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Threat modeling (TM) is essential to manage, prevent, and ix security and privacy issues in our society. TM requires a data

model to represent threats and tools to exploit such data. Current TM data models and tools have signiicant limitations

preventing their usage in real-world scenarios. For example, it is challenging to TM embedded devices with current data

models and tools as they cannot model their hardware, irmware, and low-level software. Moreover, it is impossible to TM a

device lifecycle or security-privacy tradeofs as these data models and tools were developed for other use cases (e.g., software

security or user privacy).

We ill this relevant gap by presenting the AttackDefense Framework (ADF), which provides a novel data model and related

tools to augment TM. ADF’s building block is the AD object that can be used to represent heterogeneous and complex threats.

Moreover, ADF provides automations to process a collection of AD objects, including ways to create sets, maps, chains, trees,

and wordclouds of AD objects. We present ADF, a toolkit implementing ADF composed of four modules (Catalog, Parse, Check,

and Analyze).

We conirm that the data model and tools provided by ADF are useful by running an extensive set of experiments while

threat modeling a crypto wallet and its lifecycle. Our experiments involved seven expert groups from academia and industry,

each using the ADF on an orthogonal threat class. The evaluation generated 175 high-quality ADs covering ISA/IEC 62433-4-1

SecDev Lifecycle, side-channels, fault injection, microarchitectural attacks, speculative execution, pre-silicon testing, invasive

physical chip modiications, Bluetooth protocol and implementation threats, and FIDO2 authentication.
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CCS Concepts: · Security and privacy→ Embedded systems security;Hardware attacks and countermeasures; Tamper-proof

and tamper-resistant designs.

Additional Key Words and Phrases: Threat Modeling, Embedded Systems Security, Hardware Security

1 Introduction

Threat Modeling (TM) is essential to manage our society’s security and privacy risks. In short, TM allows
systematically listing, prioritizing, and addressing digital threats [111, 121, 127], thus providing tangible security
beneits compared to other more common but potentially less efective practices, such as compliance with security
standards [52, 87, 124]. TM includes data formats to represent threats, tools to process them, and methodologies
to identify, prioritize, and address them.

Current TM data formats and tools cannot cover critical aspects of real-world (embedded) devices. For instance,
there is no way to accurately represent and process threats related to hardware (e.g., invasive physical attacks),
irmware (e.g., bootloader), hardware-software interface (e.g., speculative execution and microarchitectural issues),
and communication protocols (e.g., protocol- or implementation-level threats). Moreover, they focus on security
or privacy attacks on products, neglecting possible security-privacy tradeofs. Other shortfalls are that they
cannot model the products’ lifecycle (e.g., supply chain attacks) and the defenses associated with the attacks.
Finally, current TM data formats and tools try to be human and machine-friendly, but they usually lack the latter,
not allowing for automation and optimization of TM exercises. Hence, the TM community tends to focus on
specialized classes of threats (e.g., software security or user privacy) and has limited tooling available.
We ill this gap by presenting the AttackDefense Framework (ADF), a novel framework to enhance TM

coverage, efectiveness, automation, and (re)usability. ADF’s building block is the AttackDefense Object (AD), a
new data structure for representing threats. The AD object satisies seven requirements that we set based on
the state of the art. In particular, it covers attacks and defenses, security and privacy, hardware and irmware,
product and lifecycle, and ine- and coarse-grained threats. Moreover, it is developed to be reusable and updatable
(i.e., future-proof), friendly to machines and humans, and compatible with any TM methodology (e.g., STRIDE,
LINDDUN, and ATree). An AD object can be written in any serialization language. We recommend using YAML
or JSON. Moreover, we implement valuable automations on the AD objects, unlocking novel TM capabilities. For
example, we show how to create lat AD sets or maps or hierarchical AD chains, trees, or wordclouds. These
capabilities signiicantly increase TM’s efectiveness, coverage, and speed.
We implement the ADF design in the ADF toolkit that contains four modules: Catalog, Check, Analyze, and

Parse. A high-level overview of the ADF is shown in Figure 1. Catalog contains the ADs that we develop in our
case studies. Parse can extract ADs from YAML, JSON, TOML, and XML iles and can be easily extended to parse
other ile types. Check automatically validates the syntax, semantics, and content of the ADs using a combination
of checkers such as yamllint and Python schema. Analyze provides functions to automatically process ADs to
generate, among others, ADs’ sets, maps, trees, wordclouds, and chains. We will open-source our toolkit with a
permissive license to let other individuals take advantage of ADF and provide feedback.
We describe the results of seven case studies run by industrial and academic expert groups covering a broad

spectrum of threats using a crypto wallet and its life cycle as a reference. In particular, we evaluate attacks
and defenses related to ISA/IEC 62433-4-1 SecDev Lifecycle, side-channels, fault injection, microarchitectural
attacks, speculative execution, pre-silicon testing, invasive physical chip modiications, Bluetooth protocol and
implementation, and FIDO2 authentication. As a result of our evaluation, the seven experts created and used
175 ADs and provided invaluable feedback to improve the ADF. Our toolkit is open-source and available at
https://github.com/francozappa/adf.

We summarize our contributions as follows:

ACM Trans. Embedd. Comput. Syst.
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Fig. 1. ADF high-Level Overview

• We present the ADF, the irst TM framework to model real-world product and lifecycle threats using a new
data format called AD object and automations built around it. ADF satisies seven requirements to achieve
maximum coverage, usability, and compatibility with the state of the art.

• We describe ADF, a toolkit implementing the ADF in four modules: Catalog, Parse, Check, and Analyze. For
each module, we discuss the relevant technical implementation details.

• We evaluate ADF in a real-world case study on a crypto wallet and its lifecycle. We involved seven expert
groups that developed AD objects for diferent relevant threat classes. Our evaluation generated 175 high-
quality AD objects covering lifecycle and product threats. We evaluated overlooked but critical threats such
as side-channels, fault injection, microarchitectural attacks, speculative execution, and invasive physical
attacks.

2 Background

This section provides background information on threat modeling and its methodologies, catalogs, and tools.

2.1 Threat Modeling

Threat modeling (TM) is an approach to identify threats to a target, prioritize them, and develop appropriate
countermeasures. It consists of four sequential phases: (1) system and attacker modeling, (2) threat identiication,
(3) threat ranking, (4) building a defense strategy. From a top-down perspective, the four phases map to four

questions (Q1, Q2, Q3, and Q4) [138]:

Q1: What are we working on? First, we build a system model including the system’s components, interconnec-
tions, and security boundaries. Software systems are typically modeled with a data low diagram (DFD), while
communication protocols with sequence diagrams (SD). Usually, a DFD represents the system’s components with
solid lines, the trust boundaries with dotted lines, and the data lows with numbered arrows across components
and boundaries. An SD represents the parties involved in a protocol and the messages they exchange.

Q2: What can go wrong? The second phase is about performing threat identiication (TI) on our target. We
deine our attack surface, which is the set of components that we want to protect. Then, we consider diferent
attacker models targeting our surface to achieve some goals using one or more techniques. TI is a laborious
and mostly manual process. TI methodologies diferentiate according to the threat domains and their relation.

ACM Trans. Embedd. Comput. Syst.
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Common TI methodologies include STRIDE [73] for software security, LINDDUN [23] for system privacy, and
Attack Trees (ATree) [114] for attacker goals. More TI techniques are discussed in [118, 119].

Q3: What are we going to do about it? The third phase involves risk or severity scoring. In this phase, we score the
threats identiied in the previous phase using metrics usually based on the attack’s impact, cost, and scalability.
The most common threat scoring scheme is the Common Vulnerability Scoring System (CVSS) [93] that is employed
by the US National Vulnerability Database (NVD) to score the severity of all currently known vulnerabilities. A
CVSS score has three metrics: Base, Temporal, and Environmental. The Base metric provides a score from zero to
ten and can be adjusted by scoring the Temporal and Environmental metrics. The Temporal metric takes into
account the severity of a threat over time. The Environmental metric enables re-weighting the severity according
to the target. The most widely used CVSS scores are v2 and v3, while v4.0 was released recently [96]. The scores
can be computed using the NVD calculator web pages [94, 95].

Q4: Did we do a good enough job? The fourth phase of TM starts with the creation of a defense plan, which
typically is a document containing a summary of the irst three phases and a section explaining which threats are
ixed, mitigated, and accepted as risks. Such a document also provides a list of countermeasures or ixes based
on the identiied threats. Following the development of the defense plan, the phase proceeds with its delivery,
management, and reinement, involving active system monitoring for incidents. Ideally, the defense plan should
be regularly reviewed and updated based on feedback from various channels, such as security logs, bug bounties,
security advisories, and user input.

2.2 TM Methodologies

STRIDE. STRIDE was developed by Kohnfelder et al. in 1999 and adopted by Microsoft in 2002 [121] as part of its
Secure Development Life Cycle (SDLC) [72] and Threat Modeling Tool (TMT) [74]. STRIDE focuses on identifying
threats violating software security, emphasizing networked systems (e.g., web and cloud applications). It covers
Spooing (i.e., lack of authentication), Tampering, Repudiation, Information disclosure (e.g., data breaches), Denial
of service, and Elevation of privilege threats. A STRIDE user takes a DFD (or other system models) and for
each element in the attack surface lists possible threats in each STRIDE category. The threat listing can be
semi-automated using an attack library. Microsoft has documented its STRIDE threat modeling approach since
1999 and provided some useful lessons learned, such as the lack of threat modeling training, complexity in
real-world scenarios, and the importance of the people factor [120].

LINDDUN. LINDDUN is a privacy-focused TM methodology developed by Deng et al in 2010. LINDDUN com-
plements STRIDE as it uses the same reference system model (i.e., a DFD). But it produces a list of privacy threats
other than software security ones. Speciically, LINDDUN targets seven threat classes: Linkability, Identiiability,
Non-repudiation, Detection, Data disclosure, Unawareness, and Non-Compliance. Note that Data (Information)
disclosure and Non repudiation overlap with STRIDE, hence the two might produce similar threats. The LINDDUN
developers also provide a reference LINDDUN threat catalog extracted from empirical experiments [140] and
LINDDUN GO, a lightweight LINDDUN version for newcomers [141].

ATree. ATree is a TM methodology proposed by Schneier in 1999. Each attack tree has the attacker goal as
the tree’s root. The sub-trees are the attacker’s sub-goals and can be logically linked (e.g., sub-goal1 AND/OR
sub-goal2) and annotated (e.g., sub-goal feasibility, requirements, and monetary cost). An ATree difers from
STRIDE and LINDDUN. It focuses on goals other than threat classes, produces a hierarchical representation of
threats rather than a list, and is scalable as a tree addresses multiple threats. On the lip side, an Atree is diicult
to create and maintain because of its hierarchical structure. For example, a tree might become useless by missing
just one sub-goal (sub-tree).

ACM Trans. Embedd. Comput. Syst.



AtackDefense Framework (ADF): Enhancing IoT Devices and Lifecycles Threat Modeling • 5

2.3 Threat Catalogs

Threat modeling methodologies and tools rely on threat catalogs (i.e., collections of known threats). For example,
STRIDE and LINDDUN have bundled catalogs of high-level security and privacy threats [140]. Additionally,
the three relevant catalogs ś all maintained by MITRE ś are the Common Attack Pattern Enumeration and
Classiication (CAPEC) [81], CommonWeakness Enumeration (CWE) [83], and CommonVulnerabilities Exposures
(CVE) [82].

CAPEC. CAPEC is a catalog of attack patterns extracted from real-world threats. An attack pattern describes
the adversary’s approach to exploit known weaknesses. Each CAPEC entry has the following ields: unique
ID, description, likelihood, severity, relationship, execution low, prerequisites, skills required, consequences,
mitigations, related weaknesses (CWE), taxonomy mappings, and content history.

CWE. CWE is a collection of known software and hardware weakness types. A CWE entry has the following
attributes: UID, description, relationship, modes of introduction, consequences, demonstrative examples, observed
examples (CVE), membership, notes, taxonomy mappings, related attack patterns (CAPEC), references, and
content history. CWE entries are organized in a tree hierarchy of multiple levels of abstraction.

CVE. CVE is a standard format to store, discover, analyze, and correlate vulnerabilities. Each CVE has a unique
ID in the form of CVE-YYYY-NNNNNN, description, references, assigner, creation record, and other ields.

2.4 Tools

Among the various open-source threat modeling tools, we focus on those that provide a custom and ex-
tensible threat catalog [67] and a data representation structure to represent the threats, i.e., pytm [126] and
threagile [113].

pytm. Pytm is a Python-based framework developed by the Open Worldwide Application Security Project
(OWASP). It introduces the paradigm of threat modeling as code, simplifying TM integration into the development
process. The framework has some pre-deined and extendible classes for constructing a systemmodel. In particular,
the user writes a script instantiating Python objects for each system component and speciies how the components
are connected. Then, the tool generates a visual system diagram (e.g., DFD or SQ) and automatically identiies
potential threats using a threat library built upon a custom data representation model that uses JSON. The threat
library contains approximately 100 entries at the time of writing.

Threagile. Threagile is a tool following threat modeling as a code paradigm written in Golang. The tool provides
a catalog with 41 threats in the form of hardcoded rules. Each rule is also associated with its STRIDE category,
allowing it to be easily integrated with TM exercises requiring adherence to the STRIDE taxonomy classiication.
The user is required to build a system model using YAML. The tool tries to apply the rules to the system model
and then automatically generates DFDs and other outputs (i.e., Excel and JSON).

3 ADF Design

This section motivates the need for ADF and presents its seven requirements, the AttackDefense (AD) object and
related automations, and ADF’s compatibility with the STRIDE and LINDDUN TM methodologies.

3.1 Motivation

We started working on ADF because we could not ind threat data models to TM real-world (embedded) devices
and lifecycles. CWE, CVE, and CAPEC (introduced in Section 2) represent the state-of-the-art data formats
to model devices’ weaknesses, vulnerabilities, and attack patterns. However, they are problematic for several
reasons. Studies demonstrated that they are challenging to use in scenarios requiring automation [10, 70]. Other

ACM Trans. Embedd. Comput. Syst.
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work showed their limited precision for vulnerability management [102] and even wrong entries in the CVE
database [39, 59]. There is no threat data model to represent risks associated with a device lifecycle, such as
supply chain attacks.
Let’s take as an example CAPEC-668 [80], which models the Key Negotiation Of Bluetooth (KNOB) attack

technique presented in [5, 7]. And use CAPEC-668 and the associated CWEs and CVEs to TM a crypto wallet
supporting Bluetooth. What can we achieve? Very little, since we get generic information from the entries, such as
high-level description of the KNOB attack, related patches, and links to external resources. But, we miss essential
threat modeling data, like KNOB attack surface, vector, technique, and defensive ixes and mitigations.

A second issue that motivates the need for ADF is the lack of tools capable of TM real-world (embedded) devices
and lifecycles. Pytm and Threagile are industrial and open-source TM tools ofering machine-readable threat
representations, catalogs, and automation. But, they target speciic TM domains, such as securing web applications,
and are not suited to TM devices with hardware, irmware, software, and communication protocol issues. For
instance, we cannot TM a crypto wallet with a microcontroller, a secure element, a secure bus connecting them, a
USB stack, and a Bluetooth wireless interface. Moreover, we know no tool that can TM a device lifecycle, e.g.,
pre-deployment issues with its design and implementation. Returning to the crypto wallet example, we would
like to TM hardware and software supply chain risks (i.e., device lifecycle threats), but there is no capable tool.

3.2 Requirements

Based on the two issues presented in Section 3.1, we set seven requirements for ADF to enable TM real-world
(embedded) devices and their lifecycles. We now describe each requirement.

R1: Attacks and Defenses. Current TM frameworks focus on the attacker. We want to focus on the attacker and
the defender at the same time. This approach enables reasoning about ine-grained and coarse-grained mitigation
strategies, identifying critical attacks with and without known defenses, exploring alternative defensive strategies
for a speciic attack, evaluating defense-in-depth options, and determining the minimum number of defenses
required to address an attack.

R2: Security and Privacy. Existing TM frameworks treat security and privacy separately, leading to issues like
overlooked security-privacy trade-ofs. We want to consider security and privacy simultaneously to capture their
unavoidable joint beneits and trade-ofs. For instance, we could model a scenario to explore the competing goals
of conidentiality and integrity (security) vs. repudiability and traceability (privacy).

R3: Hardware and Firmware. There is a need to broaden the scope of threat modeling to cover hardware and
irmware threats, which are relevant but often neglected during TM. Besides traditional TM areas, we want to
cover novel hardware and irmware threat classes, including invasive and non-invasive physical attacks like
side-channels, fault injection, and physical chip manipulations. Furthermore, we want to address threats at the
intersection of hardware and software, such as microarchitectural and speculative execution attacks.

R4: Product and Lifecycle. Existing TM frameworks focus on analyzing devices or systems, not their development
lifecycle. For instance, current frameworks cannot model hardware and software supply chain attacks. We want
to include lifecycle threats in our framework to enable TM practitioners to manage critical process risks such as
SolarWinds [137] and Supermicro [115].

R5: Fine- and Coarse-grained Threats. While current TM frameworks focus on generic classes of threats, we
want to support threats at diferent levels of abstraction. For instance, we model coarse-grained threats (e.g.,
generic attack techniques), such as bufer overlows, and ine-grained ones (e.g., real-world attack instances), like
Heartbleed on OpenSSL. By doing so, we enhance our TM analysis capabilities. For instance, we can automatically
generate hierarchies of threats based on abstraction levels, including trees, chains, and graphs.

ACM Trans. Embedd. Comput. Syst.
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Listing 1. AtackDefense (AD) Object writen in YAML

ad_name:

# Primary fields

a: attack

d:

policy1: [mech1 , mech2]

policy2: [mech1 , mech2]

...

surf: [surf , subsurf , subsubsurf , ...]

vect: [vector1 , vector2 , ...]

model: [model1 , model2 , ...]

tag: [tag1 , tag2 , ...]

# Optional fields

risk: [score1 , score2 , ...]

year: 2023

cve: ["123" , "456", ...]

cwe: ["123" , "456", ...]

capec: ["123" , "456", ...]

vref: ["vendor -ref1", ...]

...: ...

R6: Reusable and Updatable. Present TM frameworks are diicult to combine, update, and automate. We want
to prevent duplication of the same TM exercises by providing reusable data formats and tools. We want to
interoperate with existing TM methodologies such as STRIDE and LINDDUN. Additionally, the framework
must be updatable, allowing new attacks and defenses to be incorporated as they become available. We aim to
consistently and incrementally add threats over time to cover situations where new threats are identiied or old
threats are patched or reintroduced.

R7: Machine- and Human-friendly. Current TM frameworks are either machine- or human-friendly. We want a
framework that minimizes friction between humans and machines. Users should be able to read, write, analyze,
and share attack and defense strategies. The framework should accommodate users with varying expertise in
TM, including developers and threat modeling experts. The framework should enable machines to automatically
generate valuable TM outputs such as interactive and portable reports and visualizations. It should also facilitate
intelligent storage of these outputs, leveraging techniques such as version control, CI/CD pipelines, and machine-
checkable data formats.

3.3 AtackDefense Object (AD)

Starting from the seven requirements outlined in Section 3.2, we developed the AttackDefense Object (AD), our
threat data model for ADF. We indicate an AD Object as AD and multiple ones as ADs. AD is a programming
language agnostic data structure representing a threat (i.e., attack, defenses, and useful metadata). We use AD
objects to model real-world threats on devices and lifecycles, such as the design, implementation, evaluation, and
shipment of a crypto wallet.

Listing 1 shows how to write an AD using YAML, but note that other serialization languages, including JSON,
TOML, or XML can be used. Each AD has a unique name (ad_name), six primary ields, and optional ields. A
ield is a key-value pair and supports various data types, including dictionaries, lists, strings, and integers.

The AD has six primary ields:

ACM Trans. Embedd. Comput. Syst.
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Listing 2. knob_ble AD

knob_ble:

a: KNOB entropy downgrade attack on BLE pairing

d:

Mutually auth entropy negotiation: [Auth entropy with BLE pairing key]

High key entropy: [Disallow entropy values lower than 16]

surf: [BLE , Pairing , Entropy negotiation]

vect: [Entropy downgrade , Key brute force]

model: [Proximity , MitM]

tag: [Protocol , SMP]

risk: [cvss3_high , cvss2_medium]

year: 2019

cve: ["9506"]

cwe: ["310" , "327"]

capec: ["668"]

• a contains a string describing an attack with an arbitrary level of abstraction (e.g., coarse-grained or
ine-grained).

• d stores sub-dicts to model diferent defense strategies for an attack. In particular, each sub-dict encodes
a high-level policy string (e.g., policy1) and a list of concrete mechanisms strings (e.g., [mech1, mech2])
satisfying such policy. The sub-dicts could be ordered according to some criteria (e.g., from the most
efective to the least efective).

• surf is an ordered list of strings describing the attack surface (i.e., target). The list is ordered such that
each element narrows down the attack surface from the broadest to the most speciic.

• vect is a list of strings containing the attack vectors (i.e., techniques) related to the attack.
• model stores the adversary models capable of performing the attack in a list of strings.
• tag is a list of strings storing useful metadata, such as the AD type, security-privacy trade-ofs, and other
technicalities.

Additionally, there are some optional ields to enhance the AD:

• risk is a list of strings storing risk scores associated with the attack (e.g., CVSS).
• year is an int storing the year when the attack was irst discovered.
• cve, cwe, and capec are lists of strings storing identiiers from those catalogs related to the attack.
• vref is a list of vendor reference strings associated with the attack, including security advisory identiiers
from Linux [38] or Android [48].

Recall that in Section 3.1, we showed that the CAPEC entry for KNOB misses many details about the attack. In
Listing 2, we show how we modeled the KNOB attack using the knob_ble AD. KNOB involves an adversary with
a man-in-the-middle (MitM) position in the BLE proximity range (model) targeting the entropy negotiation phase
of the BLE pairing protocol (narrowing down surf). The attack involves downgrading the pairing key entropy
and brute-forcing the key (vect). KNOB is a protocol-level attack involving BLE’s Security Manager Protocol
(SMP) (tag). The attack was discovered in 2019 (year). It is associated with CVE-2019-9506 (cve), CWE-310
and CWE-327 (cwe), and CAPEC-668 (capec). It has high CVSSv3 risk and medium CVSSv2 risk (risk). We can
defend against KNOB either by mutually authenticating the entropy negotiation protocol or by forbidding low
entropy values for the BLE pairing key (d).

The AD threat data model satisies the seven requirements we set in Section 3.2. It stores information about an
attack and its associated defenses (R1). It can cover relevant threat domains, including security, privacy, hardware,
irmware, product, and lifecycle threats (R2, R3, R4). Furthermore, the AD allows for diferent abstraction levels
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Trident CVE-2016-4655 Trident CVE-2016-4656 Trident CVE-2016-4657 iMessage CVE-2019-8646

Fig. 2. iOS Pegasus RCE chain from 2021. Each chain element is an AD.

BLE

BLE Pairing

BLE Pairing Entropy negotiation BLE Pairing CTKD BLE Pairing Association BLE Pairing Key agreement

knob_ble blur_ble bluemirror_ble nino_ble invcurve_ble

Fig. 3. ADs atack surface tree for BLE Pairing. The tree leafs are the ADs.

(R5), and its simple structure is straightforward to update and reuse (R6). ADs are human and machine-friendly
as they are representable with programmable and human-readable serialization languages, such as YAML [143]
or other serialization languages (R7).

3.4 Flat and Hierarchical ADs

We design ways to manipulate ADs in lat and hierarchical ways to enhance TM (e.g., better threat selection, iden-
tiication, visualization, and report). Speciically, we create functions to produce lat and hierarchical combinations
of ADs from a collection.

Flat (set, maps). By iltering ADs based on relevant AD ield values, we can create AD sets (i.e., unordered lists). A
set allows selecting ADs based on any combination of ields, such as attack surface or technique. Additionally, we
can create ADmaps to link them to known threat taxonomies such as CIA (Conidentiality, Integrity, Availability),
STRIDE, and LINDDUN. Hence, ADs are compatible with existing TM methodologies. For instance, information
from STRIDE or LINDDUN TM exercises can be easily encoded and exploited using ADF. Our mappings support
11 taxonomies and can be extended. See Table 2 in Appendix A for more details.

Hierarchical (chains, trees, wordclouds). We can represent complex threats using hierarchical collections of
ADs. This representation is relevant when modeling exploits involving a chain of attacks exploiting multiple
vulnerabilities. For example, we can model the Pegasus Remote Code Execution (RCE) exploit on iOS from
2021 [55] using a chain of four ADs, where the irst three represent the Trident iOS vulnerabilities CVE-2016-4655,
CVE-2016-4656, and CVE-2016-4657 to get root privileges (see boxed ADs in Figure 2), and the fourth represents
the remote privileged read exploit for iMessage CVE-2019-8646 (see ellipse AD in Figure 2).
We can represent ine-grained and coarse-grained ADs using a tree structure. This visualization is useful

because it allows placing the attack surface (surf ield) as the tree’s root, building the ramiications based on
sub-surfaces. For instance, Figure 3 depicts a tree of ADs related to protocol-level threats in BLE pairing. Each
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Fig. 4. Wordcloud of the atack surfaces covered by our bt.yaml catalog

BLE pairing phase, such as entropy negotiation and CTKD (Cross-Transport Key Derivation), is represented as a
sub-tree, with the ADs being the leaves of the tree.

We can show the coverage of a speciic AD using wordclouds created from ADs. A wordcloud represents a text
string by displaying words in varying sizes, proportional to their frequency within the string. For instance, we
can generate a wordcloud (Figure 4) to examine the attack surface of a Bluetooth AD catalog, considering both
protocol-level and implementation-level aspects. In the generated wordcloud, the size of each word corresponds
to its frequency. Consequently, surface-level words (e.g., BC and BLE) have a larger size than sub-surface words
(e.g., Pairing, Session), and sub-surface words than sub-sub-surface words (e.g., Entropy negotiation, CTKD),
aligning with our expectations.

4 ADF Implementation

We describe the implementation details of the ADF toolkit introduced in Section 3. The toolkit is organized in four

modules: Catalog, Parse, Check, and Analyze (shown in Figure 1). We now describe each toolkit module in detail.
The iles and folders mentioned below are relative to the repository root folder.

4.1 Catalog

The catalog module contains the developed ADs and is located within a dedicated subfolder in our GitHub
repository. To write these ADs, we used YAML, a language that extends JSON and supports various convenient
data types, including integers, strings, lists, dictionaries, and objects. YAML provides features such as auto-
indentation, compliance with backward-compatible versioning, and the ability to include comments. Moreover,
YAML is developer-friendly, supported by all popular programming languages, and has various integrations with
developer tools. For instance, the most popular IDEs provide automated YAML completion, linting, checking, and
formatting. In the following paragraphs, we show selected ADs from the catalogs.

One of the unique features of ADF is its capability to establish security and privacy requirements for a device
lifecycle in addition to the ones for the device itself. The sw_orion AD shown in Listing 3 models a severe and
known process supply chain attack on the Windows SolarWinds Orion Platform. This attack involves a remote
attacker circumventing signature checks to disseminate malicious software updates to a vast number of Windows
PCs, and it can be addressed by properly authenticating software updates with valid certiicates.

Another useful feature of ADF is the possibility to integrate new threats into a catalog efortlessly. Let us assume
that in 2030, we are notiied about a newly disclosed and critical vulnerability afecting the Linux kernel and
want to include it in our catalog. The new threat enables privileged and proximity-based code execution (PPCE),
exploiting a kernel-space stack-based bufer overlow (BoF) in the RFCOMM module of the Linux Bluetooth
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Listing 3. sw_orion AD

sw_orion:

a: SolarWinds Orion codesign auth bypass

d:

Auth software supply chain: [Update and revoke code signing certs]

surf: [Windows , SolarWinds , Orion Platform]

vect: [Software mod , Malware distr]

model: [Remote]

tag: [SChain , SUNBURST , SUPERNOVA]

risk: [cvss3_critical , cvss2_high]

year: 2020

cve: ["10148"]

cwe: ["287" , "288"]

Listing 4. linux_new_bof AD

linux_new_bof:

a: Linux kernel PPCE via stack -based BoF on Bluetooth stack

d:

Memory safe PL: [Rust]

Sanitize memory: [KASAN]

surf: [linux , net , bluetooth , rfcomm]

vect: [Stack BoF]

model: [Proximity]

tag: [BT, Impl , Linux414]

risk: [cvss3_critical]

year: 2030

cve: ["0007"]

stack. It was scored as critical with CVSSv3 and assigned CVE-2030-0007. How can we add this threat to our AD
catalog?
Listing 4 shows how we model the new threats with an AD called linux_new_bof. We describe a short and

self-contained attack in a. In d, we list two defenses: (i) we recommend employing a memory-safe programming
language (a policy) and we select Rust [31] (a concrete mechanism) because Linux supports it; (ii) we suggest
sanitizing kernel-space memory (policy) with the Kernel Address Sanitizer (KASAN) [27], a dynamic memory
testing tool for the Linux kernel, aiming to ind out-of-bounds and use-after-free bugs.

We set surf to a list of strings progressively narrowing down the attack surface: from Linux to its Bluetooth
RFCOMM (Radio frequency communication) subsystem. The vect is a stack-based BoF to achieve privileged
code execution in kernel space from user space. The model is proximity-based as the adversary needs to be in
Bluetooth range. We tag the AD with BT (Bluetooth), Impl (implementation-level law), and Linux414 (afected
Linux version). The remaining AD ields are self-explanatory.

A catalog can also include coarse-grained ADs, which can represent threats’ classes (e.g., an attack technique)
in a single object. In Listing 5, we show how to implement a coarse-grained AD, named linux_bof, to represent
a generic BoF attack on the Linux kernel. The a ield states a high-level attack description, d lists the defense
mechanisms that we combine to protect the Linux kernel stack and the heap against BoFs. Here, other than
recommending using Rust and KASAN, we add other defenses such as the Kernel Memory Sanitizer (KMSAN) [28]
to ind uninitialized values, musl [88, 89] to reduce libc’s attack surface and use a hardened memory allocator,
Kernel Address Space Layout Randomization (KASLR) which requires a Position Independent Executable (PIE)
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Listing 5. linux_bof AD

linux_bof:

a: Stack or heap based BoF on Linux

d:

Memory safe PL: [Rust]

Sanitize memory: [KASAN]

Hardened memory allocator: [musl]

Randomized memory layout: [KASLR]

Non executable stack: [NX]

surf: [Linux]

vect: [Stack BoF , Heap BoF]

model: [Proximity , Remote]

tag: [Impl]

kernel built, and CPU NX bit to avoid executing code on the stack. Since it is a coarse-grained and thus a generic
AD, the defenses are not ordered by efectiveness. For the same reason, optional ields, such as risk, year, and
cve are not considered as an attack class applies to multiple threats and not a speciic one. The AD attack surface
is Linux. The vectors are stack or heap-based BoFs. The attacker model is proximity or remote, and the tag is
Impl.

4.2 Parse

The parse module, implemented in the parse.py ile, contains the functions to parse ADs from YAML, TOML,
JSON, and XML iles into Python dictionaries. For instance, the YAML AD presented in Listing 1 converts into
the AD dictionary in Listing 6. The module can be easily extended to handle other ile formats, such as XLS and
CSV. However, we recommend using YAML, JSON, or TOML due to their enhanced writability and readability.
We implemented the parser as a high-level function that invokes specialized parsing functions based on the

ile extension speciied in the path argument. These functions generate a dictionary representation of the ADs.
For instance, the _parse_yaml function receives a YAML ile containing ADs (as illustrated in Listing 1), parses
the ile using PyYAML [30] with CSafeLoader, which is a secure and eicient parser from LibYAML [26]. The
output is a dictionary with nested sub-dictionaries, as demonstrated in Listing 6. Similarly, we implemented other
specialized parsing functions to handle TOML, JSON, and XML iles.

To ensure the correctness of the parsers, we implemented a series of tests using the pytest library. The testing
code, contained in parse_test.py, veriies the lawless operation of all specialized parsers and conirms that
they produce the same Python dictionary representation (AD_PARSE_TEST from ad.py) when parsing identical
sets of ADs. The testing iles are in the template folder. The tests can be executed with the command make

test-parse.

4.3 Check

The check module, implemented in check.py, automatically validates the syntax and semantics of the ADs.
It uses syntax-based checkers on the ile containing the ADs, and semantic-based ones on the parsed Python
dictionary. The module is designed with a top-level function (check(path; Path, words=None) -> dict) that
calls the relevant syntax and semantics checkers based on the path ile extension. The parse module presented in
Section 4.2 performs the parsing.
The validation is performed in two main steps: (1) syntax checking using yamllint [144] with its default

coniguration to avoid duplicate ad_names and wrong indentations, and (2) semantic checking using a custom
function that enforces a particular schema with speciic types and allowed values on the parsed dictionary.
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Listing 6. Python dictionary parsed from the YAML AD in Listing 1

ad_name = {

# Primary fields

"a": "Attack␣1",

"d": {"policy1": ["mech1", "mech2"], "policy2": ["mech1", "mech2"]},

"surf": ["surf", "subsurf", "subsubsurf"],

"vect": ["vector1", "vector2"],

"model": ["model1", "model2"],

"tag": ["tag1", "tag2"],

# Optional fields

"risk": ["score1", "score2"],

"year": 2023,

"cve": ["123", "456"],

"cwe": ["123", "456"],

"capec": ["123", "456"],

"vref": ["vendor -ref1"],

...

}

Listing 7. AD dict schema excerpt

Regex(r"^[a-z0 -9_]*$"): {

# Primary fields

"a": And(str , lambda a: len(a) > 0),

"d": And(Schema ({str: [str]})),

"surf": And(Schema ([str]),

lambda surf: (len(surf) > 0) and

len(set(surf) - set(words["surf"])) == 0,

),

...

# Optional fields

Optional("year"): And(int ,

lambda year: (1980 <= year <= 2030) or year == 0),

...

}

Listing 7 shows an excerpt of our AD dict schema implemented using the schema [62] Python package. ad_name
is a lowercase alphanumeric regex, a is a non-empty string, d is a dictionary of dictionaries where the top level
keys are strings (policy), and the bottom values are lists of strings ([mech1, mech2]). surf is a list of strings
with speciic values that we enforce with a lambda checking that the strings are inside the words["surf"]

list. Using a wordlist is useful to keep ADs consistent, especially when diferent teams work on the same ADs.
Moreover, it helps to track what is covered (e.g., the surf wordlist contains all the surfaces covered by our ADs).
Finally, year is an int between a sensible range.
We can automatically test the module with check_test.py. This script runs the check function on the

YAML, TOML, JSON, and XML template AD iles in the template folder. The command to run the tests is make
test-check.

ACM Trans. Embedd. Comput. Syst.



14 • T. Saccheti et al.

4.4 Analyze

The analyze module, implemented in analyze.py, provides various automation to process a (checked) dictionary
of ADs. Internally, it uses pandas [29], matplotlib [37], and graphviz [24, 25] to produce its outputs. These are free
and powerful open-source libraries. Currently, Analyze can generate sets, maps, trees, wordclouds, and chains of
ADs to perform lat and hierarchical analyses, and now we describe how.

Analyze’s entry point is get_dataframe, a function loading ADs from a ile and returning an AD DataFrame,
a table-like data structure. Each row of the DataFrame contains an AD, with the index corresponding to the
ad_name, and the columns containing the AD ields such as a, d, and surf.

The function get_set generates collections of ADs using key-value ilters. It allows the creation of sets based
on attributes such as surf, model, and tag, which can be used to identify ADs of interest based on high-level
requirements, such as retrieving all ADs related to a speciic technology or attack technique. The get_set

function is also used internally to perform other set-based analyses.
The get_map function returns sets of AD based on known security and privacy taxonomies. Table 2 lists the

11 taxonomies that we currently support, including those related to security (e.g., STRIDE, CIA), privacy (e.g.,
LINDDUN, UIT, and PMD), web (e.g., OTT17, OTT21), software and hardware Weaknesses (e.g., CWETH21,
CWETS22, and CWETS23). For example, given an AD ile properly tagged with STRIDE categories, we can
automatically extract six tables of ADs, one for each category, by iltering them using the AD tag column (ield).
We note that adding a new taxonomy is straightforward, i.e., extending the taxonomies dictionary.

The module can also generate trees of ADs based on the surf and tag ields. For example, Figure 3 shows a
tree of protocol level (tag = Protocol) ADs related to BLE (surf = [BLE, ...]). As Section 3.3 explains, surf
is an ordered list of strings narrowing down the attack surface. The get_surf_tree uses this ordering to build a
tree automatically. In particular, it roots the tree to surf and creates branches for sub-surf and sub-sub-surf. Then,
each AD appears as a leaf according to its surf list.
The get_wordcloud function outputs AD wordclouds based on a ield using Python’s wordcloud [36] and

matplotlib [37] packages. For example, Figure 4 shows an attack surface wordcloud computed from the bt.yaml
ile discussed in Section 4.1. Internally, the function takes an AD dataframe and a column key, collects all the
column values in a list, and then uses a Counter data structure from the collections library to count the
occurrences of each value. This approach is better than counting each string as a word, as some words in the
cloud contain multiple strings (e.g., “Feature exchangež counts as a single word in the cloud).
The get_chains function generates a chain of ADs, given an AD dataframe and a target AD using graphviz.

For instance, Figure 2 shows the iOS Pegasus RCE from 2021 represented as a chain of four ADs. Internally, the
function creates a Digraph with strict=False to avoid double edges and rankdir = LR to draw from left to
right. Then, it selects from the dataframe the ADs with the same attack surface and sub-surface of the target AD
via the surf column. Next, it tries to build a chain by attack vector looking at the vect column. In particular, if
an AD vect ield is a subset of another, it means that the two are chainable.

5 ADF Evaluation

We evaluated the ADF with a case study where we involved seven groups of IoT security and privacy experts, and
we asked them to develop dedicated AD object catalogs and use them to TM a crypto wallet and its lifecycle. Our
evaluation shows that the ADF covers the seven requirements presented in Section 3.2 in a real-world use case.
Next, we present our evaluation setup, results summary, and details.

5.1 Setup

Figure 5 shows a simpliied block diagram of our target crypto wallet. At its core is a Secure Element (SE) linked to
a general-purpose microcontroller (MCU) through a secure bus. The SE runs a real-time operating system (RTOS)
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and performs all the security and privacy-sensitive operations, such as generating and storing cryptographic
keys and signing and verifying transactions. The MCU, which is separate from the SE, employs secure boot via a
boot ROM and operates on a Linux-based OS to provides all the other functionalities. The crypto wallet supports
Bluetooth Low Energy (BLE) for wireless connectivity, USB for wired connections, and Fast IDentity Online
(FIDO) for two-factor and single-factor (i.e., passwordless) authentication [2].

The crypto wallet development process relies on a new seven-phase lifecycle shown in Figure 6 that we call
trusted lifecycle (TLC). In the Threat Modeling and Risk Assessment (TM & RA) phase, we outline the security and
privacy requirements for both the product and process. In the Design phase, we design the hardware, software,
and protocol aspects of our crypto wallet based on functional requirements and the ones set in the TM and RA
phase. The wallet is then concretely realized in the Implementation phase. Successively comes the Evaluation
phase, where we perform extensive hardware and software testing (e.g., fuzzing, side-channel analysis, and fault
injection experiments). The irst four phases are pre-deployment, and each can provide feedback to the others. For
example, fuzzing experiments can ind implementation bugs that we can ix by updating our implementation. The
crypto wallet is deployed during Installation, managed during Maintenance, and disposed of during Retirement.
Maintenance includes secure irmware updates and provides post-deployment feedback that informs the design
and implementation of the next-generation crypto wallet.

Fig. 5. Crypto wallet block diagram (simplified)

Fig. 6. Trusted Life Cycle (TLC) used to develop the crypto wallet. TLC has seven phases connected by solid lines. Doted

lines represent mitigations pre- and post-deployment feedback.
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5.2 Results Summary

Table 1 presents a summary of the results. The columns show, in order, the TM domain, a pointer to the relevant
section, the covered aspects (e.g., hardware, software, process, and product), the number of produced ADs (for a
speciic domain), and their related YAML iles in the toolkit directory. We note that ADs from diferent domains
are independent, while ADs belonging to the same domain may intersect at diferent granularity levels (e.g., a
speciic attack technique may be part of a broader attack class). Overall, we evaluated traditional TM domains,
such as software and protocol security, but also original ones, including the TLC, pre-silicon testing, invasive
physical attacks, and microarchitectural threats.
We conducted ield testing of the ADF from various perspectives, involving users with diverse backgrounds.

This heterogeneous testing allowed us to assess its efectiveness and usability across diferent scenarios. Our
threat modeling activities covered many threats, including speciic vulnerabilities afecting individual software
components and generic attacks and attack techniques applicable to multiple components.

During the evaluation of the ADF, we identiied some limitations, which we successfully addressed by reviewing
the AD object data model. For instance, we enhanced the capabilities of the ADF by introducing the ability to
specify multiple entries in the d ield, enabling the modeling of complementary or alternative defense strategies.

Our evaluation generated high-quality ADs that serve as blueprints and are publicly available.

5.3 ISA/IEC 62443-4-1 SecDev Lifecycle

The ISA/IEC 62443 standard is divided into four tiers, each having multiple work documents. ISA stands for
International Society for Automation, and IEC for International Electrotechnical Commission. The requirements
for the Secure Development Life Cycle are described in the work document ISA/IEC 62443-4-1 (tier 4, part 1), and
are divided into eight practices, i.e., categories for grouping requirements:

(1) Security management
(2) Speciication of security requirements
(3) Secure by design
(4) Secure implementation
(5) Security veriication and validation testing
(6) Management of security-related issues
(7) Security update management
(8) Security guidelines

Table 1. Evaluation results from our case studies where seven expert groups TM a crypto wallet (Figure 5) and its TLC

(Figure 6). We covered hardware (HW), sotware (SW), firmware (FW), protocols (PT), life cycles (LC), product (PO), security

(SE), and privacy (PR) threats. We developed a total of 175 ADs. The AD YAML files are available at https://anonymous.4open.

science/r/adf-anon-CC3F/ in the yaml folder.

TM domain Sec Coverage ADs Files

ISA/IEC 62443-4-1 SecDev Lifecycle 5.3 LC, SE 40 62443-4-1/*.yaml

Physical Side-Channel and Fault inj. 5.4 PO, HW, SE, FW 20 sc-fi.yaml

Microarch. and Speculative Execution 5.5 PO, HW, SW, SE 14 microa.yaml

Presilicon RISC-V SE Testing 5.6 PO, HW, SW, FW, SE 8 presil.yaml

Invasive Physical IC Attacks 5.7 PO, HW, FW, SE, PR 26 physical.yaml

Bluetooth Protocol and Impl. Attacks 5.8 PO, SW, FW, PT, SE, PR 46 bt.yaml

FIDO2 Authentication Attacks 5.9 PO, HW, SW, FW, PT, SE 21 fido*.yaml
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In total, we developed 40 ADs that map to the requirements described in the eight practices, and our AD iles
are in the 62443-4-1 folder. We named each AD according to the requirement it maps to (e.g., sm-1-development
process). We directed our primary efort toward rewriting the requirements as combinations of threats and
mitigations, so we leveraged the AD primary a and d ields. Additionally, we enriched the description of the
requirements by using the surf, vect, and tag ields.
The lack of threat modeling applied to process requirements means that even consolidated sets of process

requirements (such as the ones coming from the ISA/IEC 62443-4-1 standard) are not mapped to threat models.
Instead, they are ixed in their speciication and not lexible depending on their application context. Some
requirements are derived from a threat model, like the best practices described by Good Practices for Security of
IoT from the European Union Agency for Cybersecurity (ENISA). However, while more justiied, they still lack
the lexibility to evaluate only a subset of the requirements, depending on the context.
With the logical structure of ADs, it is possible, when modeling process requirements, to reveal hidden

hierarchical structures and uncover links and references among individual requirements. In the context of
ISA/IEC 62443-4-1, while the Practice already enables requirements grouping, it is likely to ind requirements
from diferent Practices that reference common themes. Additionally, some requirements may contain directives
that are later more precisely speciied in other requirements. Utilizing the AD data structure enables us to
highlight these connections and relationships among requirements, allowing for a comprehensive understanding
of the requirement set and facilitating better speciication and organization.

As an example, consider the SM-1: Development Process requirement:

A general product development/maintenance/support process shall be documented and enforced that
is consistent and integrated with commonly accepted product development processes that include, but
are not limited to: a) coniguration management with change controls and audit logging; b) product
description and requirements deinition with requirements traceability; c) software or hardware
design and implementation practices, such as modular design; d) repeatable testing veriication and
validation process; e) review and approval of all development process records; and f) life-cycle support

The SM-1 is the irst requirement of ISA/IEC 62443-4-1. It lays the foundation to establish a Secure Development
Life Cycle. However, most of its sub-points are later better speciied by other requirements. For example, the
d directive (i.e., repeatable testing veriication and validation process) is covered by the speciic requirements
of Practice 5, which is dedicated to testing. The AD model allows us to highlight this hierarchical connection.
Listing 8 shows a possible AD object for the SM-1.
We have decided to link other requirements explicitly when appropriate. For instance, we have speciied

"Addressed in @��� − ∗" as our response to point d cited above. We use the notation @ to indicate a reference to
another AD item and the ∗ symbol as a wildcard, so @��� − ∗ translates to “all the ADs starting with the preix
���−ž, which are all ADs mapping to the requirements of Practice 5.

5.3.1 Practical use case: advanced search on process requirements. As a practical evaluation of the AD framework
on the process requirements of ISA/IEC 62443-4-1, we tried to search the knowledge base of ADs based on
real-world needs. The multiple ways of categorizing ADs allow us to perform this kind of operation more precisely
than with the grouping by Practice. For example, if we are searching all the requirements to produce a “threat
modelž, relying on the tags ield allows us to immediately identify the following 17 requirements throughout
ISA/IEC 62443-4-1: sr-1, sr-2, sr-3, sr-4-*, sr-5 dm-1, dm-2, dm-3, dm-4, dm-5, dm-6 sg-1, sg-2, sg-3, sg-4, sg-5, sg-6. We
can observe that although the grouping by Practice maintains a certain degree of cohesion among requirements,
some scattering may still be present when searching for high-level concepts. This extraction proves very helpful
in situations where adopters of a standard such as ISA/IEC 62443 are interested in gathering all requests from the
standard about speciic processes and procedures. Other similar searches in which the AD model has proven
efective have been:
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Listing 8. sm_1_dev-proc AD excerpt

sm_1_dev -proc:

a: Undefined development/maintenance/support processes

d:

Implement config mgmt with change control and audit logging: [" Redmine "]

Require product desc and reqs def with req traceability:: [" Redmine "]

Define design practices: [Addressed in @sd -4-secure -design -best -practices]

Define implementation practices: [Addressed in @si -2-secure -coding -standards]

Implement repeatable testing and validation processes: [Addressed in @svv -*]

Enforce review and approval of all development process records: [Addressed in @sm -12-

process -verification]

Implement life-cycle support: ["..."]

surf: [Processes]

vect: [Unclear definition]

tag: [Processes , Requirements , Design , Implementation , Testing , Review , Vulnerability

management , Maintenance]

• identifying all requirements about the management of cryptographic secrets within two diferent standards
• search for all process requirements mitigating the presence of a malicious insider

5.4 Physical Side-Channel and Fault-Injection Atacks

A crypto wallet secure element could be susceptible to physical side-channel [65] and fault-injection [13] attacks.
Side channel attacks use side information, such as timing or power measurements, to break security mechanisms,
while fault injection attacks inject software or hardware faults to achieve the same goal.

A crucial aspect to consider when analyzing these attacks is the threats’ abstraction level. For example, a
possible implementation of elliptic curve cryptography (ECC) scalar multiplication is the double-and-add method.
In this implementation, the sequence of operations depends on the key bits, making it vulnerable to Simple Power

Analysis (SPA) [65] attacks.
We can look at SPA from diferent levels of abstraction: SPA attacks on non-constant time/low implementations,

SPA attacks on ECC scalar multiplication, and SPA attacks on ECC scalar multiplication with the double-and-add
implementation. A broader description allows us to describe more generalized attacks, covering a broader attack
surface but making it more diicult to deine speciic countermeasures. Conversely, a detailed description allows
for more ine-grained defense descriptions but requires more ADs. For example, with a generic AD about SPA
attacks on non-constant time/low implementations, we could cover both ECC and RSA (e.g., square-and-multiply
algorithm), but it would provide less relevant countermeasures.
A higher abstraction level is favorable for certain classes of threats. For instance, we can apply Diferential

Power Analysis (DPA) [65] to constant-time/low implementations of various cryptographic primitives (e.g., ECC,
AES, Kyber, . . . ). The most popular countermeasure to counter DPA is data randomization, which is agnostic to
the speciic cipher, allowing for a high abstraction level. For symmetric key primitives, data randomization is
typically achieved through masking [18, 49]. Binding instead is used to randomize public key primitives [22].

Another speciic property of physical side-channel and fault-injection attacks is that it is possible to perform
analogous attacks through diferent attack vectors. For example, we can do side-channel attacks with both
power [65] or EM measurements [46, 106]. Similarly, we can cause an instruction skip using various fault
injection techniques (e.g., voltage fault injection [112], laser fault injection [123], EM fault injection [86], . . . ).
While the outcome is often similar, diferent injection techniques may require unrelated countermeasures.
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Moreover, in practice, some attack vectors may be excluded from the analysis when deemed out-of-scope due to
their associated cost or required sophistication.

5.4.1 Threat modeling using ADF. Suppose our crypto wallet’s SE uses an ECC-based signature scheme to sign
transactions. We now TM a naive implementation of ECC scalar multiplication used for signing. As for the threat
model, we consider a passive physical attacker who wants to extract the signing private key. We created 20 ADs,
contained in the sc-fi.yaml ile.
By iltering ields "surf" on “Cryptographic algorithm implementation→ ECCž and iltering “modelž on

“Physical→ Passivež, we can ind threats speciic to ECC. We ind two ADs speciic to ECC, and both describe
a SPA attack on the double-and-add scalar multiplication method using either the power consumption of
the embedded device or its EM emanations. We observe that both the ADs mention implementing the scalar
multiplication in a constant-time fashion by using the Montgomery ladder as a countermeasure. That would be
the preferred choice since it allows solving two problems simultaneously.
As a second step, we consider ADs one level of abstraction higher by iltering "surf" on “Cryptographic

algorithm implementationž and “modelž on “Physical→ Passivež. Here, we ind 7 ADs. For instance, we ind that
the secret key of our now-constant-time ECC implementation can be extracted using DPA, using both power
consumption and EM emanations (respectively, sca-power-dpa, and sca-em-dpa). The suggested countermea-
sure in both cases is to apply blinding [22]. Additionally, we ind that an implementation with blinding may
be vulnerable to higher-order DPA attacks. However, in this example, we consider higher-order DPA attacks
out-of-scope.
The resulting implementation is a constant-time/low implementation with blinding, resistant to SPA and

irst-order DPA attacks. This methodology can be applied to other cryptographic primitives implemented in
software or hardware, allowing them to be threat-modeled in the context of physical attacks. If active attacks
are in scope, we proceed by iltering ields "surf" on “Cryptographic algorithm implementationž and iltering
“modelž on “Physical→ Activež.

5.5 Microarchitectural and Speculative Execution Atacks

Microarchitectural attacks exploit vulnerabilities in a processor microarchitecture (i.e., the implementation of
an instruction set architecture (ISA)). Meanwhile, speculative execution threats abuse processors capable of
speculatively executing instructions to gain performance, which can lead to information leakage on incorrect
speculations.
While early microarchitectural attacks typically targeted desktop and server environments, small embedded

devices are also vulnerable to microarchitectural attacks. These attacks target either the same microarchitectural
components that are found on high-end devices, or implementation aspects that are speciic to these devices [12,
131]. As a result, developers of embedded applications and devices, such as a crypto wallet, also need to consider
these attacks when threat modeling and apply mitigations accordingly.
To demonstrate the process in our case study, we developed AD objects for an abstract Spectre attack [64]

and speciic sub-variants [14] to allow modeling at diferent abstraction levels. As Spectre attacks use a microar-
chitectural side-channel to transmit secret information, we also developed several AD objects that represent
potential microarchitectural leaks [12, 50, 98, 103, 131, 142, 145]. We have a total of 14 ADs in the microa.yaml
ile. Listing 9 shows an AD representing the Spectre-BTB variant, in which an attacker can leak information from
transient instructions executing due to the mistraining of the branch target bufer (BTB).

5.5.1 Threat modeling using ADF. Considering microarchitectural attacks in a threat modeling exercise is a
challenging exercise. As the name implies, microarchitectural attacks heavily depend on the given CPU’s internal
design and optimization features. In an ideal scenario, the threat modeling of the device is performed by the
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Listing 9. AD object for Spectre-BTB

spectre -btb:

a: Transient execution resulting from mispredicted indirect branches can cause persistent

changes in the microarchitecture , which can be used to intentionally leak secrets from a

victim process using a covert channel.

d:

"preventing speculation altogether" : [ "Inserting fence instructions at every indirect

jump", "Disabling speculation in the hardware" ]

"preventing speculation on secrets" : [ "Implementing a secure speculation scheme in the

hardware , such as ProSpeCT" ]

"removing the covert channel": [ "Cache partitioning", "Disabling hyperthreading", "(more

depending on the microarchitectural side channels)" ]

surf : [ "Shared resource enabling a covert channel between the victim and the attacker", "

Shared branch target buffer (BTB) between the victim and the attacker" ]

vect : [ "Controlling a shared resource leading to the covert channel", "Poisoning the BTB"

]

model : [ "code execution", "remote" ]

tag : [ "transient attack" ]

year : 2018

cve : [ "CVE -2017 -5753" , "CVE -2017 -5715" ]

manufacturer, or the relevant ADs are provided with the device’s datasheet. Threat modeling an existing CPU
as an outsider is a complicated exercise requiring sizeable reverse engineering and attack experimentation
eforts [108], as the hardware features that enable the microarchitectural attacks are often undocumented.

The threat modeling process proceeds as follows. As microarchitectural attacks aim to extract secret information
from a CPU, we narrow down which system elements process secret information directly. In our case, it is the
SE only, meaning that we can exclude the MCU. Then, we can ilter the relevant ADs based on the SE, its
microarchitectural features, and the attacker model, searching for all relevant hardware optimization features.
For example, if the SE features a branch target bufer (BTB), we would search for this in the "surf" ield of ADs
and ind that this microarchitectural optimization can enable the Spectre-BTB variant. Spectre-BTB also requires
a shared covert channel between the victim and the attacker process. However, if the device also features a shared
cache across processes, and we search for this among the ADs, we will ind that this can enable Prime+Probe
cache attacks, which can function as the covert channel for Spectre.

5.6 Presilicon Testing

Pre-silicon veriication mainly targets logic design errors or unauthorized modiications of an integrated circuit.
During this phase, the attack vectors tested are limited compared to a complete System-on-Chip (SoC) with
precisely speciied hardware and software components. For instance, the pre-silicon stage testing omits physical
defenses (e.g., shields and sensors) since they cannot be tested without a silicon die.

Starting from a CV32E40S RISC-V secure core [97], we generated 8 ADs shown in presil.yaml. Successively,
we added more components and speciied a SoC sample featuring RAM, non-volatile memory storing a irmware
image, ROM containing code of a secure bootloader and cryptographic keys, a serial interface, a peripheral bus,
and the CV32E40S secure core. While it remains a generic SoC, it can be the starting point for designing other
SoC. New defensive policies arose from introducing new critical components to the design, and thanks to the
framework’s lexibility, it is possible to specify diferent abstraction levels for them.

The SE stores sensitive data for various applications, including:

(1) Cryptocurrency private keys

ACM Trans. Embedd. Comput. Syst.



AtackDefense Framework (ADF): Enhancing IoT Devices and Lifecycles Threat Modeling • 21

(2) BLE communication keys
(3) Firmware veriication keys
(4) User authentication data
(5) FIDO authentication data

The MCU communicates securely with the SE over a dedicated bus, enabling the execution of the following
functions:

(1) Transaction signing
(2) SE/MCU irmware image veriication and update
(3) BT key generation
(4) BT packet encryption/decryption
(5) User authentication
(6) FIDO challenge-response generation

The bootloader stage is crucial during pre-silicon testing, as it resides in ROM and is not easily updatable. The
MCU and SE boot simultaneously, the MCU’s bootloader initiates the SE to verify the Micro’s irmware image.
In this generic system design, we have identiied attack scenarios applicable during pre-silicon testing, with
measures aimed at prevention. While general countermeasures overlap with those derived from complete threat
modeling, we highlighted speciic attacks mitigated in the pre-silicon testing stage. For example, a irmware
veriication skip attack, described in the provided AD object, bypasses the irmware veriication process by
physically introducing faults. Multiple defensive means can be implemented and tested during pre-silicon testing,
including software-implemented fault tolerance and fault injection emulation. Although the actual silicon is not
available, it is possible to simulate the potential efects of a fault injection on the bootloader execution determine
concrete suitable defenses. Then, before manufacturing the inal product, software techniques for fault tolerance
and control low attestation can be implemented. However, given the common threat of fault attacks, installing
physical defenses on the chip is necessary to ensure the SE bootloader’s control low integrity (fault protection).
Given the ixed hardware components of the SE and MCU, a signiicant challenge is ensuring the security

of chosen cryptographic algorithms and the software components implementing them in the SE and MCU
irmware. Although pre-silicon testing has limitations compared to a fully deined system design, we have
successfully identiied crucial application-agnostic attack vectors. An example of such an attack would be a
sensitive data extraction through a side-channel leakage. Consequently, we listed several countermeasures
that can be preemptively applied during diferent TLC stages, particularly in the Design, Implementation, and
Evaluation stages. These include noise introduction, power balancing, or constant-time implementation, which
can be considered and tested without a physical device.
The level of system abstraction was not problematic, as many pre-silicon testing techniques address a broad

range of attacks. The concrete impact of more speciic designs on threat modeling in the pre-silicon phase primarily
lies in tailoring test cases to cover diferent software features. Most AD objects remain generic, applicable to
any system design with high-security requirements, allowing for their reuse during the modeling of concrete
products where more detailed information about hardware and software is available.

5.7 Invasive Physical IC Atacks

We employed ADF to TM invasive physical Integrated Circuit (IC) attacks on our crypto wallet. An invasive
attack focuses on a speciic IC target, like a ROM or RAM. It uses specialized instruments and techniques such
as lasers, optics, and micro-probing to achieve a goal. Despite being impactful, these attacks are not typically
covered by TM. We built 26 ADs, and we provide them in physical.yaml.

For example, we modeled a focused ion beam (FIB) attack, which was never done before, as in Listings 10. In a
FIB attack, the adversary shoots an ion beam at the IC to achieve diferent goals, including skipping or modifying
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Listing 10. attack_4 AD

attack_4:

a: FIB modification

d:

Modifying or accessing internal signals should be rendered difficult.:

- Packing the signals of interest.

model:

- invasive

surf:

- instruction skip

- instruction modification

- execution flow modification

- counter -measure deactivation

- read internal signals

vect:

- FIB editing

an instruction by physically overwriting some bytes in ROM. We recommend packing signals of interest (i.e.,
chip regions we want to protect) as a defense.

5.7.1 Threat modeling using ADF. The ADF ofers a systematic approach to documenting properties related to
attacks and their mitigations, serving as a valuable resource for design teams, evaluators, and design reviewers. A
comprehensive AD catalog of known attacks and guidelines becomes highly advantageous with physical attacks,
where public information is limited.

Designers can utilize ADs to architect their designs efectively, enabling them to create targeted guidelines for
various aspects of their designs. The ADs might be developed in-house or incorporated from state-of-the-art
catalogs produced by hardware security experts. This facilitates easy access to information for the diferent teams
involved in a project.

In the case of physical attacks, ADs can assist in assessing the required protections based on the elements that
need safeguarding and the types of attackers to be defeated. During threat modeling tasks, the policy and attack
surface are primary indicators for IC designers. Identifying what needs protection is insuicient. Understanding
the attack type and vector is what describes the attacker’s capabilities. With this information, known attacks can
be identiied, and appropriate mitigations can be implemented.
For instance, in ROMs and boot ROMs, preventing access to physical adversaries (e.g., probing and imaging

attacks) is crucial. The AD database contains four entries showcasing diferent attack types and their mitigations.
By extracting information from the policy and attack surface, designers can determine the expertise attackers
should possess. Less capable attackers may attempt to extract binary data using images of physical bits, which
can be mitigated by implementing proper scrambling schemes within the ROM. More advanced attackers may be
capable of reverse engineering the ROM’s scrambling circuit. We can employ encryption to enhance security
against such attackers. Correct encryption implementation will force attackers to use fully invasive techniques,
signiicantly reducing the pool of potential attackers. Other dedicated countermeasures can be implemented if the
application needs protection against highly skilled invasive attackers (e.g., for long IC lifetimes). This example
highlights the need for a comprehensive attacker classiication system that could be incorporated as an additional
tag within the framework. The database’s lexibility in adding tags addresses the evolving nature of security
considerations.
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Listing 11. nino_ble AD

nino_ble:

a: MitM on BLE SSP

d: Out -of-band pairing: [Use NFC as OOB channel]

surf: [BLE , Pairing , Association]

vect: [No IO downgrade]

model: [Proximity , MitM]

tag: [Protocol , SMP , LESC]

The database also describes attack techniques such as FIB modiications, which should ideally be prevented
altogether. These techniques represent attack paths that can lead to various possibilities depending on the target.
In the case of FIB modiication, multiple mitigations are presented.
Furthermore, listing potential attacks and attack vectors based on the attack surface proves valuable. For

instance, instruction corruption corresponds to several unique ADs linking to diferent attack vectors and
mitigations. Suppose semi or fully-invasive attacks are not feasible due to restricted access to the IC. In that case,
the circuit needs protection only against Voltage Fault Injection (VFI), which might require the implementation
of power iltering and glitch detectors.

5.8 Bluetooth Protocol and Implementation Level Atacks

Bluetooth is a wireless communication protocol for low-power devices to establish short-range connections. It
operates in the 2.4 GHz frequency band and is optimized for low-energy consumption applications. It enables
eicient data transfer between devices, balancing transmission range, data rate, and power consumption. It
provides reliable and secure communication while minimizing energy usage. Bluetooth has two lavors: Classic
(BC) and Low Energy (BLE). We focus on BLE as it is supported by real-world crypto wallets (e.g., Ledger Nano
X).

We built 46 Bluetooth ADs covering relevant protocol and implementation level Bluetooth threats [42]. We
present our ADs in bt.yaml. Currently, our ile has 18 ADs speciic to BLE: nine related to the protocol and nine
related implementations. Table 3 in Appendix A, lists our BLE ADs and more information.
Using ADs, we can cover implementation-level and protocol-level threats on BLE, regardless of their level

of abstraction. For example, we can model a MitM attack on BLE Secure Simple Pairing (SSP) like No Input No
Output (NINO), as shown in Listing 11. In the nino_ble AD, we specify the BLE-speciic protocol phases and
security mode involved in the attacks (i.e., association during LESC pairing) and a high-level policy and concrete
mechanism to prevent the attack (i.e., use of out-of-band pairing with Near Field Communication (NFC)). As a
result, a designer might consider adding NFC to the design of the crypto wallet to defend against NINO and other
BLE attacks related to a weak association phase.

Another relevant example is BLUR, shown in Listing 12, which models an attack on Bluetooth’s Cross-Transport
Key Derivation (CTKD). The AD structure allows us to model some of Bluetooth’s speciic aspects, such as
attacking BC from BLE and vice versa or adopting concrete mitigation strategies. For example, we can include
disabling weak key overwriting, tracking the associations with paired devices, and preventing role switching by
tracking asymmetries in the roles.

5.9 FIDO2 Authentication Atacks

FIDO2 [3] is an authentication protocol designed to allow online services to ofer multi-factor and single-factor
authentication. A new and unique cryptographic key pair is created for each service credential in the initial
registration phase. The public key is sent to the service, while the private key remains on the authenticator,
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Listing 12. blur_ble AD

blur_ble:

a: Bluetooth Cross -Transport Key Derivation (BLUR)

d:

Prevent cross-transport key tampering: [Disable key overwrite with weaker keys]

Enforce strong association mechanisms: [Track associations for paired devices and abort on

downgrade request]

Prevent role switching: [Track asymmetries in roles between BT and BLE]

year: 2020

surf: [BLE , Pairing , CTKD]

vect: [Cross -transport pairing , SC downgrade , No IO downgrade]

model: [Proximity , Impersonation , MitM , Unintended session]

tag: [Protocol , SMP , LESC]

cve: ["15802" , "20361"]

cwe: ["287"]

which, in our case, is a hardware token. The application authenticates a user through a cryptographic challenge
to the token via a client API. After the user authenticates by pressing a button on the token, the client device
proves possession of the private key by signing a challenge. Then, it sends it back to the application, which can
verify it using the corresponding stored public key.

The FIDO2 authentication process is depicted in Figure 7. The main actors are the hardware authenticator,
the client, and the online service (i.e., the relying party). In addition, the relying party database contains the
credentials and public keys. As the focus was on the authenticator, we considered the involved entities (i.e., the
client and relying party) as internal processes. Moreover, we did not include the user as its only interaction with
the system is the press of a button. The data lows are numbered following the FIDO2 message order [134] to
capture the time dimension of the protocol.
We built a catalog of 21 ADs for FIDO2 and focused on system and device-level threats. As an extra, we also

covered SoloKeys [33] related threats. The ADs are provided in fido_device.yaml, fido_system.yaml, and
fido_solokey.yaml.

5.9.1 System-level threats. System-level threats are high-level attacks concerning the FIDO2 ecosystem where a
hardware authenticator, a client, and a relying party interact. Such threats come from FIDO security references
and the generalization of speciic attacks. Some mentions of identiied ADs:

(1) A MitM attack between the client and the authenticator, and between the relying party and the client.
Corruption/spooing of the client, or related to the relying party app, on the user device. For certain policies,
we speciied concrete mechanisms implemented by certain authenticators to mitigate these risks, such as a
transaction conirmation message allowing the user to identify the relying party correctly.

(2) Side-channel attack on the authenticator. This high-level AD presents defense policies such as robust
device or secure microcontroller, for which concrete mechanism speciications depend on the speciic
token. We associated this AD with various attack vectors describing the possible types of side-channel
analysis.

(3) Malicious relying party mounts a cryptographic attack on key handles.
(4) Manipulations of the device occur during the supply or distribution chain.

We attempted to link these generic attacks with one or more CWE and CAPEC while maintaining high-level
attack surfaces (authenticator, client, and relying party). For instance, some of the previously listed threats can be
mapped to the STRIDE categories, such as man-in-the-middle attacks and spooing issues.
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Fig. 7. FIDO2 DFD

5.9.2 Device-level threats. Device-level threats refer to actual vulnerabilities discovered in one or more models
of hardware tokens, coming from reported CVEs and other online articles and documentation. The majority
are side-channel or fault-injection attacks to the token device, which exploit vulnerabilities in microcontrollers,
secure elements, and other components, the communication among them, or generic implementation issues
speciic to a model of the token. Other threats concern WebAuthN [134] implementation vulnerabilities and bugs,
which is the communication protocol between the client and the relying party.

5.9.3 SoloKeys threats. Solo is an open-source FIDO2 token. We reported physical threats associated with a CVE
or documented in the SoloKeys online blog [32]. By leveraging the AD structure, we assessed whether some
previously documented threats applied to the token. The policies of the generic side-channel AD can now have a
concrete mechanism. For instance, under “secure microcontrollerž, we speciied the name of the microcontroller
used by SoloKeys and the security measures it implements. Concerning the speciic threats, many of them target
components not present in the token design, and in one case, we found that the token employs a time-insensitive
key derivation function to mitigate timing SC attacks.

6 Related Work

TM Methodologies. Fault trees can be considered the irst TM methodology, where each threat represents a
failure, and failures are hierarchically represented in a tree [132]. ATree were extended, among others, with
attack-defense-trees [66], proiles [69], and case-study driven methodologies [8]. STRIDE was also extended
with STRIDE per element and per interaction [127]. ATree were augmented with formal methods [136]. Another
popular methodology is called PASTA (Process for Attack Simulation and Threat Analysis) that combines threat
identiication, modeling, scoring, remediation, and simulation using a seven-stage approach [130].
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There have been industrial eforts to standardize threat modeling across platforms such as the OTM (Open
Threat Model) format by IriusRisk [58] and MITRE’s ATT&CK, an adversary-centric framework designed to threat
model post-compromise enterprise security, including lateral movement, and privilege escalation [78, 79]. The
framework is constantly growing and includes attack techniques and sub-techniques for enterprise, mobile, and
industrial systems. Recently, the US Cybersecurity and Infrastructure Security Agency (CISA) released Decider, an
open-source web application to help map a threat to ATT&CK [20]. MITRE also published D3FEND [60, 84, 85],
the defensive counterpart of the ATT&CK framework. Best practices related to TM methodologies were also
created, such as OWASP’s threat modeling project [100], and collections of survey and comparison of diferent TM
methodologies [118, 119]. Recently, we have seen attempts to use a large language model (LLM), like Generative
Pre-trained Transformer 4 (GPT-4), and Pathway Language Model (PaLM), to aid threat modeling with moderate
success [91, 122, 128].

Vendor-speciic TM Methodologies. Vendors also tend to implement their own TMmethodologies. Intel proposed
TARA (Threat Agent Risk Assessment) [116], an attack-centric methodology based on seven phases. While
currently unmaintained, TARA is still used, for example, in the automotive sector. Lockheed Martin proposed the
Cyber Kill Chain (CKC) [71] to model cyber intrusion activities, like advanced persistent threats (APTs), also
based on seven phases: reconnaissance, weaponization, delivery, exploitation, installation, command and control,
and actions.

TM automation tools. There are several open-source TM automation tools [125]. These tools allow, among
others, to parse threats from code comments (e.g., Threatspec [35]), build system models and threats catalogs
from code or coniguration languages (e.g., Pytm, hcltm [44], threagile, and Threat Dragon [101]), and speed up
TM using agile best practices, e.g., Rapid Threat Model Prototyping (RTMP) [53]. Moreover, there are commercial
TM tools, such as the ones provided by IriusRisk [57] and Tutamantic [129]. The most popular closed-source but
free TM tool is Microsoft’s Threat Modeling Tool (TMT) [74] that natively supports STRIDE.

Domain-Speciic TM. Prior work also performed domain-speciic threat modeling using (and extending) one
or more TM methodologies. For example, in [61] the authors show how to adapt STRIDE and TARA to threat
model a connected car adhering to the AUTOSAR standard [45]. The NCC Group extended the MS TMT with a
template for automotive TM [90].

Other domain-speciic areas of TM extension are cyber-physical system (CPS) [63], industrial control systems
(ICS) [4], Internet of Things (IoT) [1] and mobile (cellular) networks [107]. Recently, six popular end-to-end
messaging applications were evaluated with STRIDE and LINDDUN along the space and time dimensions [19].

Threat intelligence. Actual incidents are collected using threat intelligence platforms that can help threat
modeling with real-world data. The Malware Information Sharing Platform (MISP) is an open-source threat
intelligence platform born out of an academic efort and now used by the industry [105, 135]. MISP enables, among
others, to store, share, collaborate on cyber security Indicators of Compromise (IoC), malware analysis, and also
to use IoCs to detect and prevent attacks. There are other useful free and open-source projects related to threat
intelligence, such as Open Cyber Threat Intelligence (OpenCTI) [104], Structured Threat Information Expression
(STIX) [56], Threat Report ATT&CK Mapper (TRAM) [43], and TheHive incident response platform [34].

Process security. Process security mostly focuses on the hardware and software supply chains. Researchers
extensively analyzed vulnerable dependencies from package repositories for interpreted programming languages,
e.g., Node package manager (npm), Python Package Index (PyPI), and RubyGems [40] and extracted valuable
security lessons from the software supply chain [41]. Other works developed attack taxonomies for open-source
software via attack trees [68] and uncovered new attack techniques via the software supply chain, such as the
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GitHub fork attack vector [15]. Recently, some works started exploring automated ways to analyze the security
of closed-source software supply chains [9].

7 Conclusion

We presented ADF, a new framework to augment TM with a novel threat data format (AD object) and related
automations (lat and hierarchical representations). ADF satisies seven requirements, the combination of which
is not provided by other TM frameworks (e.g., pytm or threagile). As a result, ADF has comprehensive coverage
(attacks, defenses, security, privacy, hardware, irmware, product, and lifecycle) and is (re)usable by humans and
machines. We implemented the ADF in the ADF toolkit, consisting of four modules: Catalog, Parse, Check, and
Analyze, and described its salient technical details. We ran a large-scale evaluation to conirm ADF’s usefulness
empirically. We involved seven expert groups from academia and industry. We asked them to threat model a crypto
wallet in their area of expertise (e.g., hardware, irmware, software, protocol, security, privacy, and lifecycle).
They generated 175 ADs spanning heterogeneous and valuable threat classes, like invasive IC manipulations,
physical side-channel, fault injection, and secure development lifecycles. The ADF toolkit includes the developed
AD objects, it is open-source and available at https://github.com/francozappa/adf.

We discovered that using ADF ofers a new way of thinking about process requirements, such as the ISA/IEC
62443-4-1. Speciically, it forces us to think of requirements in terms of threats that the requirement mitigates,
thus uncovering the threats themselves. We modeled pre-silicon attacks and defenses on a RISC-V SE for the irst
time. The ADs’ hierarchical structure helped build trees and attack chains, therefore enabling the individuation of
defenses against more sophisticated attacks with multiple stages. We built several ADs covering invasive physical
attacks, which no documented TM library does. We also managed to model physical SC and FI attack techniques
even in cases where no defenses exist, all due to the AD object lexibility.
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A Tables

Table 2. The 11 taxonomies supported by ADF’s get_map

The 11 taxonomies currently supported by ADF’s get_map. UIT refers to a privacy taxonomy from International
Association of Privacy Professionals (IAPP) [51], PMD to a privacy taxonomy from NISTIR 8062 [92], OTT to the
OWASP Top Ten Web Application Security Risks [99], CKC to the Cyber Kill Chain by Lockheed Martin [71],
CWETH21 to the top ten hardware CWE from 2021 [75], and CWETS22 to the top twenty-ive software CWE

from 2022 [76] and 2023 [77]

Taxonomy Keywords

STRIDE Spooing, Tampering, Repudiation, ID, DoS, EoP

CIA Conidentiality, Integrity, Availability

UIT Unlinkability, Intervenability, Transparency

PMD Predictability, Manageability, Dissassociability

LINDDUN Linkability, Identiiability, Non repudiation, Detectability, ID, Unawareness, Non compliance

OTT21 Broken access control, Cryptographic failure, Injection, Insecure design, Security misconiguration,

Vulnerable and outdated component, Identiication and authentication failure, Software and data

integrity failure, Security logging and monitoring failure, Server-side request forgery

OTT17 Injection, Broken authentication, Sensitive data exposure, XML external entities, Broken access

control, Security misconiguration, Cross-site scripting, Insecure deserialization, Using components

with known vulnerabilities, Insuicient logging and monitoring

CKC Reconnaissance, Weaponization, Delivery, Exploitation, Installation, Command and control, Actions

on objectives

CWETH21 1189, 1191, 1231, 1233, 1240, 1244, 1256, 1260, 1272, 1274, 1277, 1300

CWETS22 787, 79, 89, 20, 125, 78, 416, 22, 352, 434, 476, 502, 190, 287, 798, 862, 77, 306, 119, 276, 918, 362, 400,

611, 94

CWETS23 787, 79, 89, 416, 78, 20, 125, 22, 352, 434, 862, 476, 287, 190, 502, 77, 119, 798, 918, 306, 362, 269, 94, 863,

276
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Table 3. List of 18 BLE ADs from our catalog of 46 Bluetooth ADs

ad_name a tag

sco_ble Downgrade attacks on BLE

SCO [146]

Impl

sweyntooth_ble_1 Link Layer Length Over-

low [47]

Impl

sweyntooth_ble_2 Link Layer LLID Deadlock [47] Impl

sweyntooth_ble_3 BLE Crafted packet bufer over-

low [47]

Impl

sweyntooth_ble_4 Key Size Overlow [47] Impl

sweyntooth_ble_5 Zero LTK Installation [47] Impl

blesa_ble BLE reconnection spoof-

ing [139]

Impl

bleedingbit_ble_1 Malformed packet BoF in BLE

beacons parsing [117]

Impl

frankenstein_ble_1 Heap overlow in BLE PDUs

parsing [109]

Impl

knob_ble Key Negotiation of Bluetooth

(KNOB) [5]

Proto

blur_ble BLUR Cross-Transport Key

Derivation attacks [6]

Proto

nino_ble MitM on BLE SSP [54] Proto

bluemirror_ble Relection attack on passkey en-

try [21]

Proto

invcurve_ble Invalid Curve Attack [11] Proto

pairing_meth_conf_bleMethod confusion attack [133] Proto

crackle_ble BLE Key Derivation [110] Proto

injectable PHY packet injection [16] Proto

gatt_fp_ble GATT Fingerprinting and

Tracking [17]

Proto
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