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An alternative definition for digital convexity?

Jacques-Olivier Lachaud1[0000−0003−4236−2133]

LAMA, Université Savoie Mont Blanc, France
jacques-olivier.lachaud@univ-smb.fr

Abstract. This paper proposes full convexity as an alternative defini-
tion of digital convexity, which is valid in arbitrary dimension. It solves
many problems related to its usual definitions, like possible non connect-
edness or non simple connectedness, while encompassing its desirable
features. Fully convex sets are digitally convex, but are connected and
simply connected. They have a morphological characterisation, which
induces a simple convexity test algorithm. Arithmetic planes are fully
convex too. We obtain a natural definition of tangent subsets to a digital
surface, which gives rise to the tangential cover in 2D, and to its exten-
sions in arbitrary dimension. Finally it leads to a simple algorithm for
building a polygonal mesh from a set of digital points.

Keywords: Digital geometry · Digital convexity · Simple connectedness
· Arithmetic planes · Tangential cover · Digital surface reconstruction.

1 Introduction

A subset X ⊂ Zd is generally said to be digitally convex whenever

X = cvxh (X) ∩ Zd, (1)

where cvxh (·) denotes the convex hull (so called H-convexity [Eck01]). In con-
trast with continuous convexity, this definition does not imply digital connected-
ness of X starting from dimension d ≥ 2 (see Figure 1abcd). Therefore, especially
in 2D, many works add a connectedness constraint or propose a definition that
implies it (e.g. [KR82b] or see overviews of [Ron89,Eck01]). As already foreseen in
[KR82a], 2D definitions do not extend well to 3D. Their own 3D digital convexity
definition relies on the triangle chordal property plus connectedness, and induces
a quite burdensome convexity check algorithm. But for d ≥ 3 a connectedness
constraint is not enough to build meaningful digital convex sets. For instance,
when cut by a slice, they may lose connectedness (see Figure 1e). Other convexity
definitions rely on progressive intersections with half-planes [Soi04]. Connected-
ness is preserved in the first steps at the price of a coarse approximation of
convexity, and at the limit this definition is equivalent to H-convexity.

We present here a more consistent definition of digital convexity, which nat-
urally entails connectedness as well as simple connectedness, and that is valid
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in arbitrary dimension. This new definition, called full convexity, encompasses
digital arithmetic planes or digitizations of thick enough convex shapes. We give
a morphological characterisation of full convexity, which shares—but not origi-
nates from—the thickening idea present in [CdFG20] for connecting 2D digital
convex sets. This induces a practical full convexity check algorithm. Finally full
convexity nicely addresses classical digital geometry problems, like a tangential
cover in arbitrary dimension or piecewise affine recontruction of digital shapes.

2 Full convexity

Let Zd be the d-dimensional digital space, d > 0. Let C d be the (cubical) cell
complex induced by the lattice Zd: its 0-cells are the points of Zd, its 1-cells are
the open unit segments joining two 0-cells at distance 1, its 2-cells are the open
unit squares, etc, and its d-cells are the d-dimensional open unit hypercubes with
vertices in Zd. We denote C d

k the set of its k-cells. In the following, a cell will
always designate an element of C d, and the term subcomplex always designates
a subset of C d. A cell σ is a face of another cell τ whenever σ is a subset of the
topological closure τ̄ of τ , and we write σ 4 τ . Given any subcomplex K of C d,
the closure Cl (K) of K is the complex {τ ∈ C d, s.t. ∃σ ∈ K, τ 4 σ} and the
star Star (K) of K is {τ ∈ C d, s.t. ∃σ ∈ K,σ 4 τ}.

In combinatorial topology, a subcomplex K with Star (K) = K is open, while
being closed when Cl (K) = K. The body of a subcomplex K, i.e. the union of its
cells in Rd, is written ‖K‖. Finally, if Y is any subset of the Euclidean space Rd,
we denote by C̄ d

k [Y ] the set of k-cells whose topological closure has a non-empty
intersection with Y , i.e. C̄ d

k [Y ] := {c ∈ C d
k , c̄ ∩ Y 6= ∅}. The complex made

of all k-cells having a non-empty intersection with Y , 0 6 k 6 d is called the
intersection (cubical) complex of Y and denoted by C̄ d[Y ].

Lemma 1 The intersection complex of a set Y is open and its body covers Y .

Proof. If Y is the empty set, C̄ d[Y ] is empty and is open. If Y is not empty,
let σ be any cell of C̄ d[Y ]. Let τ be any cell of C d with σ 4 τ . Thus σ ⊂ τ̄ ⇒
σ̄ ⊂ τ̄ (since topological closure is increasing and idempotent). It follows that
σ ∈ C̄ d[Y ] ⇔ σ̄ ∩ Y 6= ∅ ⇒ τ̄ ∩ Y 6= ∅ ⇔ τ ∈ C̄ d[Y ]. We have just proved that
Star (σ) ⊂ C̄ d[Y ], hence Star

(
C̄ d[Y ]

)
⊂ C̄ d[Y ]. The converse inclusion being

obvious, C̄ d[Y ] is open. The fact that Y ⊂
∥∥C̄ d[Y ]

∥∥ is straightforward. ut

Definition 1 (Full convexity) A non empty subset X ⊂ Zd is digitally k-
convex for 0 6 k 6 d whenever

C̄ d
k [X] = C̄ d

k [cvxh (X)]. (2)

Subset X is fully (digitally) convex if it is digitally k-convex for all k, 0 6 k 6 d.

Equivalently, the intersection complex of a fully convex set Z covers the convex
hull of Z. We can already make the following observation:
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(a) (b) (c) (d)
(e)

Fig. 1. (abcd) Digital triangles that are not fully convex: digital points are depicted as
black disks, missing 1-cells for digital 1-convexity as blue lines, missing 2-cells for digital
2-convexity as green squares. (e) Usual digital convexity (1) plus 3D connectivity does
not imply connectedness on the upper slice; it is also not fully convex.

Lemma 2 Common digital convexity is the digital 0-convexity.

Proof. Remark (1): for any Y ⊂ Rd, we have C̄ d
0 [Y ] = {c ∈ C d

0 , c ∩ Y 6= ∅} =
{c ∈ Zd, c ∩ Y 6= ∅} = Y ∩ Zd. Now, from (1), X ⊂ Zd is digitally convex iff
X = cvxh (X) ∩ Zd, otherwise said X ∩ Zd = cvxh (X) ∩ Zd. With remark (1),
it is equivalent to C̄ d

0 [X] = C̄ d
0 [cvxh (X)], which is exactly (2) for k = 0. ut

Figure 1 shows several digitally 0-convex sets, but which are not full convex.
Clearly full convexity forbids too thin convex sets, which are typically the ones
that are not connected or simply connected in the digital sense. Denoting by
# (X) the cardinal of a finite set X, the straightforward lemma below shows
that is suffices to count intersected cells to check for full convexity.

Lemma 3 A finite non-empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d
iff #

(
C̄ d
k [X]

)
> #

(
C̄ d
k [cvxh (X)]

)
.

For example, the tetrahedra T (l) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, l)}, for
positive integer l, is digitally 0-convex. However cvxh (T (l)) intersects as many
2-cells and 3-cells as wanted above the unit square with vertices (0, 0, 0), (1, 0, 0),
(1, 1, 0), (1, 0, 0), just by increasing l. Meanwhile, T (l) only intersects the same
finite number of 2-cells and 3-cells. Hence, for l > 2, T (l) is not fully convex.

It is not necessary to check digital d-convexity to verify if a digital set is
fully convex, and this property is useful to speed up algorithms to check for full
convexity. You can observe the contraposition of this lemma on Figure 1, left,
where non digitally 2-convex sets in 2D are not digitally 1-convex too.

Lemma 4 If Z ⊂ Zd is digitally k-convex for 0 6 k < d, it is also digitally
d-convex, hence fully convex.

Proof. Let Z be such set, so Z not empty, and let σ ∈ C̄ d
d [cvxh (Z)]. Let B = ∂σ̄

be the topological boundary of σ. By hypothesis, we have σ̄ ∩ cvxh (Z) 6= ∅,
hence (B ∪ σ) ∩ cvxh (Z) 6= ∅.

The surface B separates Rd into two components, one finite equal to σ, the
other infinite. Assume B ∩ cvxh (Z) = ∅. Since cvxh (Z) is arc-connected, then
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cvxh (Z) lies entirely in one component. The relation (B ∪ σ) ∩ cvxh (Z) 6= ∅
then implies cvxh (Z) ⊂ σ. This is impossible since cvxh (Z) ∩ Zd = Z while
σ ∩ Zd = ∅.

It follows that B∩ cvxh (Z) 6= ∅. But B is a union of k-cells (bi)i=0...m of C d,
with 0 6 k < d. There exists at least one k-cell bj with bj ∩ cvxh (Z) 6= ∅. Thus
bj ∈ C̄ d

k [cvxh (Z)]. But Z is digitally k-convex for 0 6 k < d, so bj ∈ C̄ d
k [Z].

To conclude, σ ∈ Star (bj) and C̄ d[Z] is open, so σ belongs also to C̄ d[Z]. We
have just shown that every d-cell of C̄ d[cvxh (Z)] are in C̄ d[Z], so Z is digitally
d-convex and hence fully convex. ut

Other implications of digital k-convexities over digital l-convexities are un-
likely. For instance in 3D, some digital sets are digitally 0-convex, 1-convex,
3-convex but are not 2-convex, like {(0, 0, 0), (1, 1, 2), (1, 1, 3), (1, 2, 3), (2, 1, 3)}.

3 Topological properties of fully convex digital sets

We give below the main topological properties of fully convex digital sets.

Theorem 1 If the digital set Z ⊂ Zd is fully convex, then the body of its inter-
section cubical complex is connected.

Proof. Let x, x′ be two points of
∥∥C̄ d[X]

∥∥. Since C d is a partition of Rd, there
are two cells c, c′ of C̄ d[X] such that x ∈ c, x′ ∈ c′. Since Z is fully convex, then
C̄ d[X] = C̄ d[cvxh (X)]. Hence there exist y ∈ c̄∩cvxh (X) and y′ ∈ c̄∩cvxh (X).
By convexity of cells, the segment [x, y[ lies entirely in c hence in

∥∥C̄ d[X]
∥∥.

Similarly, the segment ]y′, x′] lies entirely in c′ hence in
∥∥C̄ d[X]

∥∥.
Now by definition of convexity, the segment [y, y′] lies in cvxh (X). But

cvxh (X) ⊂
∥∥C̄ d[cvxh (X)]

∥∥ =
∥∥C̄ d[X]

∥∥ by cell convexity. We have just built

an arc from x to x′ which lies entirely in
∥∥C̄ d[X]

∥∥. We conclude since arc-
connectedness implies connectedness. ut

Two elements x, y of Zd are d-adjacent if ‖x−y‖∞ 6 1. The transitive closure
of this relation defines the d-connectedness relation. Historically, it was called
8-connectivity in 2D, and 26-connectivity in 3D.

Theorem 2 If the digital set Z ⊂ Zd is fully convex, then Z is d-connected.

Proof. We show first that 0-cells of C̄ d[Z] are face-connected, i.e. for any points
z, z′ ∈ Z = C̄ d

0 [Z], there is a path of cells (ci)i=0..m of C̄ d[Z], such that c0 = σ,
cm = τ , and for all i ∈ Z, 0 6 i < m, either ci 4 ci+1 or ci+1 4 ci.

The straight segment [z, z′] is included in cvxh (Z), hence any one of its point
belongs to a cell of C̄ d[cvxh (Z)] so a cell of C̄ d[Z] by full convexity.

Let p(t) = (1−t)z+tz′ for 0 6 t 6 1 be a parameterization of segment [z, z′].
The above remark implies that, for any t ∈ [0, 1], the point p(t) belongs to a cell
c(t) of C̄ d[Z]. The sequence of intersected cells from t = 0 to t = 1 is obviously
finite, and we denote it by (c0, c1, . . . , cm) with c0 = p(0) = z and cm = p(1) = z′.
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Since it corresponds to an infinitesimal change of t, two consecutive cells of this
sequence are necessary in the closure of one of them, hence ci 4 ci+1 or ci+1 4 ci.

We use Lemma 5 given just after. We associate to each cell ci one of its Z-
corner, denoted zi. We obtain a sequence of digital points z = z0, z1, . . . , zm = z′.
Now any two incident faces (like ci and ci+1) belong to the closure of a d-cell
σ. It follows that both corner zi and zi+1 are vertices of σ̄, a unit hypercube.
Obviously ‖zi − zi+1‖∞ 6 1 and these two points are d-adjacent. We have just
built a sequence of d-adjacent points in Z, which concludes. ut

Lemma 5 Let Z ⊂ Zd. If σ is a cell of C̄ d[Z], there there exists z ∈ C̄ d
0 [Z] = Z

such that z 4 σ. We call such digital point a Z-corner for σ. If σ is a 0-cell, its
only Z-corner is itself.

Proof. By definition of C̄ d[Z] we have σ̄ ∩ Z 6= ∅. It follows that ∃z ∈ Z such
that z ∈ σ̄. So z 4 σ and also z ∈ Z = C̄ d

0 [Z].

We can show an even stronger result on fully convex sets: they present no
topological holes. Indeed, we have:

Theorem 3 If the digital set Z ⊂ Zd is fully convex, then the body of its inter-
section cubical complex is simply connected.

Proof. Let A := {x(t), t ∈ [0, 1]} be a closed curve in
∥∥C̄ d[X]

∥∥, i.e. x(0) = x(1)

and x(t) ∈
∥∥C̄ d[X]

∥∥. We must show that there is a homotopy from A to a point

a ∈
∥∥C̄ d[X]

∥∥.
The curve x(t) visits cells of C̄ d[X]. Let c(t) be these cells. By finiteness of

A , c(t) defines a finite sequence of cells c0, c1, . . . , cm from t = 0 to t = 1, with
cm = c0. We can also associate a sequence of parameters t0, t1, . . . , tm, such that
x(ti) ∈ ci = c(ti). As in the proof of Theorem 2, two consecutive cells of this
sequence are necessary in the closure of one of them. Let us set di to ci or ci+1

such that both are in d̄i.
The path x([ti, ti+1]) lies in ci ∪ ci+1. For each cell ci we pick one of its

Z-corner zi. Clearly zi and zi+1 belong to d̄i. By convexity of d̄i, it is in par-
ticular simply-connected and there is a homotopy in d̄i between x([ti, ti+1]) and
the segment [zi, zi+1]. Since C̄ d[Z] is open and both points are in

∥∥C̄ d[Z]
∥∥,

[zi, zi+1] ⊂
∥∥C̄ d[Z]

∥∥ as well as the whole homotopy. Gathering all these local
homotopies for every i, 0 6 i < m, we have defined a homotopy between A and
the polyline [zi]i=0...m.

By full convexity, every zi ∈ Z is also in cvxh (Z). It follows that the vertices
of the polyline [zi]i=0...m belong to cvxh (Z). By convexity of cvxh (Z), the whole
polyline is a subset of cvxh (Z). Being a closed curve in a simply connected set,
the polyline [zi]i=0...m is continuously deformable to a point of this set, say z0,
by some homotopy. Composing the two homotopies finishes the argument. ut

Finally we can determine a relation between the numbers of k-cells of the
intersection complex of a fully convex set. For K a subcomplex, let #k(K) be
its number of k-cells. The Euler characteristic of a subcomplex K is χ(K) :=∑d
k=0(−1)k#k(K). Its proof is omitted for space reasons.
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Theorem 4 The Euler characteristic of the intersection cubical complex of a
fully convex set is (−1)d.

4 Morphological properties and recognition algorithm

We provide first a morphological characterization of full convexity that will help
us to design a practical algorithm for checking this property.

Morphological characterisation. Let Id := {1, . . . , d}. The set of subsets of car-
dinal k of Id is denoted by Idk , for 0 < k 6 d. For i ∈ Id, let Si := {tei, t ∈ [0, 1]}
be the unit segments aligned with axis vectors ei. For any point x of Rd, we
write its d coordinates with superscripts: x1, . . . , xd. Let us also denote the
Minkowski sum of two sets A and B by A ⊕ B. We further build axis-aligned
unit squares, cubes, etc, by suming up the unit segments: for any α ∈ Idk ,
Sα :=

⊕
i∈α Si. For instance, in 3D, the three unit segments are S1,S2,S3

(or equiv. S{1},S{2},S{3}), the three unit squares are S{1,2},S{1,3},S{2,3}, the

unit cube is S{1,2,3}. To treat the 0-dimensional case uniformly, we set Id0 = {0}
and S{0} = {~0}.

We can partition the k-cells of C d
k into #

(
Idk
)

subsets such that, for any
α ∈ Idk , each subset denoted by C d

α contains all the k-cells parallel to Sα. For
instance, C d

{1} and C d
{2} partition the set C d

1 in dimension d = 2. Now let us

define the mapping Z : C d → Zd which associates to any cell σ, the digital
vertex of σ̄ with highest coordinates. Its restriction to C d

α is denoted by Zα.

Lemma 6 For any α ∈ Idk , the mapping Zα is a bijection.

Proof. Clearly every digital point of Zd forms the highest vertex of all possible
kind of cells, so Zα is a surjection. Now no two cells of C d

α can have the same
highest vertex, since all cells of C d

α are distinct translations of the same set. ut

The intersection subcomplex of some set Y restricted to cells of C d
α is naturally

denoted by C̄ d
α [Y ]. We relate k-cells intersected by set Y to digital points included

in the set Y dilated in some directions, as illustrated in Figure 2.

Lemma 7 For any Y ⊂ Rd, for any α ∈ Idk , Zα(C̄ d
α [Y ]) = C̄ d

0 [Y ⊕ Sα].

Proof. We proceed by equivalences (the logical “and”, symbol ∧, has more pri-
ority than “if and only if”, symbol ⇔, but less than any other operations):

z ∈ Zα(C̄ d
α [Y ])⇔ σ ∈ C̄ d

α [Y ] ∧ σ = Z−1α (z) (Zα is a bijection, Lemma 6)

⇔ ∃y ∈ Y, y ∈ σ̄ ∧ σ = Z−1α (z)

⇔ ∃y ∈ Y, (∀i ∈ α, zi − 1 6 yi 6 zi ∧ ∀j ∈ Id \ α, zj = yi)

⇔ ∃y ∈ Y, (∀i ∈ α, 0 6 xi 6 1 ∧ ∀j ∈ Id \ α, xj = 0) ∧ x = z − y
⇔ ∃y ∈ Y, x ∈ Sα ∧ z = x+ y ∈ Zd

⇔ z ∈ (Y ⊕ Sα) ∩ Zd.

We conclude since (Y ⊕ Sα) ∩ Zd = C̄ d
0 [Y ⊕ Sα]. ut
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(a) P (b) P ⊕ S{1} (c) P ⊕ S{2} (d) P ⊕ S{1,2}

Fig. 2. Let P = cvxh ({(0, 0), (2, 1), (5, 3)}). (a) C̄ d[P ]. (bcd) We can see that
#

(
C̄ d
{1}[P ]

)
= #

(
C̄ d
0 [P ⊕ S{1}]

)
= 7, #

(
C̄ d
{2}[P ]

)
= #

(
C̄ d
0 [P ⊕ S{2}]

)
= 9, and

#
(
C̄ d
{1,2}[P ]

)
= #

(
C̄ d
0 [P ⊕ S{1,2}]

)
= 14. The bijections Z{1}, Z{2}, Z{1,2} are made

clear in (b), (c), (d) respectively.

We arrive to our morphological characterization of full convexity: full convex-
ity can thus be checked with common algorithms for checking digital convexity.
We denote by x(Z) the set Z translated by some lattice vector x. Let U∅(Z) := Z,
and, for α ⊂ Id and i ∈ α, we define recursively Uα(Z) := Uα\i(Z)∪ei(Uα\i(Z)).
The previous definition is consistent since it does not depend on the order of the
sequence i ∈ α.

Theorem 5 A non empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d iff

∀α ∈ Idk , (X ⊕ Sα) ∩ Zd = (cvxh (X)⊕ Sα) ∩ Zd, (3)

or (X ⊕ Sα) ∩ Zd = (cvxh (X ⊕ Sα)) ∩ Zd, (4)

or Uα(X) = cvxh (Uα(X)) ∩ Zd. (5)

It is thus fully convex if the previous relations holds for all k, 0 6 k 6 d.

Proof. We proceed by equivalence for (3):

C̄ d
k [X] = C̄ d

k [cvxh (X)]

⇔ ∀α ∈ Idk , C̄ d
α [X] = C̄ d

α [cvxh (X)]

⇔ ∀α ∈ Idk ,Zα(C̄ d
α [X]) = Zα(C̄ d

α [cvxh (X)]) (Zα is a bijection)

⇔ ∀α ∈ Idk , C̄ d
0 [X ⊕ Sα] = C̄ d

0 [cvxh (X)⊕ Sα] (Lemma 7)

⇔ ∀α ∈ Idk , (X ⊕ Sα) ∩ Zd = (cvxh (X)⊕ Sα) ∩ Zd.

(4) follows since convex hull operation commutes with Minkowski sum. Using
Lemma 9 on left handside and Lemma 10 on right handside implies (5). ut

Finally we can remark that, if X ⊂ Zd is d-connected, then necessarily all Uα(X)
are by construction d-connected.

Recognition algorithm. Algorithm 1 checks the full convexity of a digital set
Z ⊂ Zd. Due to the bijections Zα, all the processed sets are subsets of Zd.
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Algorithm 1: Given the dimension d of the space and a subset Z of
the digital space Zd, IsFullyConvex returns true iff Z is fully convex.

Function IsConvex( In S: subset of Zd ) : boolean;
begin

1 Polytope P ← ConvexHull(S);
2 return Cardinal(S) = CountLatticePoint(P);

Function IsFullyConvex( In d : integer, In Z: subset of Zd ) : boolean;

Var C : array[0 . . . d-1] of lists of subsets of Id;

Var X : map associating subsets of Id → sets of digital points ;
begin

3 if Cardinal(Z) = 0 or ¬IsDConnected(Z, d) then return false;
C[0]← ({0}) ; X[0]← Z ;

4 if ¬IsConvex(Z) then return false;
5 for k ← 1 to d− 1 do

C[k]← ∅;
foreach β ∈ C[k − 1] do

for j ← 1 to d do
α← Append(β, j) ;

6 if IsStrictlyIncreasing(α) then
C[k]← Append(C[k], α);

7 X[α]← Union(X[β], ej(X[β])) ;
8 if ¬IsConvex(X[α]) then return false;

return true

Theorem 6 Algorithm 1 correctly checks if a digital set Z is fully convex.

Proof. First of all, IsConvex checks the classical digital convexity of any digital
set S by counting lattice points within cvxh (S) (Lemma 3).

Looking now at IsFullyConvex, line 3 checks the d-connectedness of Z and
outputs false if Z is not connected (valid since Lemma 2).

Line 4 checks for digital 0-convexity (i.e. usual digital convexity). The loop
starting at line 5 builds, for each dimension k from 1 to d−1 the possible α ∈ Idk ,
and stores them in C[k]. Line 6 guarantees that each possible subsets of Idk is
used exactly once.

Line 7 builds X[α] = Uα(Z). Indeed, by induction assume X[β] = Uβ(Z).
Then X[α] = X[β] ∪ ej(X[β]) which is exactly the definition of Uα(Z).

Finally line 8 verifies Uα(Z) = cvxh (Uα(Z)) ∩ Zd. Since it does this check
for every α ∈ Idk , it checks digital k-convexity according to Theorem 5, (5). Now
Lemma 4 tells that it is not necessary to check digital d-convexity if all the other
digital k-convexities are satisfied. This establishes the correctness. ut

First, letting n = # (Z), function IsDConnected takes O(n) operations by
depth first algorithm and bounded number of adjacent neighbors. There are less
than d2d calls to IsStrictlyIncreasing, which takes O(d) time complexity.
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However the total number of calls to IsConvex is exactly 2d − 1, and its time
complexity dominates (by far) the previous d22d in practical uses. The overall
complexity T (n) of this algorithm is thus governed by (1) the complexity T1(n)
for computing the convex hull and (2) the complexity T2(n) for counting the
lattice points within. For T1(n), it is: O(n) for d = 2 (since we know S is d-
connected, it can be done in linear time [HKV81] or [BLPR09] for a fast practical
algorithm), O(n log n) in 3D [Cha96] and nbd/2c/bd/2c! in dD [Cha93,BDH96].
For T2(n), it is O(n) in 2D using Pick’s formula, and in general dimension it
is related to Ehrhart’s theory [Ehr62], where best algorithms run in O(nO(d))
[Bar94].

In practice, when the number of facets of the convex hulls is low, counting
lattice points within the hull is done efficiently by visiting all lattice points within
the bounding box, which is not too big since all digital sets are connected.

5 Digital planarity, tangency and linear reconstruction

We sketch here a few nice geometric applications of full convexity.

Thick enough arithmetic planes are fully convex. An arithmetic plane of intercept
µ ∈ Z, positive thickness ω ∈ Z, ω > 0, and irreducible normal vector N ∈ Zd is
defined as the digital set P (µ,N, ω) := {x ∈ Zd, µ 6 x ·N < µ+ ω}.

Theorem 7 Arithmetic planes are digitally 0-convex for arbitrary thickness,
and fully convex for thickness ω > ‖N‖∞.

Proof. Let Q = P (µ,N, ω) be some arithmetic plane. Let Y − := {x ∈ Rd, µ 6
x ·N}, Y + := {x ∈ Rd, x ·N < µ+ω}, and Y = Y −∩Y +. We have Q = Y ∩Zd,
with Y convex, so Q is digitally 0-convex (non emptyness comes from ω > 0).

Now let c be any k-cell of C̄ d[cvxh (Q)], 1 6 k 6 d. Let us show that at
least one vertex of c is in C̄ d[Q]. There exists x ∈ c with x ∈ cvxh (Q) =
cvxh

(
Y ∩ Zd

)
⊂ cvxh (Y ) = Y . It follows that µ 6 x ·N < µ+ ω.

Let (zi)i=1...2k be the vertices of c̄ ordered from lowest to highest scalar
product with N . There exists j ∈ {1, 2k} such that ∀i ∈ {1, j}, zi · N 6 x · N
and ∀i ∈ {j + 1, 2k}, x ·N < zi ·N . Should no zi belong to Y , since x belongs to
Y , we have :

∀i ∈ {1, j}, zi ·N < µ, and ∀i ∈ {j + 1, 2k}, µ+ ω 6 zi.

It follows that (zj+1 − zj) ·N > ω. Now the (zi) are vertices of a hypercube of
side one, and ordered according to their projection along vector N . It is easy
to see that any (zi+1 − zi) · N 6 maxi=1...d(|Ni|) (for instance by constructing
a subsequence moving along axes in order, it achieves the bound, and then the
actual sequence (zi) is much finer than this one), so it holds in particular for
i = j. To sum up, should no zi belongs to Y , then ω < maxi=1...d(|Ni|).

Otherwise, for ω > maxi=1...d(|Ni|), either zj or zj+1 or both belong to Y ,
and thus to Q. It follows that c ∈ C̄ d

k [Q], which concludes. ut
The classic 2D and 3D machinery of digital straight lines and planes, very

rich in results and applications, thus belongs to the fully convex framework.
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Tangent subsets. Tangency as defined below induces strong geometric properties.
In Zd, two cotangent points of a digital surface X delineates a straight segment
that stays “in” the surface, i.e. a tangent vector. A simplex made of d cotangent
points to X lies “in” the surface, so defines a (local) tangent plane.

Definition 2 The digital set A ⊂ X ⊂ Zd is said to be k-tangent to X for
0 6 k 6 d whenever C̄ d

k [cvxh (A)] ⊂ C̄ d
k [X]. It is tangent to X if the relation

holds for all such k. Elements of A are called cotangent.

As always in digital geometry, objects that are too local are not precise
enough. We are thus more interested in “big” tangent subsets: a set A, tangent
to X, that is not included in any other tangent set to X is said maximal in X.
In 2D, they give rise to the classical tangential cover of a contour [FT99]:

Theorem 8 When d = 2, if C is a simple 2-connected digital contour (i.e. 8-
connected in Rosenfeld’s terminology), then the fully convex subsets of C that are
maximal and tangent are the classical maximal naive digital straight segments.

Proof. Let M be a fully convex subset of C, both maximal and tangent. Full
convexity implies that M is 2-connected (Theorem 2). Full convexity implies
H-convexity, and connected convex subsets of simple 2-connected contours are
digital straight segments. Maximality implies that they are inextensible. The
converse is obvious from Theorem 7. ut

Maximal fully convex tangent subsets to X seem a good candidate for a
sound definition of maximal digital plane segments. Our definition avoids the
classical problem of 3D planes that are not tangent to the surface (as noted in
[CL11]) as well as the many heuristics to cope with this issue [SDC04,PDR09].

An elementary linear reconstruction algorithm for digital sets. Let X be a finite
subset of Zd and let Del (X) be its Delaunay complex.

Definition 3 The tangent Delaunay complex DelT (X) to X is the complex
made of the cells τ of Del (X) such that the vertices of τ are tangent to X.

The boundary of tangent Delaunay complexes is a linear reconstruction of voxel
shapes, and is the boundary of the convex hull for fully convex shapes:

Lemma 8 If X fully convex, DelT (X) = Del (X). So ∂ ‖DelT (X)‖ = ∂cvxh (X).

Proof. Let τ ∈ Del (X). Let A ⊂ X be the vertices of cell τ (i.e. τ = cvxh (A)).
For all k, 0 6 k 6 d, C̄ d

k [cvxh (A)] ⊂ C̄ d
k [cvxh (X)] = C̄ d

k [X] (by full convexity).
This shows that A is tangent to X. ut

From Theorem 7, the tangent Delaunay complex of an arithmetic plane is the
boundary of its convex hull, hence its facets have exactly the same normal as
the arithmetic plane. Furthermore, since the tangent Delaunay complex is built
with local geometric considerations, it is able to capture the geometry of local
pieces of planes on digital objects, and nicely reconstructs convex and concave
parts (see Figure 3). It is also a tight and reversible reconstruction of X:
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Input digital shape X Our reconstruction DelT (X) Bad simplices of Del (X)

Fig. 3. The tangent Delaunay complex DelT (X) (middle) is a piecewise linear recon-
struction of the input digital surface X (left). On (right), we display in red simplices
of Del (X) which avoid lattice points of Z3 \ X but are not tangent to X. Tangency
thus eliminates the “sliver” simplices of Del (X) that are not geometrically informa-
tive. (# (X) = 6013, Del (X) has 36361 tetrahedra, DelT (X) has 25745 tetrahedra,
computing Del (X) takes 70ms, computing DelT (X) takes 773ms.)

Theorem 9 The body of DelT (X) is at Hausdorff L∞-distance 1 to X. DelT (X)
is a reversible polyhedrization, i.e. ‖DelT (X)‖ ∩ Zd = X.

Proof. First the distance of any point of X to ‖DelT (X)‖ is zero, since any
point of X is tangent to X and is also a 0-cell of Del (X). Second, any point
y of ‖DelT (X)‖ belongs to a simplex τ ∈ DelT (X). Let A be the vertices of
τ . By tangency, for any k, 0 6 k 6 d, C̄ d

k [τ ] = C̄ d
k [cvxh (A)] ⊂ C̄ d

k [X]. Hence
the point y belongs to some cell σ of C̄ d

k [X] and is at most at L∞-distance
1 of any one of its X-corner. Finally by tangency, ‖DelT (X)‖ ⊂ C̄ d[X], so
‖DelT (X)‖ ∩ Zd ⊂ C̄ d[X] ∩ Zd = X. X ⊂ ‖DelT (X)‖ ∩ Zd is obvious. ut

6 Conclusion and perspectives

We have proposed an original definition for digital convexity in arbitrary dimen-
sion, called full convexity, which possesses topological and geometric properties
that are more akin to continuous convexity. We exhibited an algorithm to check
full convexity, which relies on standard algorithms. We illustrated the potential
of full convexity for addressing classic discrete geometry problems like building
a tangential cover or reconstructing a reversible first-order polygonal surface
approximation. We believe that full convexity opens the path to d-dimensional
digital shape geometry analysis. This work opens many perspectives. On a fun-
damental level, we work on a variant of full convexity that keeps the intersection
property of continuous convexity. We also wish to improve the convexity check
algorithm, especially in 3D, for instance when cvxh (X) has few facets.1 Finally
we wish to explore the properties of a tangential cover made of the maximal
fully convex tangent subsets that are included in some arithmetic plane.

1 See for instance the full convexity implementation in DGtal.

https://dgtal-team.github.io/doc-nightly/moduleDigitalConvexity.html
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A Proofs of some properties

Lemma 9 For any X ⊂ Zd, for any α ⊂ Id, (X ⊕ Sα) ∩ Zd = Uα(X).
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Proof. Let α = {i1, . . . , ik} ⊂ Id, non empty. Note that Sα =
⊕k

j=1 Sj and that
it does not depend on the chosen order. For conciseness, we write Xγ := X⊕Sγ
for any subset γ of Id. Let β = {i1, . . . , ik−1} and let us first show that:

(Xα) ∩ Zd = (Xβ ∩ Zd) ∪ eik(Xβ ∩ Zd). (6)

⊃ (Xβ∩Zd)∪eik(Xβ∩Zd) = (Xβ∪eik(Xβ))∩Zd ⊂ (Xβ⊕Sik)∩Zd = (Xα)∩Zd.
⊂ Let z ∈ Xα ∩Zd. We can write z as z = x+ ti1ei1 + · · ·+ tikeik , with x ∈ X

and every tij ∈ [0, 1]. More precisely, since z ∈ Zd and x ∈ Zd and eij is a unit

vector, every tij ∈ {0, 1}. Clearly z′ = z +
∑k−1
j=1 tijeij belongs to Xβ ∩ Zd. If

tik = 0 then z′ = z and we are done. Otherwise, tik = 1 then z′ = z+ eik , which
belongs to eik(Xβ ∩ Zd).

We prove the lemma by induction on the cardinal of α. For α = ∅, (X⊕S∅)∩
Zd = X = U∅(X). Assume the lemma is true for any β of cardinal k − 1 ≥ 0,
and let us show it for α = β ∪ {i}.

(Xα) ∩ Zd = (Xβ ∩ Zd) ∪ ei(X
β ∩ Zd) (Using (6))

= Uβ(X) ∪ ei(Uβ(X)) (Induction)

= Uα(X) (Definition).

ut

Lemma 10 For any X ⊂ Zd, for any α ⊂ Id, cvxh (X)⊕ Sα = cvxh (Uα(X)).

Proof. We prove it by induction on the cardinal k of α. It holds obviously for
k = 0. Otherwise let α = β ∪ {i} of cardinal k.
⊃ We have Uα(X) = Uβ(X) ∪ ei(Uβ(X)) ⊂ Uβ(X) ⊕ Si. Since convex hull is

increasing, cvxh (Uα(X)) ⊂ cvxh (Uβ(X)⊕ Si) holds. But convex hull commutes
with Minkowski sum, so cvxh (Uβ(X)⊕ Si) = cvxh (Uβ(X))⊕ Si = cvxh (X)⊕
Sβ ⊕ Si by induction hypothesis. We conclude with Sβ ⊕ Si = Sα.
⊂ Let y ∈ cvxh (X)⊕Sα = cvxh (X)⊕Sβ⊕Si = cvxh (Uβ(X))⊕Si. Denoting

by zj , j ∈ B the points of Uβ(X), it follows that y can be written as a convex
linear combination of these points plus a point of Si, i.e. y = (

∑
j∈B µjzj) + tei,∑

j∈B µj = 1, ∀j ∈ B,µj ≥ 0 and t ∈ [0, 1]. All following sums are taken over
j ∈ B. Since

∑
µj = 1, we rewrite y as

y =
(∑

µjzj

)
+ t
(∑

µj

)
ei

=
∑

(1− t)µjzj + tµjzj + tµjei

=
(∑

(1− t)µjzj
)

+
(∑

tµj(zj + ei)
)

∈ cvxh (Uβ(X) ∪ ei(Uβ(X))) ,

which shows that y ∈ cvxh (Uα(X)). ut
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