Supplementary Materials.

Figure S1. Experimental FAB spectrum (DMSO, mnba matrix) for the $(L^{7}HCu)_{2}Zn \cdot 2CH_{3}OH$ complex.

Figure S2. Theoretical isotopic distribution for the $[(L^7HCu)_2Zn + 1]^+$ and the $[(L^7HCu)_2Zn + Na]^+$ monocationic species.

Figure S3. Temperature dependence of the $\chi_M T$ product for $(L^7 HCu)_2 VO \cdot 2CH_3 OH$ at 0.1 T applied magnetic field.

Figure S4. EPR spectrum for the NiL³VO complex at room temperature and CH₂Cl₂ solvent.

Figure S5. EPR spectrum for the VOL³VO conformers at room temperature and CH_2Cl_2 solvent.

Figure S6. Experimental FAB spectrum (DMSO, mnba matrix) (left) and theoretical spectrum (right) for the $(L^2Cu)_2Gd(NO_3)_3 \cdot 5H_2O$ complex.

Figure S7. Temperature dependence of the $\chi_M T$ product for $(L^2Cu)_2Gd(NO_3)_3 \cdot 5H_2O$ at 0.1 T applied magnetic field.

Figure S8. Temperature dependence of the $\chi_M T$ product for $(L^5Cu)_3Gd \cdot 5H_2O$ at 0.1 T applied magnetic field.