√(
x2(1 + uϵsx) + y2(1 + uϵsy)

)
(1 + uϵσ) (1 + uϵρ)√

x2 + y2
− 1,

18

Algorithm 5 Kahan’s hypot Algorithm [29, Algorithm CABS]. In this pre-
sentation, it requires the availability of an FMA instruction. We assume
0 ≤ y ≤ x. The algorithm uses the precomputed constants R2 = RN(

√
2),

Ph = RN(1 +
√
2), and Pℓ = RN(1 +

√
2− Ph).

1: δ ← RN(x− y)
2: if δ > y then
3: r ← RN(x/y)
4: t← RN(1 + r2)
5: s← RN(

√
t)

6: z ← RN(r + s)
7: else
8: r2 ← RN(δ/y)
9: tr2 ← RN(2r2)

10: r3 ← RN(tr2 + r22)
11: r4 ← RN(2 + r3)
12: s2 ← RN(

√
r4)

13: d = RN(R2 + s2)
14: q = RN(r3/d)
15: r5 ← RN(Pℓ + q)
16: r6 ← RN(r5 + r2)
17: z ← RN(Ph + r6)
18: end if
19: z2 ← RN(y/z)
20: ρ5 ← RN(x+ z2)

where each of ϵsx , ϵsy , ϵσ has absolute value bounded by 1/(1 + u), by Eq. (9),
while ϵρ is bounded by the Jeannerod-Rump bound of Eq. (10). The next step
of the analysis is to find the maximal value of |R| when all the ϵ variables range
in these intervals. Note that all these bounds are smaller than 1.

Upper bound Since 0 < u < 1, the expression above is an increasing function
of each of these ϵi in their intervals. Therefore its minimum is reached when they
are all simultaneously equal to their minimum, and similarly for the maximal
value. When ϵsx = ϵsy = ϵσ with ϵ their common value, the expression of R
simplifies to

(1 + uϵ)(1 + uϵρ)− 1 = u(ϵ+ ϵρ) + u2ϵϵρ.

This shows that the absolute value of the relative error R is maximal when ϵ
and ϵρ both reach their maximal value, giving

|R| ≤ S(u) := 1 + 2u

1 + u

(
2− 1√

1 + 2u

)
− 1 =

1 + 3u−
√
1 + 2u

1 + u
.

As u→ 0,

S(u) = 2u− 3

2
u2 + u3 +O(u4),

19

lower bound on p upper bound on the error

8 2u− 3
2u

2 + 4 · 10−3u2

11 2u− 3
2u

2 + 5 · 10−4u2

24 2u− 3
2u

2 + 6 · 10−8u2

53 2u− 3
2u

2 + 2 · 10−16u2

113 2u− 3
2u

2 + 10−34u2

Table 1: Quadratic error bound for Algorithm 1

showing the linear term in the bound. If only the linear term 2u is needed, using
the simple bound from Eq. (5) is sufficient. The more refined estimates are only
required to control the difference between that linear term and the actual error.

Optimal quadratic term Next, consider

y(u) =
S(u)− 2u

u2
,

whose maximum for u ∈ (0, umax] gives an upper bound on the quadratic term
of the error bound. This function is C∞ for u > −1/2 and the Taylor expansion
above shows that y(0) = −3/2 and y′(0) = 1. From the explicit expression of S,
it is easy to see that y′ > 0 in the interval [0, 1/4], implying that for umax ≤ 1/4
its maximum — the bound we are after — is reached at umax. Thus we have
proved the following.

Theorem 5.1. Barring underflow and overflow, the relative error R of Algo-
rithm 1 for u ≤ 1/4 satisfies

|R| ≤ 1 + 3u−
√
1 + 2u

1 + u
= 2u+ κu2, κ < −5/4.

The bound given in the introduction and obtained by our program for u =
1/4 can be seen to be y(1/4). The bound y(1/4) < −5/4 follows by numerical
approximation. Other values of the quadratic bound are given in Table 1.

Proof based on polynomials In preparation for more complicated examples
where the analysis of the function S(y) is not as straightforward as here, we show
how computer algebra could be used to show that y′ > 0 in the interval [0, 1/4].
The starting point is to perform a simple manipulation (automated in the Maple
gfun package) showing that y satisfies the quadratic equation

E(y, u) = u2(1 + u)2y2 − 2(1− u2)(1 + 2u)y + (1 + 2u)(2u− 3) = 0.

20

By continuity, y′ is positive in a neighborhood of u = 0. It can only change sign
at a point u where y′ = 0, but then

∂E

∂u
+
∂E

∂y
y′ = 0

implies ∂E/∂u(y, u) = 0. Eliminating y between E = 0 and ∂E/∂u = 0 by
means of a resultant shows that in turn, this implies

(1 + u)(4 + 21u+ 32u2 + 12u3 − 8u4) = 0.

Now, a simple interval analysis shows that this polynomial does not vanish for
u ∈ [0, 1/2]. Thus y′ does not vanish in this interval and y′(0) > 0 shows that
y is an increasing function.

Then, a direct proof of the bound −5/4 consists in using continuity again,
considering the univariate polynomial E(−5/4, u) and observing its absence of
root in [0, 1/2], which shows that −5/4 is never reached by y(u) in this interval.

6 Algorithm 2: Exploit Absolute Errors

A direct analysis using only the simple relative error bound Eq. (5) leads to a
bound on the relative error with a linear term of order 3u. The refined estimates
on the relative error from Section 2 do not improve that linear term. A step-by-
step analysis of the program yields a better estimate by studying more carefully
the ranges of the intermediate variables.

We assume 0 ≤ y ≤ x (i.e., we consider that if needed, the swap of Line 2 of
the algorithm has already been done).

6.1 Automatic Analysis

The result of our automation is as follows.
> Algo2:=[Input(x=0..2^16,alpha=0..1),y=RN(alpha*x,0),

> r=RN(y/x),t=RN(1+r^2),s=RN(sqrt(t)),rho=RN(x*s)]:

> BoundRoundingError(Algo2);
5

2
u+

3

8
u2

The assumption 0 ≤ y ≤ x is encoded by introducing a variable α ∈ [0, 1] and
stating that y = αx without an error, by using a second argument to RN that
encodes special knowledge on the error for a specific operation.

6.2 Result

The output of our program is an indication pointing to the following result,
proved below.

Theorem 6.1. The relative error of Algorithm 2 is less than or equal to

R5(u) =
(1 + 2u)

√
1 + u− 1 + 2u2

1 + u
≤ 5

2
u+

3

8
u2.

21

Proposition 6.2. The bound of Theorem 6.1 is asymptotically optimal.

Proof. Choose x = 2p − 1 and

y = RN
(
(2p − 1) ·

√
7 · 2−p/2 · (1− u)2

)
.

As soon as u ≤ 1/32, following the steps of the algorithm shows that its output

is ρ2 = 2p. It follows that
√
x2 + y2 − ρ2 → 5

2 as u → 0, so that the relative
error is asymptotically equivalent to 5u/2.

The following example illustrates the sharpness of the bound: in the binary64
format, with

x = 9007199254740991 and y = 8425463406411589× 2−25,

the relative error is 2.49999999999999558648u.
We now detail the steps of the analysis leading to the proof of Theorem 6.1,

following the approach outlined in Section 3.

6.3 Step-by-step analysis

This stage translates the program into a polynomial system with bounds on
intermediate error-variables. The first two steps give the equalities

y = αx, rx = y(1 + uϵr),

with |ϵr| ≤ 1− 2u by the Jeannerod-Rump bound Eq. (11).
Next, since r is the rounded value of α ∈ [0, 1] and the function RN is

increasing, r ≤ RN(1) = 1. This implies that 1 ≤ 1 + r2 ≤ 2 and therefore also
1 ≤ RN(1 + r2) ≤ 2. Hence the rounding absolute error committed at Line 5
of Algorithm 2 is less than u (half the distance between two consecutive FP
numbers between 1 and 2). The same reasoning applies to

√
t. This gives

t = 1 + r2 + uϵt, s =
√
t+ uϵs,

with |ϵs| and |ϵt| bounded by 1.
The last step is analyzed as before, giving

ρ = xs(1 + uϵρ),

with |ϵρ| ≤ 1/(1 + u), by Eq. (9).

It follows from these equations that the relative error |ρ/
√
x2 + y2 − 1| is

upper bounded by |R|, where

R =

(√
1 + α2(1 + uϵr)2 + uϵt + uϵs

)
(1 + uϵρ)

√
1 + α2

− 1.

22

6.4 Upper bound

As in the analysis of Section 5, for u ≤ 1/4, since all the |ϵi| are bounded by 1,
R above is an increasing function of all the ϵi in their intervals. Writing

ϵr = ϵ(1− 2u), ϵs = ϵ, ϵt = ϵ, ϵρ =
ϵ

1 + u
,

it follows that R is bounded between the values taken by

R̃(α, ϵ) :=

(√
1 + α2(1 + ϵu(1− 2u))2 + uϵ+ uϵ

)(
1 + ϵ u

1+u

)
√
1 + α2

− 1

at ϵ = −1 and at ϵ = 1. The variation of these bounds with respect to α is
dictated by

∂R̃

∂α
=

(
1 + ϵ

u

1 + u

)
α

(1 + α2)3/2

×
(1 + ϵu(1− 2u))2 − 1− uϵ− uϵ

√
1 + α2(1 + ϵu(1− 2u))2 + uϵ√

1 + α2(1 + ϵu(1− 2u))2 + uϵ
.

With u ≤ 1/4, ϵ ∈ {−1, 1} and α ∈ [0, 1], the signs of each of these factors can
be analyzed directly. The first two are nonnegative, as is the denominator of
the third one. Its numerator rewrites as

uϵ
(
1− (4− ϵ)u− 4ϵu2(1− u)−

√
1 + α2(1 + ϵu(1− 2u))2 + uϵ

)
.

The first factor is positive, the second one has the sign of ϵ and the last one is
negative. Indeed, the argument of the square root is increasing with ϵ and α,
so that its minimum is larger than

√
1− u, itself larger than 1−u for u ∈ [0, 1].

Thus this last factor is upper bounded by

− 1 + u+ 1− (4− ϵ)u− 4ϵu2(1− u) ≤ −3u+ ϵu− 4ϵu2(1− u)
≤ −2u+ 4u2(1− u) ≤ −u < 0.

In conclusion, at ϵ = −1, R̃ is negative and increasing with α, while at ϵ = 1,
it is positive and decreasing with α. Thus in both cases, its absolute value is
maximal at α = 0. Therefore R is bounded between the values taken by

R̃(0, ϵ) :=
(√

1 + uϵ+ uϵ
)(

1 + ϵ
u

1 + u

)
− 1

at ϵ = −1 and at ϵ = 1. It can now be observed that this is maximal in absolute
value at ϵ = 1 so that we have obtained the upper bound of the theorem

|R| ≤ S(u) := (1 + 2u)
√
1 + u− 1 + 2u2

1 + u
.

As u→ 0,

S(u) =
5

2
u+

3

8
u2 − 9

16
u3 +O(u4).

23

6.5 Optimal quadratic term

Set y(u) = (S(u)− 5
2u)/u

2, which satisfies the quadratic equation

E(y, u) = 4u2(1 + u)2y2 + 4(1 + u)(u2 + 5u+ 2)y + u2 − 6u− 3 = 0.

We now show that y′ < 0 in the interval [0, umax], implying that the maximum
of y is reached at u = 0, where it is 3/8, as can be seen from the Taylor expansion
above.

By continuity, y′ is negative in a neighborhood of u = 0. The vanishing of y′

can only occur at a zero of the resultant of E and ∂E/∂u, which implies

(1 + u)3(1 + 2u)2(u3 − 16u2 − 22u− 9) = 0.

A simple analysis (e.g., by Sturm sequences) shows that this does not vanish
for u in [0, 1]. This proves that y′ < 0 in that region and concludes the proof of
the theorem.

7 Algorithm 3: Split Argument Interval

In the analysis of Algorithm 3, a new technique is necessary in order to obtain
an optimal linear bound: splitting the domain of the parameters into two sub-
domains. The location of the split follows from the analysis and is presented as
a suggestion by the implementation.

As in the previous analysis, we assume that, if needed, the swap of Line 2
of the algorithm already took place, and we assume without loss of generality
that the operands are positive, so that 0 ≤ y ≤ x. We also assume p ≥ 4 (i.e.,
umax = 1/16). Also, as in the previous algorithm, we set α = y/x and discuss
according to its value.

7.1 Automatic analyses

A first analysis is misleading:
> Algo3:=[Input(x=0..2^16,alpha=0..1),y=RN(alpha*x,0),

> r=RN(y/x),t=RN(1+r^2),s=RN(sqrt(t)),

> epsilon=RN(t-s^2,0),c = RN(epsilon/2/s),nu = RN(x*c),

> rho=RN(nu+x*s)]:

> BoundRoundingError(Algo3);
7

4
u+

(√
2− 33

32

)
u2

Recall that the second argument 0 of the rounding function RN indicates that
this operation is exact. This is used as in Algorithm 2 to indicate y ≤ x and
here also for the computation of ϵ, in view of Lemma 2.2.

While the result above is correct, it is pessimistic. A more careful analysis
detailed below shows that it is beneficial to analyze the cases α ≤ 1/2 and
α ≥ 1/2 separately. This is hinted at by the implementation at a sufficiently
high verbosity level: it outputs

24

getAbsoluteError: Splitting at r = 1/2 may help improve bounds

Once this information is fed into our code (by changing the input range
0..1 into 0..1/2 or 1/2..1, leading to the variants Algo3 1 and Algo3 2 of
the algorithm), more precise estimates are obtained:
> BoundRoundingError(Algo3_1);BoundRoundingError(Algo3_2);

8 u

5
+

(
−20992

5
+

1447357555743
√
5

1804709172500
+

183265505148
√
21361601

√
5

451177293125

)
u2

8 u

5
+

(
−20992

5
+

22912648671
√
4173

352550900
+

1413709473
√
5

1762754500

)
u2

The linear term is improved from 7/4 = 1.75 down to 8/5 = 1.6. The coefficients
of u2 are approximately 1.325 and 1.734, so that the second one dominates. A
finer analysis of the rounding error on c, detailed in the proof of Theorem 7.1
below, shows that its absolute error is bounded by u2/2. This information
can be incorporated into the statement of the algorithm and leads to a further
improvement of the error bound:
> Algo3_2_better:=[Input(x=0..2^16,alpha=1/2..1),

> y = RN(alpha*x,0), r = RN(y/x), t = RN(1+r^2), s = RN(sqrt(t)),

> epsilon = RN(t-s^2,0), c = RN(epsilon/2/s,’absolute’(_u^2/2)),

> nu = RN(x*c), rho=RN(nu+x*s)];

> BoundRoundingError(Algo3_2_better);

8 u

5
+

(
−20992

5
+

5728153728
√
4173

88137725
+

4126452
√
5

6779825

)
u2

The coefficient of u2 is approximately 1.295. We prove the bound 1.4 below,
together with more precise ones for specific values of p (see Table 2).

7.2 Result

The analysis detailed in the following subsections follows the steps of the auto-
matic analysis, combined with a refined analysis of the error on c. It results in
the following.

Theorem 7.1. Assuming u ≤ 1/16 (i.e., p ≥ 4) and that an FMA instruction
is available, the relative error of Algorithm 3 is bounded by

χ4(u) = (1 + 2u)

√
1 + u/5

1 + u
− 1 + u2 (1 + 2u)2

(1 + u)2

√
5

5
+

1

5
√

(1+u)(1+u
5)

2
− u

+
2
√
5

5 (1 + 2u)

 ,

=
8

5
u+

(
3
√
5

5
− 2

25

)
u2 +

(
116

125
+

14
√
5

25

)
u3 +O

(
u4)

≃ 1.6u+ 1.26u2 +O(u3)

≤ 8

5
u+

7

5
u2, u ∈ [0, 1/16].

Moreover, the bound χ4(u) is an increasing function of u.

25

lower bound on p upper bound on the error

4 1.6u+ 1.392u2

5 1.6u+ 1.329u2

6 1.6u+ 1.296u2

7 1.6u+ 1.279u2

8 1.6u+ 1.271u2

Table 2: Quadratic error bound for Algorithm 3

Quadratic bounds for several values of p are given in Table 2.
We are not able to prove that the linear term (8/5)u is asymptotically opti-

mal. Still, it is sharp, in the sense given in Section 1.3, as shown by the following
examples:

• if u = 2−53 (binary64 format), then error 1.5999739u is attained with
x = 8056283928243985 and y = 4028141964171097;

• if u = 2−113, which corresponds to the binary128 (a.k.a. quad-precision)
format of IEEE 754, then error 1.5999999648u, is attained with

x = 9288262988033986935972257666807793

and

y = 4644131494016993467987768200983857.

7.3 Step-by-step analysis

The core idea of the algorithm comes from Newton’s iteration, which translates
as

ϵ

2s
+ s =

t− s2

2s
+ s =

√
t+

(s−
√
t)2

2s
, (20)

where the last term exhibits the quadratic convergence. The beginning of the
analysis is the same as in Section 6, with absolute error bounds for t and s,
leading to the system

y = αx, rx = y(1 + uϵr), t = 1 + r2 + uϵt, s =
√
t+ uϵs, (21)

with |ϵr| ≤ 1−2u, |ϵs| and |ϵt| bounded by 1. In view of the upcoming discussion
on α, the analysis in this section does not make use of the underlined equation.
The next step gives ϵ = t− s2 (no rounding error by Lemma 2.2).

Detailed analysis for c From Eq. (20), it follows that∣∣∣ ϵ
2s

∣∣∣ = ∣∣∣∣−uϵs + u2ϵ2s
2s

∣∣∣∣ ≤ u+
u2

2
.

26

If |ϵ/(2s)| ≤ u then the error committed by rounding ϵ
2s to nearest is less than

u2/2. If |ϵ/(2s)| > u, then, since the floating-point number immediately above
u is u + 2u2, the upper bound above implies that RN (ϵ/(2s)) = ±u, so that
again the rounding error is less than u2/2. Therefore, in all cases, |c| ≤ u and

c =
ϵ

2s
+ ϵc

u2

2
, (22)

with |ϵc| ≤ 19. The next steps give

ν = xc(1 + uϵν), ρ = (ν + xs)(1 + uϵρ), (23)

with |ϵν | and |ϵρ| bounded by 1/(1 + u) by Eq. (9). The result of this analysis
is the following formula.

Lemma 7.2. The relative error of Algorithm 3 is bounded by

R =

√
1 +

r2 − α2

1 + α2

√
1 +

uϵt
1 + r2

(24)

×
(
1 +

u2

2
√
t
((ϵc + ϵ2s/s)(1 + uϵν)− 2ϵsϵν)

)
(1 + uϵρ)− 1,

=
r2 − α2 + uϵt
2(1 + α2)

+ uϵρ +O(u2), u→ 0.

Moreover, in this formula, |ϵs|, |ϵt|, |ϵc| are bounded by 1 and |ϵν | and |ϵρ| by
1/(1 + u).

Proof. This is obtained from the previous equations by a sequence of rewriting
operations

ρ = (ν + xs)(1 + uϵρ),

= x

(
(−uϵs +

u2

2
(ϵc + ϵ2s/s))(1 + uϵν) +

√
t+ uϵs

)
(1 + uϵρ),

= x

(√
t+

u2

2
((ϵc + ϵ2s/s)(1 + uϵν)− 2ϵsϵν)

)
(1 + uϵρ), (25)

= x
√
1 + r2

√
1 +

uϵt
1 + r2

(
1 +

u2

2
√
t
((ϵc + ϵ2s/s)(1 + uϵν)− 2ϵsϵν)

)
(1 + uϵρ),

whence the relative error of Eq. (24).

The rest of the proof of Theorem 7.1 can be found in Appendix A.

9This type of analysis is not automated yet. By default, our program uses the coarser
bound c = ϵ(1 + uϵc)/(2s), with |ϵc| ≤ 1− u. It can be given this extra information through
the two-arguments RN. The difference only affects the quadratic term in the final bound.

27

8 Algorithm 4: Limited Human Proof

8.1 Automatic Analyses

This algorithm is beginning to be large for the current version of our code, but
can still be analyzed automatically:
> Algo4:=[Input(x=0..2^16,alpha=0..1),y=RN(alpha*x,0),sxh=RN(x^2),

> sxl=RN(x^2-sxh,0),syh=RN(y^2),syl=RN(y^2-syh,0),

> sigmah=RN(sxh+syh),sigmal=RN(sxh+syh-sigmah,0),

> s=RN(sqrt(sigmah)),deltas=RN(sigmah-s^2,0),tau1=RN(sxl+syl),

> tau2=RN(deltas+sigmal),tau=RN(tau1+tau2),c=RN(tau/s),

> rho=RN(c/2+s)]:

> BoundRoundingError(Algo4);

u+

(
585981351743

√
66

1142440000
− 4160

)
u2

(Recall that our default value of umax is 1/64.) The bound on the quadratic
term is approximately 6.989. Looking at the computation more closely, we make
the following.

Conjecture 8.1. For u ≤ 1/4, the relative error of Algorithm 4 is bounded by

ϕ(u) :=
(2 + 8u+ 27u2 + 51u3 + 24u4 − 40u5 − 48u6 − 16u7)

√
1 + 2u

2(1 + u)4
− 1

≤ u+ 7u2.

8.2 Result

Our result on this algorithm is not as tight as Conjecture 8.1, but it does not
exceed its value too much.

Theorem 8.2. Barring overflow and underflow, as soon as p ≥ 4, the relative
error of Algorithm 4 is bounded by

u+ (7 + κ)u2, with κ ≤

21.4, u ≤ 2−4,

6.1, u ≤ 2−5,

2.5, u ≤ 2−6,

1.2, u ≤ 2−7,

0.6, u ≤ 2−8,

7 10−2, u ≤ 2−11,

8 10−6, u ≤ 2−24,

2 10−14, u ≤ 2−53,

2 10−32, u ≤ 2−113.

The (tedious) proof is given in Appendix B.

28

Remark 8.3. The bound given by Theorem 8.2 is asymptotically equivalent
to u. Such a bound is asymptotically optimal (for any algorithm), as shown by
the following examples:

• If p is odd, then for x = 1 and y = 2(−p+1)/2 =
√
2u, we have

1 + u− u2

2
<
√
x2 + y2 < 1 + u− u2

2
+
u3

2
,

so that
√
x2 + y2 is at a distance at least u − u2

2 from a FP number,
which implies that the relative error committed when evaluating it with
any algorithm is larger than

u− u2

2

1 + u− u2

2 + u3

2

= u− 3

2
u2 +O(u3).

• If p is even, then for x = 1 and y =
⌈√

2 · 2p−1
⌉
· 2−3p/2+1, we have

1 + u− u2

2
<
√
x2 + y2 < 1 + u+ 2

√
2u2 + 2u3,

so that
√
x2 + y2 is at a distance at least u − 2

√
2u2 − 2u3 from a FP

number, which implies that the relative error committed when evaluating
it with any algorithm is larger than

u− 2
√
2u2 − 2u3

1 + u+ 2
√
2u2 + 2u3

= u− (1 + 2
√
2)u2 +O(u3).

9 Algorithm 5: Computer-aided analysis

We first briefly explain the main ideas behind the algorithm. Assume 0 ≤ y ≤ x
and define r∗ as x/y. One has√

x2 + y2 = x+
y

z∗
, (26)

with
z∗ = r∗ +

√
1 + (r∗)2. (27)

Two cases need be considered. If x ≥ 2y, then the simple use of (27) suffices.
An overflow may occur (typically when computing r∗ or its square) but in such

a case, y is negligible in front of x, so that
√
x2 + y2 ≈ x with very good

accuracy, and one easily checks that it is the value returned by the algorithm.
If y ≤ x ≤ 2y, more care is needed. The main idea is that when a variable a is
of the form c+ s, where c is a constant and s is small, we retain more accuracy
by representing it by the FP number nearest s than by a FP approximation to
a. Thus, as r∗ = x/y is close to 1, it can be represented with better accuracy as
1+r2, where r2 is the FP number nearest r∗2 := r∗−1. Furthermore, Lemma 2.1

29

implies that δ = x − y is computed exactly, so that r2 is obtained through the
FP division of δ by y. Now, in order to express z∗ in terms of r∗2 , from (27) a
starting point is {

z∗ :=
√
2 + r∗3 + r∗2 + 1, with

r∗3 := (r∗2)
2 + 2r∗2 .

(28)

Unfortunately, (28) cannot be used as is. When r∗3 is small (i.e., when y is close
to x), much information on r∗3 is lost in the FP addition 2+ r∗3 . A large part of
this information can be retrieved using√

2 + r∗3 =
r∗3√

2 +
√

2 + r∗3
+
√
2. (29)

More precisely, if the computed value of 2+ r∗3 is 2+ r∗3 + ϵ, the influence of that
error ϵ on the computed value of

√
2 + r∗3 is (at order 1 in ϵ)√

2 + r∗3 + ϵ−
√
2 + r∗3 ≈

ϵ

2
√

2 + r∗3
,

whereas, using (29), the influence of the error ϵ becomes(
r∗3√

2 +
√
2 + r∗3 + ϵ

+
√
2

)
−
√
2 + r∗3 ≈ −

ϵr∗3

2
√

2 + r∗3
(√

2 +
√
2 + r∗3

)2 ,
which is significantly smaller. So, instead of (28), the algorithm uses the formula

z∗ =
r∗3√

2 +
√
2 + r∗3

+ r∗2 + 1 +
√
2. (30)

To implement (30) accurately, 1 +
√
2 is approximated by the unevaluated sum

of two FP numbers Ph and Pℓ, and the summation is performed small terms
first.

The difficulty of the analysis comes from the number of steps of the algo-
rithm, which leads to a large number of variables in the polynomial systems.
This requires a very carefully exploitation of the special structures of these
systems. This is made easier by the fact that, due to the careful design of
the algorithm, the partial derivatives of the relative error with respect to the
individual errors have signs that are easily evaluated.

9.1 Automatic Analyses

This algorithm is too long for our current implementation. Still, partial results
are obtained automatically: a complete answer for the first path (δ > y) and
u ≤ 1/256, and an analysis of the linear term of the error for δ ≤ y. In order to
obtain tighter bounds, this latter case is itself split into the ranges α ∈ [1/2, 2/3]
and α ∈ [2/3, 1].

30

First path With input
> Algo5firstpath:=[Input(x=0..2^16,alpha=1/2^16..1/2,_u=0..1/256),

> y=RN(alpha*x,0),r=RN(x/y),t=RN(1+r^2),s=RN(sqrt(t)),z=RN(r+s),

> z2=RN(y/z),rho=RN(x+z2)]:

> BoundRoundingError(Algo5firstpath);

Our program returns(
157

10
− 32

√
5

5

)
u+

(
−347776

5
− 176400770811745024

√
5

2155176452406911

+
27809906688

√
88443606565122

√
5

8385900593023

)
u2

whose numerical value is
> evalf(%);

1.38916495 u− 0.45335 u2

Second path Here are the linear parts for both subcases:
> Algo5secondpath:=y=RN(alpha*x,0),delta=RN(x-y),r2=RN(delta/y),

> tr2=RN(2*r2,0),r3=RN(tr2+r2^2),r4=RN(2+r3),s2=RN(sqrt(r4)),

> sqrt2=RN(sqrt(2)),d=RN(sqrt2+s2,absolute(2*_u)),q=RN(r3/d),

> Ph=RN(1+sqrt2),Pl=RN(1+sqrt(2)-Ph,absolute(_u^2)),r5=RN(Pl+q),

> r6=RN(r5+r2),z=RN(Ph+r6),z2=RN(y/z),rho= RN(x+z2);

> split1:=[Input(x=1/2^16..2^16,alpha=1/2..2/3),Algo5secondpath]:

> split2:=[Input(x=1/2^16..2^16,alpha=2/3..1),Algo5secondpath]:

> BoundRoundingError(split1,steps="linear");

> BoundRoundingError(split2,steps="linear");(
1019

65
− 46

√
13

13
− 126

√
26

65
+ 6
√
2

)
u(

−2 + 5
√
2

2

)
u

The precise value given for the error in Pl as a second argument to RN is ex-
plained in the proof of Theorem 9.1 below.

Numerically, the values that have been computed are approximately 1.5198 u
and 1.5355 u, so that the second one dominates.

9.2 Result

Our main result for this algorithm proves the linear term above and gives a
precise bound on the quadratic term.

31

Theorem 9.1. For p ≥ 5, the relative error of Algorithm 5 is bounded by

ϕ(u) :=

(
1 + 1+u(1−2u)

1+
√
2−u(2+u)(1+2u)2

(1+u)2

)
(1 + 2u)(

1 + 1
1+

√
2

)
(1 + u)

− 1,

=

(
5
√
2

2
− 2

)
u+

(
30− 39

√
2

2

)
u3 +O

(
u4
)
,

≤

(
5
√
2

2
− 2

)
u+

u2

12
, 0 ≤ u ≤ 1

32
.

Here are examples of actually attained errors:

• if u = 2−24 (binary32 format), then error 1.4977u is attained with x =
12285049 and y = 11439491;

• if u = 2−53 (binary64 format), then error 1.4961u is attained with x =
6595357501251898 and y = 6135139757867044.

We do not know if the bound given by Theorem 9.1 is sharp. However, As
5
√
2

2 − 2 ≈ 1.5355, the above examples show that there is not much room for
improvement. The proof of Theorem 9.1 is given in Appendix C.

10 Discussion and Comparison

Table 3 summarizes the error bounds obtained for the various algorithms con-
sidered in this article. To the best of our knowledge, all our error bounds are
new, and even the linear term for Algorithms 2, 3, and 5 was unknown.

Algorithm reference error bound status of bound

1
straightforward

formula
2u− 8

5
(9− 4

√
6)u2 (p ≥ 2)

asymptotically
optimal

2
computer
arithmetic
folklore

5
2
u+ 3

8
u2 (p ≥ 2)

asymptotically
optimal

3 N. Beebe [8] 8
5
u+ 7

5
u2 (p ≥ 4) sharp

4 C. Borges [12] u+ 13.1u2 (p ≥ 5)
asymptotically

optimal

5 W. Kahan [29]
(

5
√
2

2
− 2
)
u+ u2

12
(p ≥ 5) ?

Table 3: Error bounds for Algorithms 1, 2, 3, 4, and 5. More precise estimates
for Algorithms 1, 4 are given in Theorems 5.1 and 8.2.

32

10.1 Comparison with Gappa

We used version 1.3.5 of Melquiond’s tool gappa10. As Gappa does not provide
generic error bounds, we had to assume a given precision. Here, we give some
results assuming binary32 arithmetic (p = 24).

10.1.1 Algorithm 1

We fed Gappa with an input file that describes the algorithm11. The returned
result is
relerr in [0, 72412313008905457b-79 {1.19796e-07, 2^(-22.9929)}]

which means that for binary32/single-precision arithmetic (i.e., u = 2−24),
Gappa finds a relative error bound 72412313008905457×2−79 ≈ 2.00984u which
is excellent, only very slightly above the Rump-Jeannerod bound 2u.

Note that if we already know the error bound, we can ask Gappa to check it.
In the input file, if we remove the absolute values in the description of relerr,
replace -> relerr in ? by -> relerr in [-1b-23,1b-23] and give the hint
relerr $ x in 64, y, Gappa confirms that the bound 2−23 (i.e., 2u) is correct.

10.1.2 Algorithm 2

The result returned by Gappa for this algorithm is
relerr in [0, 792222648878942097b-82 {1.63828e-07, 2^(-22.5413)}]

which means that for binary32/single-precision arithmetic (i.e., u = 2−24),
Gappa finds a relative error bound 792222648878942097×2−82 ≈ 2.749u, which
is quite good but significantly larger than our bound 5

2u + 3
8u

2. In contrast to
the case of Algorithm 1, asking Gappa to confirm our bound instead of asking
it to find one does not work.

10.1.3 Algorithms 3 and 4

With Algorithm 3 (which is essentially Algorithm 2 followed by a Newton-
Raphson correction), Gappa returns an error bound around twice the one it
returns for Algorithm 2: it fails to “see” that lines 7 to 10 of the algorithm are
a correction, and considers that these additional lines bring additional rounding
errors. We could not find a “hint” that, provided to Gappa, would have im-
proved the situation. The same phenomenon occurs with Algorithm 4: Gappa
cannot see that the last lines of the algorithm are a Newton-Raphson correction.

10.1.4 Algorithm 5

For the “difficult” path of the algorithm: y < x < 2y, Gappa returns
relerr in [0, 438344170044734879b-67 {0.00297034, 2^(-8.39516)}]

i.e., the computed error bound is 0.00297034 ≈ 49834u: Algorithm 5 is clearly
too complex to be handled adequately.

10https://gappa.gitlabpages.inria.fr
11The input Gappa files are available on arXiv with this article.

33

https://gappa.gitlabpages.inria.fr

Algorithm Satire
bound deduced our code our code
from Table 3 (linear part) (quadratic part)

1 1.658× 10−2 1.105× 10−2 1.105× 10−2 −4.9× 10−10

2 3.301× 10−2 1.382× 10−2 1.358× 10−2 6.6× 10−10

3 3.577× 10−2 8.839× 10−3 8.287× 10−3 2.5× 10−10

4 5.121× 103 5.525× 10−3 5.525× 10−3 2.4× 10−9

5 8.911× 1011 8.483× 10−2 3.058× 10−2 n.a.

Table 4: Absolute errors reported by Satire and by our code with p = 24 and
(x, y) ∈ [0, 216]2.

10.2 Comparison with Satire

We used version 1.1 of the Satire tool12. As Satire does not provide generic
error bounds, we had to assume a given precision. Here, we give some results
assuming binary32 arithmetic (p = 24)13. Also, Satire computes absolute rather
than relative error bounds. Such bounds can also be obtained by our program,
with the optional argument type="absolute". The variables x and y had to
be restricted away from 0 so as to avoid an infinite error being reported due to
a possible negative rounding assumed for the argument of the square root.

A comparison of the results is given in Table 4. The higher quality of the
bounds produced by our approach has to be put in balance with the difficulty
of obtaining them. Our program is limited to small algorithms, while Satire
can analyze programs with hundreds of lines. The last “n.a.” corresponds
to Algorithm 5, where our code is currently unable to compute a quadratic
bound on the error. As a cross-check on the values reported here, one can
use the bounds on the relative error from Table 3 and multiply them by the
largest possible value. This gives an upper bound on the largest absolute error,
displayed in the 3rd column of the table. The bounds computed directly on
the absolute error are either identical or only slightly smaller, showing that in
practice, computing bounds on the relative error is sufficient in many cases.

10.3 Conclusion

Our approach makes it possible to obtain generic analytic error bounds for
programs that implement functions that are considered to be “basic building
blocks” of numerical computation. Because it is partially automatic, it limits
the risk of human error and allows us to work with programs that are small but
significantly larger than those that can be reasonably handled by paper-and-
pencil computation. We obtain bounds that are often sharp, sometimes even

12https://github.com/arnabd88/Satire
13The input Satire files are available on arXiv with this article.

34

https://github.com/arnabd88/Satire

asymptotically optimal, and, in the tested cases, tighter than those provided
by the other existing tools. However, Satire can handle much larger programs,
and Gappa has the valuable ability to provide formal proofs of the bounds it
calculates.

An important problem illustrated by this work is the large place taken by
computations in the proofs. Thus in this area, more than in others, we feel that
an increasingly important role will have to be taken by computer-aided proofs.
This is part of a more general trend that affects a large part of mathematics [22].
Currently, certified computer algebra is still a long-term goal, despite progress
being made in that direction14. Thus we have provided both pencil-proofs and
link to Maple worksheets, but this will not be an option for longer proofs.

References

[1] Ahmad Abdelfattah, Hartwig Anzt, Erik G. Boman, Erin Carson, Terry
Cojean, Jack Dongarra, Mark Gates, Thomas Grützmacher, Nicholas J.
Higham, Sherry Li, Neil Lindquist, Yang Liu, Jennifer Loe, Piotr Luszczek,
Pratik Nayak, Sri Pranesh, Siva Rajamanickam, Tobias Ribizel, Barry
Smith, Kasia Swirydowicz, Stephen Thomas, Stanimire Tomov, Yao-
hung M. Tsai, Ichitaro Yamazaki, and Urike Meier Yang. A survey of
numerical methods utilizing mixed precision arithmetic, 2020. https:

//arxiv.org/pdf/2007.06674.pdf.

[2] M. Altman, J. Gill, and M. P. McDonald. Numerical Issues in Statisti-
cal Computing for the Social Scientist. Wiley Series in Probability and
Statistics. John Wiley & Sons, 2004.

[3] Parisa Alvandi, Changbo Chen, and Marc Moreno Maza. Computing the
limit points of the quasi-component of a regular chain in dimension one. In
Computer algebra in scientific computing, volume 8136 of Lecture Notes in
Comput. Sci., pages 30–45. Springer, Cham, 2013.

[4] Andrew Appel and Ariel Kellison. Vcfloat2: Floating-point error analysis in
coq. In Proceedings of the 13th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2024, page 14–29, 2024.

[5] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. On the theories
of triangular sets. J. Symbolic Comput., 28(1-2):105–124, 1999.

[6] David H. Bailey and Richard E. Crandall. On the Random Character of
Fundamental Constant Expansions. Experimental Mathematics, 10(2):175
– 190, 2001.

[7] Bernd Bank, Marc Giusti, Joos Heintz, and Mohab Safey El Din. Intrinsic
complexity estimates in polynomial optimization. Journal of Complexity,
30(4):430–443, 2014.

14See for instance https://fresco.gitlabpages.inria.fr.

35

https://arxiv.org/pdf/2007.06674.pdf
https://arxiv.org/pdf/2007.06674.pdf
https://fresco.gitlabpages.inria.fr

[8] Nelson H. F. Beebe. The Mathematical-Function Computation Handbook:
Programming Using the MathCW Portable Software Library. Springer,
2017.

[9] Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. msolve:
A library for solving polynomial systems. In Proceedings of the 2021 on
International Symposium on Symbolic and Algebraic Computation. ACM
Press, jul 2021.

[10] S. Boldo and M. Daumas. Representable correcting terms for possibly un-
derflowing floating point operations. In Proceedings of the 16th Symposium
on Computer Arithmetic, pages 79–86. IEEE Computer Society Press, Los
Alamitos, CA, 2003.

[11] Sylvie Boldo, Claude-Pierre Jeannerod, Guillaume Melquiond, and Jean-
Michel Muller. Floating-point arithmetic. Acta Numer., 32:203–290, 2023.

[12] Carlos F. Borges. Algorithm 1014: An improved algorithm for hypot(x,y).
ACM Transactions on Mathematical Software, 47(1), December 2020.

[13] François Boulier, François Lemaire, Marc Moreno Maza, and Adrien
Poteaux. A short contribution to the theory of regular chains. Math.
Comput. Sci., 15(2):177–188, 2021.

[14] Changbo Chen and Marc Moreno Maza. Algorithms for computing triangu-
lar decompositions of polynomial systems. In ISSAC 2011—Proceedings of
the 36th International Symposium on Symbolic and Algebraic Computation,
pages 83–90. ACM, New York, 2011.

[15] Changbo Chen and Marc Moreno Maza. Algorithms for computing triangu-
lar decomposition of polynomial systems. J. Symbolic Comput., 47(6):610–
642, 2012.

[16] Changbo Chen and Marc Moreno Maza. Quantifier elimination by cylindri-
cal algebraic decomposition based on regular chains. J. Symbolic Comput.,
75:74–93, 2016.

[17] Arnab Das, Ian Briggs, Ganesh Gopalakrishnan, Sriram Krishnamoorthy,
and Pavel Panchekha. Scalable yet rigorous floating-point error analysis.
In SC20: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–14, 2020.

[18] Marc Daumas and Guillaume Melquiond. Certification of bounds on ex-
pressions involving rounded operators. ACM Trans. Math. Softw., 37(1),
jan 2010.

[19] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18(3):224–242, 1971.

36

[20] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–47, March 1991.
An edited reprint is available at http://www.physics.ohio-state.

edu/~dws/grouplinks/floating_point_math.pdf from Sun’s Numeri-
cal Computation Guide; it contains an addendum Differences Among
IEEE 754 Implementations, also available at http://www.validlab.com/
goldberg/addendum.html.

[21] Eric Goubault, Sylvie Putot, Philippe Baufreton, and Jean Gassino. Static
analysis of the accuracy in control systems: Principles and experiments.
In Stefan Leue and Pedro Merino, editors, Formal Methods for Industrial
Critical Systems, pages 3–20, Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

[22] Andrew Granville. Proof in the time of machines. American Mathematical
Society. Bulletin. New Series, 61(2):317–329, 2024.

[23] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 2nd edition, 2002.

[24] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. Implementing complex ele-
mentary functions using exception handling. ACM Transactions on Math-
ematical Software, 20(2):215–244, June 1994.

[25] IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2019).
July 2019.

[26] Claude-Pierre Jeannerod, Jean-Michel Muller, and Antoine Plet. The clas-
sical relative error bounds for computing

√
a2 + b2 and c/

√
a2 + b2 in binary

floating-point arithmetic are asymptotically optimal. In 2017 IEEE 24th
Symposium on Computer Arithmetic (ARITH), pages 66–73, 2017.

[27] Claude-Pierre Jeannerod and Siegfried M. Rump. On relative errors of
floating-point operations: optimal bounds and applications. Mathematics
of Computation, 87:803–819, 2018.

[28] Gabriela Jeronimo, Daniel Perrucci, and Elias Tsigaridas. On the min-
imum of a polynomial function on a basic closed semialgebraic set and
applications. SIAM J. Optim., 23(1):241–255, 2013.

[29] W. Kahan. Branch cuts for complex elementary functions. In A. Iserles
and M. J. D. Powell, editors, The State of the Art in Numerical Analysis,
pages 165–211. Clarendon Press, Oxford, 1987.

[30] Michael Kalkbrener. A generalized Euclidean algorithm for computing
triangular representations of algebraic varieties. J. Symbolic Comput.,
15(2):143–167, 1993.

[31] Erich Kaltofen and Grégoire Lecerf. Handbook of finite fields, chapter Fac-
torization of multivariate polynomials, pages 382–392. CRC Press, 2013.

37

http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.validlab.com/goldberg/addendum.html
http://www.validlab.com/goldberg/addendum.html

[32] D. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

[33] D. Lazard. A new method for solving algebraic systems of positive dimen-
sion. volume 33, pages 147–160. 1991.

[34] Victor Magron, George Constantinides, and Alastair Donaldson. Certified
roundoff error bounds using semidefinite programming. ACM Transactions
on Mathematical Software, 43(4):34:1–34:31, 2017.

[35] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre
Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, and Serge Torres. Handbook of Floating-Point Arithmetic, 2nd edi-
tion. Birkhäuser Boston, 2018.

[36] Jean-Michel Muller and Laurence Rideau. Formalization of double-word
arithmetic, and comments on “Tight and rigorous error bounds for basic
building blocks of double-word arithmetic”. ACM Transactions on Mathe-
matical Software, 48(1), 2022.

[37] Jiawang Nie and Kristian Ranestad. Algebraic degree of polynomial opti-
mization. SIAM Journal on Optimization, 20(1):485–502, 2009.

[38] U.S. Government Accountability Office. Patriot missile defense: Software
problem led to system failure at dhahran, saudi arabia. Technical Re-
port IMTEC-92-26, 1992. available at https://www.gao.gov/products/
imtec-92-26.

[39] M. L. Overton. Numerical Computing with IEEE Floating-Point Arith-
metic. SIAM, Philadelphia, PA, 2001.

[40] Siegfried M Rump. Error estimation of floating-point summation and dot
product. BIT Numerical Mathematics, 52(1):201 – 220, 2012.

[41] Siegfried M. Rump. Error bounds for computer arithmetics. 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH), 00:1–14, 2019.

[42] Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh
Gopalakrishnan. Rigorous estimation of floating-point round-off errors with
symbolic taylor expansions. In Nikolaj Bjørner and Frank de Boer, editors,
FM 2015: Formal Methods, pages 532–550, Cham, 2015. Springer Interna-
tional Publishing.

[43] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

[44] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra.
Cambridge University Press, New York, 3rd edition, 2013.

[45] J. H. Wilkinson. Error analysis of floating-point computation. Numerische
Mathematik, 2(1):319–340, 1960.

38

https://www.gao.gov/products/imtec-92-26
https://www.gao.gov/products/imtec-92-26

[46] Abraham Ziv. Sharp ulp rounding error bound for the hypotenuse function.
Mathematics of Computation, 68(227):1143–1148, 1999.

39

A Proof of Theorem 7.1

A.1 Linear term and interval splitting

The Taylor expansion of R in Lemma 7.2 shows the importance of a good upper
bound on the error on r. If one uses the underlined equation in Eq. (21), then
r2 = α2(1+uϵr)

2; the linear term is maximized when ϵρ, ϵt, ϵr are all equal to 1,
where it becomes

2α2 + 1

2(1 + α2)
+ 1 = 2− 1

2(1 + α2)
.

This bound on the linear term is increasing with respect to α. If α ranges from
0 to 1, then the maximum is reached at α = 1, where the value is 7/4. This
is the result of our first automatic analysis. If α ranges from 0 to 1/2 only,
then the bound reached at α = 1/2 is 8/5, the result of our second automatic
analysis.

Finally, if α ≥ 1/2, then so is its rounded value r and one can use the absolute
error bound

r = α+
uϵr
2
, |ϵr| ≤ 1. (31)

The linear term above becomes

α+ 1

2(1 + α2)
+ 1,

which is decreasing with α for α ≥ 1/2. Thus the maximum is reached at
α = 1/2, where again 8/5 is obtained.

Actually, using an absolute error bound is beneficial for α ≤ 1/2 as well. This
type of variation on the analysis can also be requested of our implementation,
by adding the keyword absolute as second argument to RN:
> Algo3_1:=[Input(x=0..2^16,alpha=0..1/2),y=RN(alpha*x,0),

> r=RN(y/x,absolute),t=RN(1+r^2),s=RN(sqrt(t)),

> epsilon=RN(t-s^2,0),c = RN(epsilon/2/s,absolute(_u^2/2)),

> nu = RN(x*c),rho=RN(nu+x*s)]:

> BoundRoundingError(Algo3_1,steps="linear");(
5

4
+

√
5

8

)
u

(The optional argument steps="linear" specifies that only the linear term of
the error bound is computed.)

Indeed, for α ≤ 1/2, the absolute error bound becomes

r = α+
uϵr
4
, |ϵr| ≤ 1.

While this bound is not as good as the relative error bound for α < 1/4, it
allows one to bound the linear term of Eq. (24) by

α/2 + 1

2(1 + α2)
+ 1,

40

whose maximum— reached at α =
√
5−2 ≃ 0.236 — equals (10+

√
5)/8 ≃ 1.53,

which is smaller than 8/5. Thus the maximal value of the linear part is reached
as α approaches 1/2 from the right.

A.2 Bounds on partial derivatives

In view of the previous discussion, we replace the underlined bound in Eq. (21)
by

r = α+ uϵr, |ϵr| ≤

{
1
4 , if α ≤ 1/2,
1
2 , if α > 1/2.

(32)

The analysis of the linear term shows that in a neighborhood of u = 0,
the relative error R, seen as a function of u, α and the ϵi, is increasing with
ϵρ, ϵt, ϵr. We first show that these properties hold for all u ∈ [0, 1/2] and that
the derivative wrt ϵc also has constant sign.

Lemma A.1. For u ∈ [0, 1/2],

∂R

∂ϵρ
≥ 0,

∂R

∂ϵt
≥ 0,

∂R

∂ϵr
≥ 0,

∂R

∂ϵc
≥ 0.

Proof. Simple inequalities that can be used in the analysis are

|ϵi| ≤ 1 i ∈ {r, s, c, ν, ρ}, r ∈ [0, 1], t ∈ [1, 2], s ∈ [1, 2]. (33)

For u ∈ [0, 1/2], we first consider the factors of R+ 1 in Eq. (24):∣∣∣∣ u22
√
t
((ϵc + ϵ2s/s)(1 + uϵν)− 2ϵsϵν)

∣∣∣∣ ≤ u2

2
(2(1 + u) + 2) = u2(2 + u) < 1;∣∣∣∣r2 − α2

1 + α2

∣∣∣∣ = ∣∣∣∣uϵr(2α+ uϵr)

1 + α2

∣∣∣∣ ≤ u(2 + u/2)

2
< 1.

This implies that all the factors of R+1 in Eq. (24) are positive. Also, it follows
that the derivative of R with respect to ϵρ is positive.

Using Eqs. (21) to (23), it can be checked that

∂R

∂ϵt
=

(R+ 1)ux(2s2 − u2ϵ2s(1 + uϵν))

4s2
√
t(ν + xs)

and the nonnegativity of the right-hand side for u ∈ [0, 1/2] is clear since s ≥ 1.
The same conclusion follows for ϵr in view of

∂R

∂ϵr
= 2r

∂R

∂ϵt
,

which, again, is checked with Eqs. (21) to (23). Finally, the case of the derivative
with respect to ϵc follows from

∂R

∂ϵc
= (R+ 1)

u2x(1 + uϵν)

2(xs+ ν)
.

41

A.3 Bounds on the relative error

A.3.1 First part: upper bound for α < 1/2 and lower bound for all α

For these cases, we prove bounds on the absolute value of R that are smaller
than 8u/5 + u2 for u ∈ [0, 1/16].

From Eq. (25), it follows that

R =
1√

1 + α2

(√
t+

u2

2
((ϵc + ϵ2s/s)(1 + uϵν)− 2ϵsϵν)

)
(1 + uϵρ)− 1.

Upper (resp. lower) bounds on the factor of u2/2 are reached at (ϵc, ϵs, ϵν) =
(1,−1, 1) (resp. (−1, 1, 1))). Thus,

1√
1 + α2

(√
t− u2 3s− 1

2s
− u3 s− 1

2s

)
(1 + uϵρ)

≤ R+ 1 ≤ 1√
1 + α2

(√
t+ u2

3s+ 1

2s
+ u3

s+ 1

2s

)
(1 + uϵρ)

The lower bound is lower bounded by its value at s = 2, while the upper bound
is upper bounded by its value at s = 1, whence

1√
1 + α2

(√
t− 5u2

4
− u3

4

)(
1− u

1 + u

)
≤ R+ 1 ≤ 1√

1 + α2

(√
t+ 2u2 + u3

)(
1 +

u

1 + u

)
Next, t = 1 + uϵt + (α + uϵr)

2 is minimal for ϵt = −1 and ϵr = −ϵmax
r and

maximal for the opposite of these values, giving

1√
1 + α2

(√
1− u+ (α− uϵmax

r)2 − 5u2

4
− u3

4

)(
1− u

1 + u

)
≤ R+ 1 ≤ 1√

1 + α2

(√
1 + u+ (α+ uϵmax

r)2 + 2u2 + u3
)(

1 +
u

1 + u

)
We show the steps of the proof that

R ≥ −8

5
u for α ∈ [0, 1/2], ϵmax

r = 1/4, u ∈ [0, 1/4].

The proofs of the following two other inequalities,

R ≥ −8

5
u for α ∈ [1/2, 1], ϵmax

r = 1/2, u ∈ [0, 1/4],

R ≤ 8

5
u+ u2 for α ∈ [0, 1/2], ϵmax

r = 1/4, u ∈ [0, 1/16],

follow the same template.

42

The function

1√
1 + α2

(√
1− u+ (α− u/4)2 − 5u2

4
− u3

4

)(
1− u

1 + u

)
− 1 +

8

5
u

is positive for u→ 0, α ∈ [0, 1/2]. Eliminating both square roots shows that it
does not vanish unless the following polynomial does:

E(u, α) = 1600
(
12α2 − 5α+ 2

)2
+ 80

(
1136α2 + 1161

) (
12α2 − 5α+ 2

)
u

+
(
553216α4 + 307200α3 + 777632α2 + 307200α+ 225041

)
u2

+
(
−2727936α4 + 409600α3 − 4475072α2 + 659600α− 1247136

)
u3

+
(
−1736704α4 − 1904608α2 + 100000α+ 846

)
u4

+
(
1572864α4 + 2777728α2 + 10000α+ 1212364

)
u5

+
(
1048576α4 + 489952α2 − 169249

)
u6

+
(
−550400α2 − 237900

)
u7

+
(
−51200α2 + 42550

)
u8 + 12500u9 + 625u10.

The conclusion follows from the fact that E(u, α) > 0 for α ∈ [0, 1/2], u ∈
[0, 1/4]. This can be checked by minimizing each of the coefficients over the
interval α ∈ [0, 1/2] and then evaluating at u ∈ [0, 1/4] by interval arithmetic.

A.3.2 Last part: upper bound for 1/2 ≤ α ≤ 1

In order to obtain a tight bound on the relative error in that case, we first
consider the derivative with respect to ϵν and ϵs.

Derivative with respect to ϵν . Similar manipulations as above give

∂R

∂ϵν
= (R+ 1)

ucx

xs+ ν
,

whose sign is given by that of c. Thus the extremal value are reached at ϵν =
±1/(1 + u), except when c = 0.

The case c = 0 can be treated separately. When c = 0, then ϵ = ν = 0,
s =
√
t and R is bounded by 8u/5 for α ∈ [1/2, 1], u ∈ [0, 1/2], |ϵr| ≤ 1/2:

R =

√
t√

1 + α2
− 1 =

√
1 + u

2αϵr + ϵt + uϵ2r
1 + α2

− 1

≤
√
1 + u

1 + α+ u/4

1 + α2
− 1 ≤

√
1 + u(1 + u/5)− 1 ≤ 8

5
u.

Derivative with respect to ϵs. It can be checked with Eqs. (21) to (23)
that

∂R

∂ϵs
=
u2(1 + uϵρ)

2s2
√
1 + α2

(
−2tϵν + 2

√
tϵs + uϵs(ϵs − 2

√
tϵν)− u2ϵνϵ2s

)
.

43

When ϵν = 1/(1 + u) and α ∈ [1/2, 1], the last factor reaches its maximum
for (u, ϵs, t) ∈ [0, 1/4] × [−1, 1] × [5/4, 2] at t = 5/4, u = 1/4, ϵs = 1, where
it equals 4/

√
5 − 9/5 < 0, making the derivative negative. Similarly, when

ϵν = −1/(1 + u) and α ∈ [1/2, 1], the last factor reaches its minimum for
(u, ϵs, t) ∈ [0, 1/16] × [−1, 1] × [5/4, 2] at t = 5/4, u = 1/16, ϵs = −1, where it
equals (329− 144

√
5)/136 > 0, making the derivative positive.

Thus, for α ∈ [1/2, 1] and u ∈ [0, 1/16], at the extremal values ϵν = ±1/(1+
u), the value of R is maximized when ϵs = ∓1.

Derivative with respect to α The derivative with respect to α factors as

∂R

∂α
=

u(1 + uϵρ)

2s2
√
t(1 + α2)3/2

(
−2
(
α2ϵr + αϵt − ϵr

)
s2

+
(
2
√
t α s2ϵνϵs −

√
t α s2ϵc −

√
t αsϵ2s − α2rϵ2s − 2αϵ2rs

2 − rϵ2s
)
u

−ϵν
(√

t α s2ϵc +
√
t αsϵ2s + α2rϵ2s + rϵ2s

)
u2
)
.

By Lemma A.1 and the evaluation of the derivatives above, for α ∈ [1/2, 1]
and u ∈ [0, 1/16], |R| is upper bounded by the maximum of its values at the
points

(ϵρ, ϵt, ϵr, ϵc, ϵν , ϵs) =

(
1

1 + u
, 1,

1

2
, 1,

±1
1 + u

,∓1
)

:= π±.

At these values, the last factor in ∂R/∂α is upper bounded by

−2
(
1

8

)
−
(
3

2
+

1

2
+

1

8
+

1

4
+

1

2

)
u+ (4

√
2 + 2

√
2 + 1 + 1)u2,

which is negative for u ∈ [0, 1/16] making the derivative with respect to α
negative, so that the maximum is reached at α = 1/2.

Final bound By Lemma A.1 and the evaluation of the derivatives above, the
maximal value of R is reached at α = 1/2 and (ϵρ, ϵt, ϵr, ϵc, ϵν , ϵs) = π±, where

R =
1√

1 + 1/4

(√
t+

u2

2

(
(1 + 1/s)

(
1± u

1 + u

)
+

2

1 + u

))(
1 +

u

1 + u

)
−1,

with

s =
√
t∓ u, t = 1 + u+

(
1

2
+
u

2

)2

.

It follows that the maximal value is reached at π+.
The approach for the last step is as in the analysis of Algorithm 2. At π+,

the quantity y = (R− 8
5u)/u

2 to be maximized has Taylor expansion

y =
3√
5
− 2

25
+O(u)

44

and satisfies the quartic equation E(y, u) = 0 with

E(y, u) = 625u4
(
3u2 − 6u− 5

)2
(1 + u)

6
y4

+ 500u2 (8u+ 5)
(
3u2 − 6u− 5

)2
(1 + u)

6
y3

− 50
(
720u11 − 2640u10 − 6788u9 + 9528u8 + 44735u7 + 54117u6 + 5941u5

−55797u4 − 67930u3 − 37950u2 − 10750u− 1250
)
(1 + u)

3
y2

− 20 (8u+ 5)
(
720u9 − 2640u8 − 5636u7 + 9816u6 + 34145u5

+38979u4 + 22767u3 + 6481u2 + 460u− 100
)
(1 + u)

3
y

+ 57600u14 − 192000u13 − 940160u12 + 781440u11 + 7808624u10

+ 11779648u9 − 5174360u8 − 47142584u7 − 88187555u6 − 95250006u5

− 66769667u4 − 30792720u3 − 9017844u2 − 1519640u− 112100

The function y is increasing in the range u ∈ [0, 1], as can be seen by checking
that the resultant of this polynomial with its derivative with respect to u does
not vanish there. Thus the bound Q on the quadratic term for u ∈ [0, umax]
with umax ≤ 1/16 is maximal at u = umax , where it has the values given in
Table 2. (Explicit, but not very useful, expressions in terms of radicals are
available for these bounds.)

B Proof of Theorem 8.2

B.1 Step-by-step analysis

From the properties of Algorithms Fast2Sum and Fast2Mult and Lemmas 2.2
and 2.3, we obtain the following relations (as before, u ≤ 1/4):

y = αx,

shx = x2(1 + uϵshx), |ϵshx | ≤
1

1 + u
, (34)

shx + sℓx = x2, (35)

shy = y2(1 + uϵshy), |ϵshy | ≤
1

1 + u
, (36)

shy + sℓy = y2, (37)

σh = (shx + shy)(1 + uϵσh
), |ϵσh

| ≤ 1

1 + u
, (38)

σh + σℓ = shx + shy , (39)

s =
√
σh(1 + uϵs), |ϵs| ≤

1

u
(1− 1√

1 + 2u
) =

2√
1 + 2u(1 +

√
1 + 2u)

,

(40)

s2 + δs = σh, (41)

45

τ1 = (sℓx + sℓy)(1 + uϵτ1), |ϵτ1 | ≤
1

1 + u
, (42)

τ2 = (δs + σℓ)(1 + uϵτ2), |ϵτ2 | ≤
1

1 + u
, (43)

τ = (τ1 + τ2)(1 + uϵτ), |ϵτ | ≤
1

1 + u
, (44)

c =
τ

s
(1 + uϵc), |ϵc| ≤ 1− 2u, (45)

ρ =

(
s+

1

2
c

)
(1 + uϵρ), |ϵρ| ≤

1

1 + u
. (46)

For the analysis, it is important to isolate terms of order u, thus we introduce
variables θv so that

v = uθv, v ∈ {sℓx, sℓy, σℓ, δs, τ1, τ2, τ, c}.

From the equations above, it follows that these are given explicitly by

θsℓx = −x2ϵshx , θsℓy = −y2ϵshx , (47)

θσℓ
= −(shx + shy)ϵσh

, θδs = −σhϵs(2− uϵs), (48)

θτ1 = (θsℓx + θsℓy)(1 + uϵτ1), θτ2 = (θδs + θσℓ
)(1 + uϵτ2), (49)

θτ = (θτ1 + θτ2)(1 + uϵτ), θc =
θτ
s
(1 + uϵc). (50)

B.2 Relative error and its linear term

The computation proceeds by using the equalities defining the successive vari-
ables in such a way that the leading coefficient in u is made apparent, and the
error term is given an explicit expression in terms of the variables ϵi. This will
then be followed by a computation of bounds using the known inequalities on
these quantities.

The starting point is

x2 + y2 = shx + shy + sℓx + sℓy, from Eqs. (35) and (37) (51)

= σh + σℓ + sℓx + sℓy, from Eq. (39) (52)

= s2 + δs + σℓ + sℓx + sℓy, from Eq. (41) (53)

= s2

(
1 +

δs + σℓ + sℓx + sℓy
s2

)
. (54)

Then, taking square roots,

√
x2 + y2 = s

√
1 +

δs + σℓ + sℓx + sℓy
s2

,

= s

√
1 +

1

s2
(

τ1
1 + uϵτ1

+
τ2

1 + uϵτ2
), from Eqs. (42) and (43)

46

= s

√
1 +

τ1 + τ2
s2

− u

s2
(
ϵτ1τ1

1 + uϵτ1
+

ϵτ2τ2
1 + uϵτ2

),

= s

√
1 +

τ

s2
− u

s2
(

ϵττ

1 + uϵτ
+

ϵτ1τ1
1 + uϵτ1

+
ϵτ2τ2

1 + uϵτ2
), from Eq. (44)

= s

√
1 +

τ

s2
− u2A, from Eqs. (49) and (50)

with A =
1

s2
(
ϵτθτ

1 + uϵτ
+

ϵτ1θτ1
1 + uϵτ1

+
ϵτ2θτ2

1 + uϵτ2
), (55)

= s
(
1 +

τ

2s2
− u2B

)
,

with B =

(
1 + u

θτ
2s2
−
√
1 + u

θτ
s2
− u2A

)
/u2, (56)

= s+
c

2
− u2 ϵcθc

2(1 + uϵc)
− u2sB, from Eqs. (45) and (50)

=
ρ

1 + uϵρ
− u2 ϵcθτ

2s
− u2sB, from Eq. (46)

= ρ

(
1

1 + uϵρ
− u2C

)
, C =

1

ρ

(
ϵcθτ
2s

+ sB

)
. (57)

In summary, we have obtained the following.

Lemma B.1. The relative error of Algorithm 4 is

R :=
ρ√

x2 + y2
− 1 =

1
1

1+uϵρ
− u2C

− 1 = uϵρ +O(u2),

with C defined in Eq. (57), in terms of variables A,B and θv defined in Eqs. (47)
to (50), (55) and (56). Moreover, in this formula,

|ϵs| ≤ 1− 1√
1 + 2u

, |ϵc| ≤ 1− 2u,

and |ϵshx |, |ϵshy |, |ϵσh
|, |ϵτ1 |, |ϵτ2 |, |ϵτ |, |ϵρ| are bounded by 1/(1 + u).

B.3 Bounds

Our implementation claims that the maximal value of the bound from Lemma B.1
is reached with the extreme values

ϵshx = ϵshy = ϵσh
= − 1

1 + u
, ϵτ1 = ϵτ2 = ϵτ = ϵρ =

1

1 + u
,

ϵc = 1− 2u, ϵs =
1

u

(
1√

1 + 2u
− 1

)
.

We do not have a human-readable proof of this fact, which has Conjecture 8.1
as a direct consequence.

47

B.4 Proof of Theorem 8.2

The proof consists in propagating bounds from variable to variable, trying not
to lose too much correlation between variables along the way.

1

1 + u
x2 ≤ shx ≤ 1 + 2u

1 + u
x2, from Eq. (34) (58)

1

1 + u
y2 ≤ shy ≤ 1 + 2u

1 + u
y2, from Eq. (36) (59)

1

(1 + u)2
≤ σh

x2 + y2
≤ (1 + 2u)2

(1 + u)2
, from Eqs. (38), (58) and (59) (60)

|θsℓx | ≤ x2
1

1 + u
, from Eqs. (34) and (47) (61)

|θsℓy | ≤ y2
1

1 + u
, from Eqs. (36) and (47) (62)

|θσℓ | ≤ (x2 + y2)
1 + 2u

(1 + u)2
, from Eqs. (48), (58) and (59) (63)

|ϵs(2− uϵs)| ≤ 2
2 + 3u− 2

√
1 + 2u

u(1 + 2u)
, from Eq. (40) (64)

|θδs | ≤ (x2 + y2)
(1 + 2u)

(1 + u)2
4 + 6u− 4

√
1 + 2u

u
, from Eqs. (48) and (64) (65)

|θτ1 | ≤ (x2 + y2)
1 + 2u

(1 + u)2
, from Eqs. (42), (49), (61) and (62) (66)

|θτ2 | ≤ (x2 + y2)
(1 + 2u)2

(1 + u)3
4 + 7u−

√
1 + 2u

u
, from Eqs. (43), (49), (63) and (65)

(67)

|θτ | ≤ (x2 + y2)
(1 + 2u)2

(1 + u)4
ϕ(u), from Eqs. (44), (50), (66) and (67) (68)

with ϕ(u) :=
(2 + 3u)(2 + 5u)− 4(1 + 2u)3/2

u
, (69)

s ≥
√
x2 + y2

(1 + u)
√
1 + 2u

from Eqs. (40) and (60) (70)

s ≤

√
x2 + y2(1 + 2u)

(
2− 1√

1+2u

)
(1 + u)

from Eqs. (40) and (60) (71)

|A| ≤ 1

s2
(|θτ |+ |θτ1 |+ |θτ2 |), from Eq. (55),(60) and

ϵτi
1− uϵτi

= 1, (72)

≤ (1 + 2u)2(2 + 3u)

(1 + u)2
ϕ(u), from Eqs. (66) to (68) (73)

c ≥ −
√
x2 + y2u

(1− u)(1 + 2u)7/2

(1 + u)3
ϕ(u), from Eqs. (45), (50), (68) and (70)

(74)

ρ ≥
√
x2 + y2

1 + u

(
1

(1 + u)
√
1 + 2u

− u

2

(1− u)(1 + 2u)7/2

(1 + u)3
ϕ(u)

)
,

from Eqs. (46), (70), (71) and (74) (75)

48

≥
√
x2 + y2

(1 + u)2
√
1 + 2u

(
1− u

2

(1− u)(1 + 2u)4

(1 + u)2
ϕ(u)

)
, (76)

|B| ≤

(
1− u

2

(1 + 2u)3

(1 + u)2
ϕ(u)−

√
1− u

(1 + 2u)3

(1 + u)2
ϕ(u)− u2

(1 + 2u)2(2 + 3u)

(1 + u)2
ϕ(u)

)
/u2,

(77)

from Eqs. (56), (68), (70) and (72) and Lemma B.2

=

(
1− u

2

(1 + 2u)3

(1 + u)2
ϕ(u)−

√
1− u

(1 + 2u)2(1 + 3u)

(1 + u)
ϕ(u)

)
/u2 =: θ(u),

(78)

|C| ≤
(1−2u)(1+2u)3

2(1+u)
ϕ(u) + (1 + 2u)(1 + u)(2

√
1 + 2u− 1)θ(u)

1− u (1−u)(1+2u)4

2(1+u)2
ϕ(u)

:= χ(u),

(79)

from Eqs. (57), (68), (70), (71), (75) and (77)

|κ| ≤
1

1+u
1+2u

−u2χ(u)
− 1− u

u2
− 7 =: ψ(u) from Eq. (79) and Theorem 8.2.

(80)

The derivation of Eq. (77) relies on the following lemma that captures some of
the correlations.

Lemma B.2. Any real numbers x, y such that |x|+ |y| ≤ 1 satisfy the inequality∣∣∣1 + x/2−
√
1 + x+ y

∣∣∣ ≤ 1− |x|/2−
√
1− |x| − |y|.

Proof. Let
f(x, y) = 1 + x/2−

√
1 + x+ y.

We first show the inequality with f in place of |f |. Since the square root is
increasing, we have

f(x, y) ≤ f(x, |y|), x− |y| ≥ −1.

Next, if −1 ≤ x ≤ 0, then |x| = −|x| and the inequality follows. Otherwise,
|x| = x and the inequality follows from showing that g(x) ≥ 0 with

g(x) = 1− x/2−
√
1− x− |y| −

(
1 + x/2−

√
1 + x− |y|

)
=
√
1 + x− |y| −

√
1− x− |y| − x.

We have g(0) = 0 and the derivative is

g′(x) =
1

2
√
1− x− |y|

+
1

2
√
1 + x− |y|

− 1.

The value at 0 is

g′(0) =
1√

1− |y|
− 1 ≥ 0

49

and its derivative is

g′′(x) =
(1− x− |y|)−3/2

4
− (1 + x− |y|)−3/2

4
,

which is ≥ 0 for 0 ≤ x ≤ 1 since the function x 7→ x−3/2 is decreasing. Therefore
g′ ≥ 0 and g ≥ 0.

For the absolute value, only the case when f ≤ 0 remains to be proved. In
that case, the inequality to be proved becomes

−1− x/2 +
√
1 + x+ y ≤ 1− |x|/2−

√
1− |x| − |y|.

From √
1 + u ≤ 1 + u/2, u ≥ −1,

the left-hand side is upper bounded by y/2, while the right-hand side is lower
bounded by |y|/2, which concludes the proof.

The application of this lemma in Eq. (77) requires∣∣∣∣u (1 + 2u)3

(1 + u)2
ϕ(u)

∣∣∣∣+ ∣∣∣∣u2 (1 + 2u)2(2 + 3u)

(1 + u)2
ϕ(u)

∣∣∣∣ ≤ 1.

Since ϕ is positive for 0 ≤ u ≤ 1/4, this is equivalent to(
u
(1 + 2u)3

(1 + u)2
+ u2

(1 + 2u)2(2 + 3u)

(1 + u)2

)
ϕ(u) ≤ 1.

The function on the left-hand side is strictly increasing and reaches the value 1
at u ≃ 0.1110831553. Thus the inequality holds for u ≤ 1/24 = 0.0625.

Equation (80) in the last line of the derivation above shows that the relative
error of Algorithm 4 is bounded by the function u+ (7 + κ)u2 with

κ(u) =

1

1+u
1+2u−

u2
(
− (1+2u)3(−1+2u)ϕ(u)

2(1+u)
+(1+2u)(1+u)(2

√
1+2u−1)θ(u)

)
1+

u(u−1)(1+2u)4ϕ(u)

2(1+u)2

− 1− u

u2
− 7 = O(u),

with ϕ and θ from Eqs. (68) and (77). By analysing the univariate function
κ(u), for instance via a polynomial that it cancels, we find that it is increasing
for u ≤ 0.1. Bounds are thus obtained by evaluating numerically κ at the upper
end of the interval of interest, giving the values in the theorem.

C Proof of Theorem 9.1

We detail the steps of the proof of Theorem 9.1, while omitting expressions that
are too large to be reproduced here15.

15A Maple session detailing the computation is available on arXiv with this article.

50

C.1 Step-by-step analysis

For this analysis, we assume that u ≤ 1/32. One could accommodate larger
values of u by splitting the interval further, but this would only make the analysis
more technical.

When x/2 ≤ y ≤ x, by Lemma 2.1, the first step is exact:

δ = x− y = x(1− α),

with α = y/x as in the other analyses and now α ∈ [1/2, 1]. Next

r2 =
δ

y
(1 + ϵr2u) ∈ [0, 1],

with |ϵr2 | ≤ 1− 2u by Lemma 2.4.
Later on during the analysis, it is useful to split the interval α ∈ [1/2, 1] into

two subintervals [1/2, 3/5], [3/5, 1]. We use the exponents (1), (2) to denote the
values of the variables for α in each of these subintervals. For instance,

r
(2)
2 ∈

[
0,RN

(
2

3

)]
, r

(1)
2 ∈

[
RN

(
2

3

)
, 1

]
,

with |RN(2/3)− 2/3| ≤ u/2.
The next step gives 2r2 without error. Next,

r3 = (r22 + 2r2)(1 + ϵr3u) ∈ [0, 3],

with |ϵr3 | ≤ 1/(1 + u) by Lemma 2.3. Propagating intervals and using absolute
errors at the endpoints gives

r
(2)
3 ∈ [0,

(
2

3
+
u

2

)2

+
4

3
+ 2u], r

(1)
3 ∈ [

(
2

3
− u

2

)2

+
4

3
− 2u, 3].

As 2 + r3 ∈ [2, 5], for the next step, we use an absolute error:

r4 = 2 + r3 + ϵr4u,

with |ϵr4 | ≤ 2 for r
(2)
4 and |ϵr4 | ≤ 4 for r

(1)
4 . Thus,

r
(2)
4 ∈ [2,

(
2

3
+
u

2

)2

+
4

3
+ 2u], r

(1)
4 ∈ [

(
2

3
− u

2

)2

+
10

3
− 4u, 5].

For the next step again, as
√
r4 ∈ [

√
2,
√
5] ⊂ [1, 4], we use an absolute error

s2 =
√
r4 + ϵs2u,

with |ϵs2 | ≤ 1 for s
(2)
2 while |ϵs2 | ≤ 2 for s

(1)
2 . At this stage,

s
(2)
2 ∈ [

√
2− u, 2], s

(1)
2 ∈ [

√
136− 168u+ 9u2

6
− u,

√
5 + 2u].

51

Next, we have R2 =
√
2+ϵR2u, with |ϵR2 | ≤ 1 and similarly Ph = 1+

√
2+ϵPh

u
with |ϵPh

| ≤ 2 and Pℓ = 1 +
√
2− Ph + ϵPℓ

u2 satisfies |Pℓ| < 2u and |ϵPℓ
| ≤ 1.

Thus R2 + s2 ∈ [2
√
2− 2u,

√
2 +
√
5 + 3u] ⊂ (2, 4), so that

d = R2 + s2 + ϵdu, with |ϵd| ≤ 2.

Now,

d(2) ∈ [2
√
2−4u,

√
2+2+3u], d(1) ∈ [

√
2+

√
136− 168u+ 9u2

6
−4u,

√
2+
√
5+5u].

For the next three steps, using relative errors gives

q =
r3
d
(1 + ϵqu), r5 = (q + Pℓ)(1 + ϵr5u), r6 = (r5 + r2)(1 + ϵr6u),

with |ϵq| ≤ 1 − 2u and |ϵr5 |, |ϵr6 | both bounded by 1/(1 + u). Propagating
intervals shows that

q(2) ∈ [0,

(
2
3 + u

2

)2
+ 4

3 + 2u

2
√
2− 4u

+
u

2
],

q(1) ∈ [

(
2
3 −

u
2

)2
+ 4

3 − 2u
√
2 +
√
5 + 5u

− u

4
,

3
√
2 +

√
136−168u+9u2

6 − 4u
+
u

2
],

r
(2)
5 ∈ [−2u,

(
2
3 + u

2

)2
+ 4

3 + 2u

2
√
2− 4u

+ 3u],

r
(1)
5 ∈ [

(
2
3 −

u
2

)2
+ 4

3 − 2u
√
2 +
√
5 + 5u

− 5

2
u,

3
√
2 +

√
136−168u+9u2

6 − 4u
+

7

2
u],

r
(2)
6 ∈ [−2u,

(
2
3 + u

2

)2
+ 4

3 + 2u

2
√
2− 4u

+
2

3
+

9

2
u],

r
(1)
6 ∈ [1, 1 +

3
√
2 +

√
136−168u+9u2

6 − 4u
+

11

2
u].

It follows that
r
(2)
6 + Ph ⊂ [2, 4], r

(1)
6 + Ph ⊂ [3, 5],

so that one can use an absolute error

z = r6 + Ph + ϵzu,

with |ϵz| ≤ 2 for z(2) and |ϵz| ≤ 4 for z(1).
For the last two steps, using relative errors gives

z2 =
y

z
(1 + ϵz2u), ρ = (x+ z2)(1 + ϵρu),

with |ϵz2 | ≤ 1−2u and |ϵρ| ≤ 1/(1+u). This concludes the step-by-step analysis.

52

C.2 Partial derivatives of the relative error

We now consider the relative error

R =
ρ√

x2 + y2
− 1,

where ρ is the value computed by the algorithm and R is viewed as a function
of the variables (x, α, ϵr2 , ϵr3 , ϵr4 , ϵs2 , ϵR2

, ϵd, ϵq, ϵPℓ
, ϵPh

, ϵr5 , ϵr6 , ϵz, ϵz2 , ϵρ).
Remarkably, the design of the algorithm that avoids all subtractions leads

to a simple untangling of many of the correlations between errors, summarized
by the following lemma.

Lemma C.1. For u ≤ 1/32, one has

∂R

∂ϵr2
≤ 0,

∂R

∂ϵr3
≤ 0,

∂R

∂ϵr4
≥ 0,

∂R

∂ϵs2
≥ 0,

∂R

∂ϵR2

≥ 0,
∂R

∂ϵd
≥ 0,

∂R

∂ϵq
≤ 0,

∂R

∂ϵPℓ

≤ 0, r5
∂R

∂ϵr5
≤ 0, r6

∂R

∂ϵr6
≤ 0,

∂R

∂ϵz
≤ 0,

∂R

∂ϵz2
≥ 0,

∂R

∂ϵρ
≥ 0.

Proof. For sign questions, it is sufficient to consider the partial derivatives of ρ
rather than R, except for α. The signs in the lemma follow from closed-forms
expressions of the derivatives obtained by the chain rule:

∂ρ

∂ϵρ
=

ρu

1 + uϵρ
,

∂ρ

∂ϵz2
=
yu

z
(1 + uϵρ),

∂ρ

∂ϵz
= −yu

z2
(1 + uϵz2)(1 + uϵρ),

∂ρ

∂ϵr6
= −yur6

z2
(1 + uϵz2)(1 + uϵρ)

1 + uϵr6
,

∂ρ

∂ϵr5
= −yur5

z2
(1 + uϵr6)(1 + uϵz2)(1 + uϵρ)

1 + uϵr5
,

∂ρ

∂ϵPℓ

= −yu
2

z2
(1 + uϵr6)(1 + uϵr5)(1 + uϵz2)(1 + uϵρ),

∂ρ

∂ϵq
= −yur3

z2d
(1 + uϵr5)(1 + uϵr6)(1 + uϵz2)(1 + uϵρ),

∂ρ

∂ϵd
=

∂ρ

∂ϵs2
=

∂ρ

∂ϵR2

=
yur3
z2d2

(1 + uϵq)(1 + uϵr5)(1 + uϵr6)(1 + uϵz2)(1 + uϵρ),

∂ρ

∂ϵr4
=

yur3
2z2d2

√
r4

(1 + uϵq)(1 + uϵr5)(1 + uϵr6)(1 + uϵz2)(1 + uϵρ),

∂ρ

∂ϵr3
= − yur3

z2d(1 + uϵr3)

(
1− r3

2d
√
r4

)
(1 + uϵq)(1 + uϵr5)(1 + uϵr6)(1 + uϵz2)(1 + uϵρ),

∂ρ

∂ϵr2
= −δu

z2

(
1 +

2(1 + r2)

d

(
1− r3

2d
√
r4

)
(1 + uϵq)(1 + uϵr3)(1 + uϵr5)

)
(1 + uϵr6)(1 + uϵz2)(1 + uϵρ).

53

The only sign that is not directly obvious from the previous identities is that of
the factor

1− r3
2d
√
r4

= 1− r3
2d
√
2 + r3 + uϵr4

≥ 1− r3

2(2
√
2− 4u)

√
2 + r3 − 4u

≥ 1− 3

2(2
√
2− 4u)

√
5− 4u

≥ 0.

C.3 Discussion on r5, r6

As r2 ≥ 0 and the sign of r6 is that of r2 + r5, there are only three possibilities
for the signs of r5 and r6: (+,+), (−,−), (−,+). The maximal value of R is
upper bounded by the value it reaches at one of the following corresponding
values of (ϵr5 , ϵr6):

ϕ++ = (− 1

1 + u
,− 1

1 + u
), ϕ−− = (

1

1 + u
,

1

1 + u
), ϕ−+ = (

1

1 + u
,− 1

1 + u
).

Similarly, the minimal value of R is lower bounded by the value it reaches at
the opposite of these points.

A computation similar to that of the derivatives above gives the derivative:

∂ρ

∂ϵPh

=
yu2

z2
(ϵr5 + ϵr6 + uϵr5ϵr6) (1 + uϵz2)(1 + uϵρ).

so that the sign of this derivative at the extremal points above are easily obtained
and thus also the corresponding extremal values of ϵPh

. This leads to three
possible points to be considered for (ϵr5 , ϵr6 , ϵPh

):

ψ++ = (− 1

1 + u
,− 1

1 + u
,−2), (81)

ψ−− = (
1

1 + u
,

1

1 + u
, 2), (82)

ψ−+ = (
1

1 + u
,− 1

1 + u
,−2). (83)

Their opposite is to be used for the minimal value of R.

C.4 Extremal values

As a consequence of the previous discussion, the maximal value of R is upper
bounded by the value it reaches at

(ϵr2 , ϵr3 , ϵr4 , ϵs2 , ϵR2
, ϵd, ϵq, ϵPℓ

, ϵz, ϵz2 , ϵρ) = π+, (ϵr5 , ϵr6 , ϵPh
) ∈ {ψ++, ψ−−, ψ−+}

π+ :=

(
−1 + 2u,− 1

1 + u
, e,

e

2
, 1, 2,−1 + 2u,−1,−e, 1− 2u,

1

1 + u

)
,

54

with (ψ++, ψ−−, ψ−+) from Eqs. (81) to (83), e = 2 if α ≥ 3/5 and e = 4
otherwise. Similarly, its minimal value is lower bounded by the value it reaches
at π− = −π+ and one of {−ψ++,−ψ−−,−ψ−+}. The problem is thus reduced
to functions of only the two variables (α, u). In each case, the sign of the
derivative with respect to α is easily predicted by plotting its graph with high
precision for (α, u) ∈ [3/5, 1] × [0, 1/32]. A computationally intensive part of
this analysis is to actually prove the following.

Lemma C.2. At each of the three points (π+, ψ++), (π+, ψ−−), (π+, ψ−+), for
(α, u) ∈ [3/5, 1]× [0, 1/32], the derivative of R wrt α is positive.

Proof. First, a computation similar to that of the other derivatives gives the
following expression for S := 1

R+1
∂R
∂α , that has the same sign as ∂R/∂α:

(
1 +

(
1+

2(r2+1)

(
1− r3

2d
√

r3+2+uϵr4

)
(1+uϵr3)(1+uϵq)(1+uϵr5)

d

)
(1+uϵr2)(1+uϵr6)

αz

)
(1 + uϵz2)

z (1 + z2/x)

− α

α2 + 1
.

Since α ≥ 3/5, we use π+ with e = 2. At this point, and for each of the three
choices for ψ, this expression gives us a function S(α, u). That function is a
root of a (large) polynomial of degree only 2

A(α, u)S2 +B(α, u)S + C(α, u) = 0

the polynomials A,B,C having their coefficients in Q(
√
2), and degree 16 in

α and between 32 and 36 in u, depending on the three cases. All three cases
can be dealt with in the same way. First, by direct computation, one sees that
the value of S at (α, u) = (1, 1/32) is positive. Next, if S becomes 0 in the
rectangle (α, u) ∈ [3/5, 1] × [0, 1/32], one has that C becomes 0 there as well.
So it is sufficient to prove that this does not happen. This replaces proving the
positivity of an algebraic function to that of a polynomial in the same number
of variables. On each of the four sides of the rectangle, the polynomial C
specializes to a univariate polynomial whose positivity is easy to check. Next,
one considers the polynomial system {C, ∂C/∂u, ∂C/∂α} which is satisfied at
the extrema of C. For the cases ψ−− and ψ−+, it turns out to be sufficient
to compute the resultant of the last two polynomials with respect to α. This
can be achieved in less than 10 sec. and yields a univariate polynomial (of
degree 569 in the first case and 524 in the second one) that can then be seen
not to have a zero for u ∈ (0, 1/32). In the case of ψ++, there are zeroes.
More information is obtained by computing a parameterization of the roots
of the system {s2 − 2, C, ∂C/∂u, ∂C/∂α}, where

√
2 is replaced by s in the

polynomials so that they all lie in Q[s, α, u]. This parameterization is computed
by the msolve library [9] in 40 seconds. It has the form

P (u) = 0, P ′(u)α+Qα(u) = 0, P ′(u)s+Qs(u) = 0,

55

with P a polynomial of degree 530, while Qα and Qs have degree 529. The
root of the resultant above is still a root of P . It belongs to the interval
[0.00443, 0.00445]. Evaluating −Qα/P

′ at this point by interval arithmetic
shows that the corresponding value of α is negative. This shows that there
are no extrema of C inside the rectangle and therefore its minimal value is
reached on the boundary where it is positive, showing that S does not vanish
in the rectangle and establishing its positivity.

Corollary C.3. For (α, u) ∈ [3/5, 1] × [0, 1/32], the relative error R is upper
bounded by ϕ(u) from Theorem 9.1.

Proof. The consequence of the previous lemma is that the relative error R is
bounded by its values at π+, each of (ψ++, ψ−−, ψ−+) and α = 1. This gives
three rational functions in only the variable u to compare. A direct computation
then shows that the maximal value is reached at ψ−−, where the bound is given
by ϕ(u) from Theorem 9.1.

C.5 Final steps in the proof of Theorem 9.1

To conclude the proof for α ≥ 3/5, we also need to check that the value of R
at −π+, does not exceed ϕ(u) in absolute value; that the bound for α ≤ 3/5 is
smaller than ϕ(u) and similarly for the other path of the algorithm when δ > y.

There is no new difficulty there, and the computation follows the same steps,
so as to control the size of intermediate expressions when more than two vari-
ables are involved.

56

	Introduction
	Motivation
	Basics of Floating-Point Arithmetic
	Which kind of error bounds?
	Recent results
	Contribution
	Structure of the article

	Bounds for Floating-Point Operations
	Computer algebra algorithms for tight analysis of numerical programs
	Step-by-step analysis
	Polynomial optimization
	Sign decisions
	Regular chains
	Application to Error Analysis

	A gallery of algorithms for the hypotenuse
	Algorithm 1: Straightforward Analysis
	Algorithm 2: Exploit Absolute Errors
	Automatic Analysis
	Result
	Step-by-step analysis
	Upper bound
	Optimal quadratic term

	Algorithm 3: Split Argument Interval
	Automatic analyses
	Result
	Step-by-step analysis

	Algorithm 4: Limited Human Proof
	Automatic Analyses
	Result

	Algorithm 5: Computer-aided analysis
	Automatic Analyses
	Result

	Discussion and Comparison
	Comparison with Gappa
	Algorithm 1
	Algorithm 2
	Algorithms 3 and 4
	Algorithm 5

	Comparison with Satire
	Conclusion

	Proof of Theorem 7.1
	Linear term and interval splitting
	Bounds on partial derivatives
	Bounds on the relative error
	First part: upper bound for alpha<1/2 and lower bound for all alpha
	Last part: upper bound for 1/2≤alpha≤1

	Proof of Theorem 8.2
	Step-by-step analysis
	Relative error and its linear term
	Bounds
	Proof of Theorem 8.2

	Proof of Theorem 9.1
	Step-by-step analysis
	Partial derivatives of the relative error
	Discussion on r5,r6
	Extremal values
	Final steps in the proof of Theorem 9.1

