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Abstract This paper proposes full convexity as an alternative definition of
digital convexity, which is valid in arbitrary dimension. It solves many prob-
lems related to its usual definitions, like possible non connectedness or non
simple connectedness, while encompassing its desirable features. Fully convex
sets are digitally convex, but are also connected and simply connected. They
have a morphological characterisation, which induces a simple convexity test
algorithm. Arithmetic planes are fully convex too. Full convexity implies lo-
cal full convexity, hence it enables local shape analysis, with an unambiguous
definition of convex, concave and planar points. As a kind of relative full con-
vexity, we propose a natural definition of tangent subsets to a digital set. It
gives rise to the tangential cover in 2D, and to consistent extensions in arbi-
trary dimension. Finally we present two applications of tangency: the first one
is a simple algorithm for building a polygonal mesh from a set of digital points,
with reversibility property, the second one is the definition and computation
of shortest paths within digital sets.
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1 Introduction

Classical digital convezity. Classicaly a subset X < Z? is said to be digitally
conver whenever

X = cvxh (X) nZ4, (1)

where cvxh () denotes the convex hull operator (so called H-convexity [21]).
In contrast to continuous convexity, this definition does not imply digital con-
nectedness of X starting from dimension d > 2 (see Figure [Thbcd). Therefore,
especially in 2D, many works add a connectedness constraint or propose a def-
inition that implies it (e.g. [3I] or see overviews of [21l[43]). Another definition
of convexity relies on progressive intersections with half-planes [48]. Connect-
edness is preserved in the first steps at the price of a coarse approximation of
convexity, but at the limit this definition is equivalent to H-convexity, hence
connectedness may also be lost. Note that the connectedness constraint on 2D
H-convex sets allows for linear convexity test algorithms [27]. When the con-
nectedness constraint is not added, the best algorithms are only quasi-linear
[16].

2D digital convezity plus connectedness. Connectedness of digital convex shapes
is not only natural, it is an essential property for shape analysis. Indeed it
allows their local analysis, with a possible tracking of the shape boundary.
Adding connectedness to 2D H-convexity has opened the way to digital con-
tour analysis with digital straightness [31]. They have led to the classical tan-
gential cover of a contour [24], which can be used to decompose a contour
into its convex and concave parts [20,45]. They induce convergent tangent
and length estimators [40] and even curvature estimators [I4l28]. When con-
nected, the fastest algorithms for digital convexity caracterisation use word
combinatorics to analyse the word describing the shape contour [5L[6]. Study-
ing their asymptotic properties give rise to automatic noise detection along real
image contours [29]. Hierarchical shape analysis can also be achieved through
convex-concave decomposition [33]. We finally mention [32] that characterizes
digital convexity and straightness by means of difference operators.

3D digital convezity and planarity. It would thus be great to have a definition
of digital convexity that extends well to (at least) 3D. As already foreseen in
[30], 2D definitions do not extend well to 3D. In the same paper, the authors
propose a 3D digital convexity definition that relies on the triangle chordal
property plus connectedness. Unfortunately, it induces a quite burdensome
convexity check algorithm. But starting from d > 3 a connectedness constraint
is not enough to build meaningful digital convex sets. For instance, when cut
by a slice, digital convex sets may lose connectedness (see Figure ), hence
tracking the boundary of the digital shape may not find the convex/concave
geometry of the object. This has led many people to study instead 3D digital
shapes through digital planarity (e.g. see [3]). The idea is to find digital plane
segments (DPSs) that locally fit the digital shape boundary. Although there
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are numerous methods to check planarity, [71OLI823L26l4T5051], to quote
a few, the main problem is to identify which input points to gather before
recognizing them as planar. In opposition to the 2D case, maximal DPS are
generally not tangent, so the many existing methods rely on heuristics to deter-
mine a candidate set of points for DPS recognition: greedy decomposition [4]
1313447, repetitive identification of largest DPS [12] or approximately largest
[42], expansion from maximal planar disks [I0]. More recently, plane-probing
algorithms have emerged as a new method to analyse the local planarity of
digital shapes [36L[37.[38.[39.[44]. They perform well on planes, but they still rely
on a sound connectedness on the boundary to analyse general digital shapes.
Last, it was shown that optimal decomposition of a shape into planar subsets
is NP-hard [46], hence DPS decomposition might not be such a great idea for
3D shape analysis.

Contributions. We present here a more consistent definition of digital con-
vexity, which naturally entails connectedness as well as simple connectedness,
and that is valid in arbitrary dimension (Section [2] and Section . This new
definition, called full convexity, encompasses digital arithmetic planes or dig-
itizations of thick enough convex shapes, and has a certain stability under
intersections. In Section |4 we give a morphological characterisation of full
convexity, which shares—but does not originate from—the thickening idea
present in [I7] for connecting 2D digital convex sets. This induces a practical
full convexity check algorithm. Finally full convexity nicely addresses classical
digital geometry problems (Section [f] and Section [6): it encompasses digital
planarity, allows for unambiguous local caracterisation of convexity and con-
cavity, defines a natural tangential cover in arbitrary dimension, induces a
piecewise affine reversible and tight polyhedrization of digital shapes, as well
as shortest paths into digital sets.

Extensions. This article is an extended version of [35], with the following
differences and addenda. First we introduce stable sets, whose intersection
with fully convex sets induces fully convex subsets. In particular it induces
that axis-aligned slices of full convex sets are full convex, and that global
full convexity implies local full convexity. We have added the proof of the
theorem giving the Euler characteristic of the intersected complex of a fully
convex set. We have provided two additional applications of full convexity,
one related to local shape analysis, which allows a classification of points into
convex/concave/planar /other classes, the other related to shortest paths and
shortest paths computation, with a proof of algorithm correctness.

2 Full convexity
Cubical complex; intersection complex. Let Z% be the d-dimensional digital

space, d > 0. Let € be the (cubical) cell compler induced by the lattice Z:
its O-cells are the points of Z?, its 1-cells are the open unit segments joining
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two O-cells at distance 1, its 2-cells are the open unit squares, etc, and its
d-cells are the d-dimensional open unit hypercubes with vertices in Z%. We
denote Cgkd the set of its k-cells. In the following, a cell will always designate
an element of €%, and the term subcomplex always designates a subset of €¢.
A cell o is a face of another cell 7 whenever ¢ is a subset of the topological
closure 7 of 7, and we write o < 7. Given any subcomplex K of €%, the closure
Cl(K) of K is the complex {r € €4, s.t. 30 € K, 7 < 0} and the star Star (K)
of Kis {re®¢? st.dJoe K,0 <1}

In combinatorial topology, a subcomplex K with Star (K) = K is open,
while being closed when Cl1(K) = K. The body of a subcomplex K, i.e. the
union of its cells in RY, is written |K|. Finally, if Y is any subset of the
Euclidean space R¢, we denote by ‘f_,f[Y] the set of k-cells whose topological
closure has a non-empty intersection with Y, i.e. €2[Y]:= {ce €¢,enY #
&}. The complex made of all k-cells having a non-empty intersection with Y,

0 < k < d is called the intersection (cubical) complexr of Y and denoted by
¢IY].

Lemma 1 The intersection complezx of a set’Y is open and its body coversY .
Proof If Y is the empty set, €Y] is empty and is open. If Y is not empty,
let o be any cell of €4[Y]. Let 7 be any cell of ¢ with ¢ < 7. Thus 0 € 7 =
o < T (since topological closure is increasing and idempotent). It follows that
ceblY]esnY #P=>7nY # < 7eFY]. We have just proved
that Star (o) = €[], hence Star (¢¢[Y]) < €“[Y]. The converse inclusion
being obvious, €¢[Y] is open. The fact that Y < |¢?[Y]| is straightforward.
O

The following remark is quite straightforward and tells that the 0-cells of
the intersection complex of some set are exactly its digital points.

Remark 1 For any Y < R?, we have

CY ] ={ceClcnY # Py ={cellcnY #F} =Y nZs (2)

Full convexity. We define now our new notion of digital convexity:

Definition 1 (Full convexity) An arbitrary subset X < Z¢ is digitally k-
convex for 0 < k < d whenever

Ci[X] = € [evxh (X)). 3)
Set X is fully (digitally) convex if it is digitally k-convex for all k,0 < k < d.

Equivalently, the intersection complex of a fully convex set Z covers the convex
hull of Z. We can already make the following observation:

Lemma 2 Common digital convezity is the digital 0-convezity.

Proof From , X c 7% is digitally convex iff X = cvxh (X) n Z?, otherwise
said X nZ? = cvxh (X) n Z%. Applying (Remark [1]) on both sides for sets
X and cvxh (X) respectively, it is equivalent to €¢[X]| = €¢[cvxh (X)], which
is exactly (3) for k = 0. O



An alternative definition for digital convexity 5

(e)
(a) (b) (c) (d)

Fig. 1 (abcd) Digital triangles that are not fully convex: digital points are depicted as
black disks, missing 1-cells for digital 1-convexity as blue lines, missing 2-cells for digital
2-convexity as green squares. (e) Usual digital convexity plus 3D connectivity does not
imply connectedness on the upper slice; it is also not fully convex.

Figure [I] shows several digitally 0-convex sets, but which are not fully
convex. Clearly full convexity forbids too thin convex sets, which are typically
the ones that are not connected or not simply connected in the digital sense.

FElementary properties. Denoting by # (X) the cardinal of a finite set X, the
straightforward lemma below shows that is suffices to count intersected cells
to check for full convexity.

Lemma 3 A finite subset X < 74 is digitally k-convex for 0 < k < d iff
# (G1X]) = # (¢ [evxh (X)]).

For example, the digital tetrahedra T'(1) = {(0,0,0), (1,0,0), (0,1,0),(1,1,1)},
for positive integer I, is digitally 0-convex. However cvxh (T'(1)) intersects as
many 2-cells and 3-cells as wanted above the unit square with vertices (0, 0, 0),
(1,0,0), (1,1,0), (1,0,0), just by increasing I. Meanwhile, T'(I) only intersects
the same finite number of 2-cells and 3-cells. Hence, for | > 2, T'(1) is not fully
convex.

It is not necessary to check digital d-convexity to verify if a digital set is
fully convex, and this property is useful to speed up algorithms to check for
full convexity. You can observe the contraposition of this lemma in Figure [I]
left, where non digitally 2-convex sets in 2D are not digitally 1-convex too.

Lemma 4 If Z c 7Z¢ is digitally k-convex for 0 < k < d, it is also digitally
d-convex, hence fully convex.

Proof Let Z be such set. The conclusion of the lemma is true if Z is empty.
Otherwise let o € €¢[cvxh (Z)]. Let B = 05 be the topological boundary of
o. By hypothesis, we have & n cvxh (Z) # &, hence (B u o) ncvxh (Z) # &.

The surface B separates R? into two components, one finite equal to o, the
other infinite. Assume Bncvxh (Z) = . Since cvxh (Z) is arc-connected, then
cvxh (Z) lies entirely in one component. The relation (B u o) ncvxh (Z) # &
then implies cvxh (Z) < o. This is impossible since cvxh (Z) n Z? = Z while
onZ= .

Tt follows that B ncvxh (Z) # . But B is a union of k-cells (b;);=o...;m of
%4, with 0 < k < d. There exists at least one k-cell b; with b; N cvxh (Z) #
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. Thus b; € €¢[cvxh (Z)]. But Z is digitally k-convex for 0 < k < d, so
b; € €2[Z]. To conclude, o € Star (b;) and €¢[Z] is open, so o belongs also to
¢4 Z]. We have just shown that every d-cell of €¢[cvxh (Z)] are in €¢[Z], so
Z is digitally d-convex and hence fully convex. (Il

Other implications of digital k-convexities over digital [-convexities are un-
likely. For instance in 3D, some digital sets are digitally 0-convex, 1-convex, 3-
convex but are not 2-convex, like {(0,0,0), (1,1,2), (1,1, 3), (1,2,3), (2,1, 3)}.

Digital connectedness. We will need the definition of (digital) connectedness
in the next section. Two elements x,y of Z¢ are k-adjacent if |z — vy, < 1 and
|z —yll1 < k. The transitive closure of this relation defines the k-connectedness
relation. Historically, d-connectedness was called 8-connectivity in 2D, and 26-
connectivity in 3D, and 1-connectedness was called 4-connectivity in 2D, and
6-connectivity in 3D.

Stability by intersection. Unfortunately, we do not have in general the sta-
bility of full convexity by intersection. As elementary example, pick Z; :=
{(0,0),(1,0),(2,1)} and Z3 := {(0,0),(1,1),(2,1)}, which are both fully con-
vex. Their intersection Z; n Zy is reduced to the two points {(0,0),(2,1)},
which is not a d-connected set. By Theorem [2| below, this set is not fully con-
vex. However, we do have a stability by intersection with the following subsets
of R%:

Definition 2 (Stable set) A subset Y of R? is called stable whenever Y is
convex and, for any cellc of €, Y nc# F=¢ecCY.

Lemma 5 If X < Z% is fully conver and Y < R? is stable, then X nY is
fully convez.

Proof Following Definition |1| and , we have to show, for all £,0 < k < d,
Ellevxh (X nY)] = 62[X nY]. Picking such a k, it is enough to show the
inclusion in the above relation, since the reciprocal inclusion is obvious (the
intersection complex is increasing).

Let ¢ € G2[cvxh (X nY)]. Since convex hull is increasing, we have ¢ €
%2cvxh (X) nevxh (Y)]. Since Y is stable hence convex, it holds immediately
that ¢ € €¢[cvxh (X)NY]. So cvxh (X)nY né # . There is thus at least one
cell e included in & (which may be c itself) such that cvxh (X) nY ne # &.

Full convexity of X implies ¢ [cvxh (X)] = €¢[X]. Since e € € [cvxh (X)],
so there exists a point z € X, such that z belongs to €. Besides, set Y being
stable, Y ne # ¢ implies € Y. In particular, we have z € Y.

Since z € X nY, any cell of €% that has z in its boundary belongs to
%X ~Y]. This is the case of e but also of ¢, since z € & = ¢. We have just
shown c € €[X nY]. O

Half-spaces with axis aligned normals are stable in this sense:

Lemma 6 Any half-space of integer intercept and axis normal vector is stable.
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Proof Without losing generality, choose axis normal vector e;. Let H := {z €
R? 2 - e; < a}. Being a half-space, the set H is convex.

Now if c € €% and H n ¢ # J. It means that 3z € ¢,z - ; < a. Letting z*
be the i-th coordinate of z. We have =’ < a.

Let y € &. If ¢ is closed along i-th coordinate, then y* = 2 and thus y € H
also. If ¢ is open along i-th coordinate, then ' is a non-integer number. It
follows obviously that [z!] < a. But |2/] < y* < [2f], which implies also
y* < a. Hence ye H,ie. cc H. O

It is obvious that the intersection of two stable sets is also stable. As a
consequence, we get several corollaries. Since a slice is the intersection of two
half-spaces, we get:

Corollary 1 Any azis-aligned slice of a fully convex set is fully convez.

In fact it is fully convex both in the d-dimensional space, and in the d — 1-
dimensional space spanning the slice. Looking at Figure[Ik, this corollary shows
that the displayed 3D digital set cannot be fully convex, since its upper slice
is not fully convex (we will show in Theorem [2[ that full convexity implies
connectedness). Full convexity thus efficiently discards such digitally convex
sets.

Besides, for any digital point z, we can define naturally its d-dimensional
cubical k-neighborhood, k € Z, k > 1, as the set

Nie(z) i={reR¥ st.VieZ1<i<d 2 —k<y <z'+k}.

Now any such neighborhood is obviously the intersection of 2D axis-aligned
half-spaces with integer intercept, hence they form stable sets.

Corollary 2 If X is fully convez, then for any z € Z%, X n Ny(2) is fully

COMVET.

This shows that the global property of full convexity implies local full con-
vexity everywhere. We will use this result in Section [5|in order to characterize
locally the geometry of digital objects.

3 Topological properties of fully convex digital sets

We give below the main topological properties of fully convex digital sets.

Theorem 1 If the digital set Z < 7% is fully convex, then the body of its
intersection cubical complex is connected.

Proof Let x, 2’ be two points of |£€[Z] H Since €% is a partition of R, there
are two cells ¢, ¢’ of €[ Z] such that z € ¢, 2’ € ¢'. Since Z is fully convex, then
€U Z] = €%[cvxh (Z)]. Hence there exist y € éncvxh (Z) and 3/ € éncvxh (Z).
By convexity of cells, the segment [z, y[ lies entirely in ¢ hence in |€[Z]].
Similarly, the segment ]y’, 2] lies entirely in ¢’ hence in |[€[Z]|.
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NOW by definition of convexity, the segment [y,y’] lies in cvxh (Z). But

cvxh (Z) < |€cvxh (Z)]| = |€9[Z]| by cell convexity. We have just built
an arc from x to o’ wh1ch lies entirely in [£?[Z]|. We conclude since arc-
connectedness implies connectedness. O

Theorem 2 If the digital set Z — 7% is fully convex, then Z is d-connected.

Proof We show first that 0-cells of €¢[Z] are face-connected, i.e. for any points
z,2' € Z = 6§[Z], there is a path of cells (¢;)i=o..m of €?[Z], such that ¢y = o,
cm = 7, and for all 4 € Z,0 < i < m, either ¢; < ¢j41 or ¢j11 < ¢;.

The straight segment [z, z'] is included in cvxh (Z), hence any one of its
point belongs to a cell of €%[cvxh (Z)] so a cell of €[Z] by full convexity.

Let p(t) = (1 —t)z + t2' for 0 < t < 1 be a parameterization of segment
[z, 2']. The above remark implies that, for any ¢ € [0, 1], the point p(t) belongs
to a cell ¢(t) of €¢[Z]. The sequence of intersected cells from t = 0 to t = 1
is obviously finite, and we denote it by (cq,c1,...,¢n) with ¢g = p(0) = 2
and ¢, = p(1) = 2’. Since it corresponds to an infinitesimal change of ¢, two
consecutive cells of this sequence are necessary in the closure of one of them,
hence ¢; < ¢;j41 or ¢i+1 X .

We use Lemma [7] given below. We associate to each cell ¢; one of its Z-
corner, denoted z;. We obtain a sequence of digital points z = zg, 21,...,2m =
z'. Now any two incident faces (like ¢; and ¢;41) belong to the closure of a d-cell
o. It follows that both corner z; and z; ;1 are vertices of &, a unit hypercube.
Obviously ||z; — zi+1]lec < 1 and these two points are d-adjacent. We have just
built a sequence of d-adjacent points in Z, which concludes. O

Lemma 7 Let Z < Z4. If ¢ is a cell of €%[Z], there there exists z € €[ Z] =
Z such that z < c. We call such digital point a Z-corner for c. If ¢ is a 0-cell,
its only Z-corner is itself.

Proof By definition of ¥¢[Z] we have ¢ n Z # (. It follows that 3z € Z such
that z € & So z < c and also z € Z = €¢[Z]. O

We can show an even stronger result on fully convex sets: they present no
topological holes. Indeed, we have:

Theorem 3 If the digital set Z < 7% is fully convex, then the body of its
intersection cubical complex is simply connected.

Proof Let o = {z(t),t € [0,1]} be a closed curve in |[€[Z]|, i.e. z(0) = (1)
and z(t) € |¢9[Z]|. We must show that there is a homotopy from &/ to a
point a € ||‘€d H

The curve z(t) visits cells of €¢[Z]. Let c(t) be these cells. By finiteness
of &, ¢(t) defines a finite sequence of cells cg, c1,...,¢p from ¢t =0 to t = 1,
with ¢, = cg. We can also associate a sequence of parameters tg,t1,...,tmn,
such that x(t;) € ¢; = ¢(t;). As in the proof of Theorem [2] two consecutive
cells of this sequence are necessary in the closure of one of them. Let us set d;
to ¢; or ¢;11 such that both are in d;.
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The path z([t;,t;+1]) lies in ¢; U ¢;41. For each cell ¢; we pick one of
its Z-corner z;. Clearly z; and z;41 belong to d;. By convexity of d;, it is in
particular simply-connected and there is a homotopy in d; between z([t;, t;11])
and the segment [2;, z;11]. Since €[ Z] is open and both points are in H%d H
[2i, zi41] < |€?[Z]|| as well as the whole homotopy. Gathering all these local
homotopies for every 7, 0 < i < m, we have defined a homotopy between .o
and the polyline [2;]; =0,...,m

By full convexity, every z; € Z is also in cvxh (Z). It follows that the vertices
of the polyline [z;]; = 0,...,m belong to cvxh (Z). By convexity of cvxh (Z),
the whole polyline is a subset of cvxh (Z). Being a closed curve in a simply

connected set, the polyline [2;]; = 0,...,m is continuously deformable to a
point of this set, say zg, by some homotopy. Composing the two homotopies
finishes the argument. i

Finally we can determine a relation between the numbers of k-cells of the
intersection complex of a fully convex set. For a subcomplex K, let #(K) be
its number of k-cells. The Euler characteristic of a subcomplex K is x(K) :=
ZZ:O(—l)k#k(K). It is a famous topological invariant of CW complexes.

Theorem 4 The Fuler characteristic of the intersection cubical complex of a
fully convex set is (—1)9.

Proof Let Z < 7% be a fully convex set. Let K = %?[Z]. According to
Lemma (1} K is open. We build a dual (cubical) complex K, to K in the
usual way. Indeed, a natural dual €¢ for € is €' translated by a shift vector
of (3,...,1). Then every d — k-cell ¢, of ¥ has the same centroid as one
Ek-cell ¢ of €, and they are defined as dual to each other. Since K is open,
the complex K is closed. The complex K, is thus a CW-complex.

It is not hard to see that | K| is a deformation retract of | K|, simply by
shrinking | K|\ | K| to 0| K4]|. Since |K| is simply connected, ||K| is also
simply connected. A simply connected CW-complex has Euler characteristic 1,
hence x(Ky) = Zi=0(—1)k#k(K*) = 1. It follows:

=2

7=0
d
= 2 (1) #a(Ky) (by duality, #;(Kx) = #4—;(K))
=0
’ d
2 Vo4 (Ky)  (setting k = d — j and using (—1)7% = (=1)%)
k=0

= (-1)x(Ky) = (=1)%  (since x(Kx) = 1)
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Fig. 2 Let P = cvxh ({(0,0),(2,1),(5,3)}). (a) €¢[P]. (bcd) We can see that # ((6’_{%}[?])

= # (8P @Sw)) = T, # (€4 [P1) = # (GP@Se)) = 9, and # (€4 5, [P]) =
# (‘5761[73@8{12}]) = 14. The bijections Z{1y, Z(}, Z(1,2) are made clear in (b), (c), (d)
respectively.

4 Morphological properties and recognition algorithm

We provide first a morphological characterization of full convexity that will
help us to design a practical algorithm for checking this property.

Morphological characterisation. Let I% := {1,...,d}. The set of subsets of car-
dinal k of I¢ is denoted by I, for 0 < k < d. Fori € I¢, let S, := {te;,t € [0, 1]}
be the unit segments aligned with axis vectors e;. For any point x of R?%, we
write its d coordinates with superscripts: z',...,z%. Let us also denote the
Minkowski sum of two sets A and B by A@® B. We further build axis-aligned
unit squares, cubes, etc, by suming up the unit segments: for any o€ Ig,
So = @, Si- For instance, in 3D, the three unit segments are Sy, Sz, S (or
equiv. Sq1y, 82y, Syay), the three unit squares are Sy 9y, S1 3}, Sq2,3;, the unit
cube is Sy 2.3). To treat the 0-dimensional case uniformly, we set I¢ = {0}
and S{O} = {6}

We can partition the k-cells of (f,f into # (I g) subsets such that, for any
ael ,il, each subset denoted by € contains all the k-cells parallel to S,. For
instance, %{dl} and %{dz} partition the set €} in dimension d = 2. Now let us
define the mapping Z : €% — Z? which associates to any cell o, the digital
vertex of & with highest coordinates. Its restriction to €< is denoted by Z,.

Lemma 8 For any o € I,‘j, the mapping Z., is a bijection.

Proof Clearly every digital point of Z? forms the highest vertex of all possible
kind of cells, so Z, is a surjection. Now no two cells of €¢ can have the same
highest vertex, since all cells of € are distinct translations of the same set. (]

The intersection subcomplex of some set Y restricted to cells of € ¢ is naturally
denoted by €2[Y]. We relate k-cells intersected by set Y to digital points
included in the set Y dilated in some directions, as illustrated in Figure

Lemma 9 For any Y c RY, for any a € I, Z,(€[Y]) = €S[Y ® S.].
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Proof We proceed by equivalences (the logical “and”, symbol A, has higher
priority than “if and only if”, symbol <>, but less than any other operations):

2 € Za(64[Y])
soeCiY]ro=21(z

) (Z, is a bijection, Lemma
s yeYyeano=2,(z)

—

e JyeY,(Viea, 2zt —1<y <2 aVjella, 2/ =)
e JyeY,Viea,0<z'<1AaVjelN\o,2/ =0)Az=2—y
e yeY,zeSonz=a+yecZl

s z2e YOS,)nZe.
We conclude since (Y @ S,) n Z4 = Y ® S.]. O

We arrive to our morphological characterization of full convexity: full con-
vexity can thus be checked with common algorithms for checking digital con-
vexity. We denote by x(Z) the set Z translated by some lattice vector x. We
proceed in two steps. First we provide a morphological characterization us-
ing Minkowski sums with unit lines, squares, cubes, etc (Theorem . Second,
Minkwoski sums are replaced by equivalent operations involving solely digital
points (Theorem @ This simplifies the writing of the algorithm for checking
digital convexity in arbitrary dimension.

Theorem 5 A subset X < Z% is digitally k-convex for 0 < k < d iff
Vae Il (X ®S,) nZ% = (cvxh (X)® S,) n 24, (4)
or (X®S,) nZ% = (cvxh (X ® S,)) N Z4. (5)
It is thus fully convex if the previous relations hold for all k,0 < k < d.
Proof We proceed by equivalence for :
G [X] = G [evxh (X)]
s Vae I, €YX] = €¢cvxh (X)]
sVaell, Z,(6X]) = Zo(€cvxh (X)]) (Z, is a bijection)
s Vae I, €X ®Sa] = € [cvxh (X) ® S ] (Lemma [9)
sVaell (X®S,) nZ = (cvxh (X) ® S,) n Z°.

X
X

follows since the convex hull operation commutes with Minkowski sum. []

We introduce a discrete analog of Minkowski sums of unit axis-aligned
edges, squares, cubes, etc. Let Ux(Z) := Z, and, for a = I¢ and i € «, we
define recursively Un(Z) := Uq\i(Z) U €i(Usi(Z)). The previous definition is
consistent since it does not depend on the order of the sequence i € a.

First, Lemma [10] establishes that the operation U, (+) is indeed equivalent
to specific Minkowski sums for digital sets. Then Lemma [11] asserts that this
operation also commutes with convex hull operation.
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Lemma 10 For any X < Z¢, for any a = I¢, (X ® S,) n Z¢ = U, (X).

Proof Let a = {iy,...,i,} = I%, non empty. Note that S, = @le S; and that
it does not depend on the chosen order. For conciseness, we write X7 := X®S,
for any subset v of I¢. Let 8 = {i1,...,ix_1} and let us first show that:

(X)) N2 = (XP n 2 Ue (XP Y. (6)

(XPnZYHue, (XPnZd)=(XPue, (XP)nZic (XPDS,)nZi=
(X)) n 74,
[C]Let ze X NZ4%. We can write z as z = x+t;,€;, ++-+t;,€;,, withz e X
and every t;, € [0, 1]. More precisely, since z € Z* and x € Z and ¢;, is a unit
vector, every t;; € {0,1}. Clearly 2’ = 2z + Zf;ll t;,e;; belongs to X* ~ Z4. If
t;, = 0 then 2’ = z and we are done. Otherwise, t;, = 1 then 2’ = z + e;,,
which belongs to e;, (X? n Z%).

We prove the lemma by induction on the cardinal of «. For a = &, (X @
Sz) N 724 = X = Uyx(X). Assume the lemma is true for any 3 of cardinal
k—1=>0, and let us show it for « = 8 U {i}.

(X*) 24 = (XP 2 Uei(XP Az (Using ()
=Us(X) v e;(Us(X)) (Induction)
= Uy(X) (Definition).

O
Lemma 11 For any X < Z%, for any o = I?, cvxh (X)®S, = cvxh (Uy(X)).

Proof We prove it by induction on the cardinal k£ of «. It holds obviously for
k = 0. Otherwise let & = § v {i} of cardinal k.

We have U, (X) = Up(X) U €;(Us(X)) < Upg(X) @ S;. Since convex hull
is increasing, cvxh (Uy (X)) < cvxh (Ug(X) @ S;) holds. But convex hull com-
mutes with Minkowski sum, so cvxh (Ug(X)® S;) = cvxh (Upg(X)) @ S; =
cvxh (X) @S @ S; by induction hypothesis. We conclude with Sg® S, = S,
Let y € cvxh (X)®S, = cvxh (X)BSsDS; = cvxh (Ug(X))PS;. Denoting
by z;, j € B the points of Ug(X), it follows that y can be written as a convex
linear combination of these points plus a point of S;, i.e. y = (ZjeB Wizi)+te;,
ZjeB w; =1,Vje B,u; = 0andte[0,1]. All following sums are taken over
j € B. Since Y, pu; = 1, we rewrite y as

Y= (Zuﬂj) +1 (Z uj) €;
= D (L= t)pyzy + tpjz; + tuge;

_ (2(1 _ t)szj) + (Z tp(z; + Ei))

€ cvxh (Ug(X) v e;(Up(X))),

which shows that y € cvxh (U, (X)). O
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Algorithm 1: ISFULLYCONVEX: given the dimension d of the space
and a subset Z of the digital space Z¢, returns true iff Z is fully convex.
ISCONVEX: given a subset Z of the digital space Z?, returns true iff
Z is digitally convex (0-convexity).

Function ISCoNVEX( In Z: subset of Z? ) : boolean;
begin

Polytope P « CONVEXHULL(Z);

return CARDINAL(Z) = COUNTLATTICEPOINT(P);

N =

Function ISFULLYCONVEX( In d : integer, In Z: subset of Z% ) : boolean;
Var C : array|0 ...d-1] of lists of subsets of I%;
Var X : map associating subsets of I% — sets of digital points ;
begin
3 if CARDINAL(Z) = 0 or —IsDCONNECTED(Z, d) then return false;
Co] < ({0}) ; X[0] « Z ;
4 if —IsCONVEX(Z) then return false;
5 for k<~ 1tod—1do
Clk] — &;
foreach g e C[k — 1] do
for j «— 1 to d do
a < APPEND(f3,7) ;
6 if ISSTRICTLYINCREASING(«) then
C[k] < APPEND(C[k], @);
X[a] < UNioN(X[8], e (X[8])) ;
if —ISCONVEX(X[a]) then return false;

L return true

Theorem 6 A subset X c Z2 is digitally k-convex for 0 < k < d iff
Ua(X) = cvxh (Un (X)) n Z%. (7)
It is thus fully convex if the previous relation holds for all k,0 < k < d.
Proof Recalling full convexity characterization of Theorem [5, we have:
(X®S,) NnZ% = (cvxh (X @ S,)) n Z%.

Now Lemma [10| states that (X @ S,) N Z? = U,(X), which we apply on the
left-hand side of the previous characterization. And Lemma [I1] states that
cvxh (X) @ S, = cvxh (Uy (X)), which we apply on the right-hand side of the
same characterization, while intersecting it with Z?. This gives (7). O

Finally we can remark that, if X < Z? is d-connected, then necessarily all
Uy (X) are by construction d-connected.

Recognition algorithm. Algorithm [1] checks the full convexity of a digital set
Z < Z%. Due to the bijections Z,, all the processed sets are subsets of Z%.

Theorem 7 Algorithm[1] correctly checks if a digital set Z is fully convex.
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Proof First of all, ISCONVEX checks the classical digital convexity of any dig-
ital set S by counting lattice points within cvxh (S) (Lemma [3]).

Looking now at ISFULLYCONVEX, line |3| checks the d-connectedness of Z
and outputs false if Z is not connected (valid since Lemma [2)).

Line {4 checks for digital 0-convexity (i.e. usual digital convexity). The loop
starting at line [5] builds, for each dimension k from 1 to d — 1 the possible
a € I, and stores them in C[k]. Line |§| guarantees that each possible subsets
of I ,f is used exactly once.

Line [7| builds X[a] = Us(Z). Indeed, by induction assume X|[S] = Ug(Z).
Then X[a] = X[f] U e;(X[5]) which is exactly the definition of Uy (Z).

Finally line [8| verifies U, (Z) = cvxh (U, (Z)) n Z%. Since it does this check
for every o € I, it checks digital k-convexity according to Theorem @ .
Now Lemma [4] tells that it is not necessary to check digital d-convexity if all
other digital k-convexities are satisfied. This establishes the correctness. [

Then the complexity of the algorithm can be determined as follows. First,
letting n = # (Z), function ISDCONNECTED takes O(n) operations by depth
first algorithm and bounded number of adjacent neighbors. There are less
than d27 calls to ISSTRICTLYINCREASING, which takes O(d) time complexity.
However the total number of calls to ISCONVEX is exactly 2% — 1, and its time
complexity dominates (by far) the previous d?2¢ in practical uses. The overall
complexity T'(n) of this algorithm is thus governed by (1) the complexity
T (n) for computing the convex hull and (2) the complexity T5(n) for counting
the lattice points within. For Tj(n), it is: O(n) for d = 2 (since we know S
is d-connected, it can be done in linear time [27] or [6] for a fast practical
algorithm), O(nlogn) in 3D [8] and nl%/2/|d/2|! in dD [IILI]. For Ty(n), it
is O(n) in 2D using Pick’s formula, and in general dimension it is related to
Ehrhart’s theory [22], where best algorithms run in O(n°(@) [2].

In practice, when the number of facets of the convex hull is low, counting
lattice points within the hull is done efficiently by visiting all lattice points
within the bounding box, which is not too big since all digital sets are con-
nected.

5 Digital planarity and local shape analysis

We explore the link of full convexity with digital planarity, and we show that
thick enough arithmetic planes are indeed fully convex (Theorem. Combined
with our results about stable sets, this leads us to propose new geometric tools
for digital shape local analysis.

5.1 Arithmetic planes are fully convex
An arithmetic plane of intercept u € Z, positive thickness w € Z,w > 0, and

irreducible normal vector N € Z% is defined as the digital set P(u, N,w) :=
{reZiu<z-N<p+w
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Theorem 8 Arithmetic planes are digitally 0-convex for arbitrary thickness,
and fully convex for thickness w = | N||q.

Proof Let @ := P(u,N,w) be some arithmetic plane. Let Y~ :=
{zeRipu<z-NL Yt ={reRizx - N<p+w}handYV:=Y" nY*. We
have Q = Y n Z4, with Y convex, so Q is digitally O-convex (non emptyness
comes from w > 0).

Now let ¢ be any k-cell of €¢[cvxh (Q)], 1 < k < d. Let us show that at
least one vertex of ¢ is in €[Q]. There exists x € ¢ with = € cvxh (Q) =
cvxh (Y N Z%) < cvxh (Y) = Y. It follows that p <z N < p + w.

Let (2;);—1.. 9+ be the vertices of ¢ ordered from lowest to highest scalar
product with N. There exists j € {1,2¥} such that Vi € {1,5},2z; - N < x-N
and Vi € {j +1,2%},2- N < 2; - N. Should no z; belong to Y, since x belongs
to Y, we have :

Vie{l,j},z-N<pu, and Vie{j+1,2"},p+w<z.

It follows that (zj41 — z;) - N > w. Now the (z;) are vertices of a hypercube of
side one, and ordered according to their projection along vector N. It is easy
to see that any (z;41 — 2;) - N < max;—1._q(|N;|) (for instance by constructing
a subsequence moving along axes in order, it achieves the bound, and then the
actual sequence (z;) is much finer than this one), so it holds in particular for
¢ = j. To sum up, should no z; belong to Y, then w < max;—1__4(|V;|).
Otherwise, for w > max;—1._4(|V;|), either z; or z;11 or both belong to Y,
and thus to Q. It follows that ¢ € €2[Q], which concludes. O

The classic 2D and 3D machinery of digital straight lines and planes, very
rich in results and applications, thus belongs to the fully convex framework.

5.2 Local analysis of digital shapes

Corollary [2] tells that the intersection of a fully convex set with an axis-aligned
parallelepiped is also fully convex. Reciprocally of course, non locally fully
convex subsets tells the set is not fully convex. Furthermore the full convexity
of the local complement of the set is also an indicator of the local geometry.

For any digital set X, the predicate “X is fully convex” is denoted by
F(X). We define the following local sets, for any positive integer k and any
ze X c 7%

Xi(z) := Ng(2) n X X¥(2) = Xp(2)\{z} Xi(2) := Ni(2) n (ZD\X)

These sets allow us to study the local shape geometry at fixed k.

Definition 3 Let j € Z, j > 0. X is j-convex at z iff F'(X;(z)). X is j-
concave at z iff FI(X;(2)). X is j-planar at z iff it is j-conver and j-concave
at z. Last, X is j-atypical at z if it is neither j-convex nor j-concave.
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k=1 k=2 k=3 k=4

Fig. 3 Local shape geometry analysis at fixed scale (green: k-convex, blue: k-concave, red:
k-atypical, white: k-planar). One easily see that k-atypical implies (k + 1)-atypical, while
k-convex implies (k — 1)-convex and k-concave implies (k — 1)-concave.

Figure [3| illustrates the relevance of these definitions for capturing the shape
geometry at a given scale. Planarity, convexity and concavity are correctly
identified at their respective scale.

Note that arithmetic half-spaces (whose border are arithmetic planes) are
k-convex and k-concave for arbitrary k, hence k-planar.

This study of shape geometry can also be carried out in a multiscale fashion.
Indeed, we have the following relations:

Lemma 12 Let j€Z,57 >0, z€ X. If X is (j + 1)-convex at z, then X is
j-convezx at z. If X is (j + 1)-concave at z, then X is j-concave at z. If X is
j-atypical at z, then X is (j + 1)-atypical at z.

Proof Assuming X (j+1)-convex means X 1(z) is fully convex. But X, (z) :=
X nN;(z) = Xj41(2) nN,;(2). Now, N;(z) is the intersection of 2d axis-aligned
half-spaces with integer intercept, hence it is stable (Lemma @ Applying
Lemma [5| concludes that X;(z) is fully convex. The reasoning is similar for
concavity. The result for atypicality is simply the contraposition of the two
previous properties. O

Denoting by ax(z), resp. by bx(z), the maximum j for which X is j-convex
at z, resp. j-concave at z, we can classify each point z of X as:

— atypical if ax(z) = bx(z) =0,
planar it ax(z) = bx(z) > 0,
— convex if ax(z) > bx(z),
concave if ax(z) < bx(z).

Therefore local convexity, concavity, planarity or neither are definable in an
unambiguous way. Figure [ illustrates this approach to digital shape local
geometric classification. If one needs a more progressive classification, values
ax(z) and bx(z) are of course useful. Figure [5| shows a smooth classification
of convex, concave, and planar parts of the same shapes.

It is worth noting that locii of noisy digitizations are detected by atypical
configurations, often surrounded by small and varying convex and concave
zones. Finally, if we consider a finer digitization of the same shape, we observe
a consistency between the two classifications, with of course more details in
the finest digitization.
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Fig. 4 Raw multiscale local shape geometry analysis (green: convex, blue: concave, red:
atypical, cyan: planar), with a maximal scale of 5.

ey

Fig. 5 Smooth multiscale local shape geometry analysis (green: convex, blue: concave, red:
atypical, white: planar), with a maximal scale of 5. For a convex zone, the saturation of
green is the ratio (ax (z) — bx(z))/5. For a concave zone, the saturation of blue is the ratio

(bx(2) — ax(2))/5.

6 Tangent subsets to a digital shape

This section proposes the new concept of tangency to a digital set X, which
are subsets whose convex hull stays close to X, and which are related to full
convexity. In 2D, this notion provides another definition of the maximal digital
straight segments along digital contours and induces the classical tangential
cover. However it is a much more generic and powerful tool since it induces
tangent maximal digital planes in arbitrary dimension.
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This approach to tangency appears thus to be very fruitful, and we show
after two direct applications of this concept of tangency: the first one is an al-
gorithm to build a reversible piecewise linear reconstruction of a digital shapes,
the second one is the computation of shortest paths onto digital shapes.

Definition 4 A digital set A < X < 74 is said to be k-tangent to X for
0 < k < d whenever €[cvxh (A)] = €[ X]. It is tangent to X if the relation
holds for all such k. Elements of A are called cotangent (in X ).

It is immediate that any subset of a tangent set to X is also a tangent set
to X. We prove first that tangent sets to X are indeed close to X.

Lemma 13 Let A be digital points and 7 = cvxh (A) be the convexr hull of
A. If A is tangent to X, then A ¢ X and the Ly -distance of 7 to X is
upper-bounded by 1.

Proof Assume A tangent to X. Then in particular € [cvxh (A)] < F¢[X],
otherwise said cvxh (4) n Z4 < X which implies A = X. Now, let y € 7. By
tangency, for any k, 0 < k < d, €¢[r] = €¢[cvxh (A)] < €J[X]. Hence the

point y belongs to some cell o of ‘f,f[X ] and is at most at Lg-distance 1 of
any one of its X-corner. |

As immediate examples of tangency, in arbitrary dimension, two cotangent
points of a digital surface X delineates a straight segment that stays close to
the surface, i.e. a tangent vector. A simplex made of d cotangent points to X
lies close to the surface, and so defines a (local) tangent plane. The link with
full convexity is established by the following lemma:

Lemma 14 If X is fully convex, any subset A < X is tangent to X.
Proof We have cvxh (A) < cvxh (X) since convex hull is increasing, so:

€ cvxh (A)] €€ cvxh (X)) (Intersection complex is increasing)
=¢[X] (by full convexity).

This shows that A is tangent to X. O

6.1 Maximal tangent subsets

As often in digital geometry, small objects are not precise enough. We are thus
more interested in “big” tangent subsets: a set A, tangent to X, that is not
included in any other tangent set to X is said mazimal in X. In 2D, they give
rise to the classical tangential cover of a contour [24]:

Theorem 9 When d = 2, if C is a simple 2-connected digital contour (i.e.
8-connected in Rosenfeld’s terminology), then the fully convexr subsets of C
that are mazimal and tangent are the classical mazximal naive digital straight
segments.
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Proof Let M be a fully convex subset of C'; both maximal and tangent. Full
convexity implies that M is 2-connected (Theorem [2). Full convexity implies
H-convexity, and connected convex subsets of simple 2-connected contours are
digital straight segments. Maximality implies that they are inextensible. The
converse is obvious from Theorem (]

Maximal fully convex tangent subsets to X seem a good candidate for a
sound definition of maximal digital plane segments. Our definition avoids the
classical problem of 3D planes that are not tangent to the surface (as noted
in [I0]) as well as the many heuristics to cope with this issue [47L[42].

We leave the exploration of maximal tangent planes for future works and
we present here two quite straightforward applications of tangency: one related
to surface reconstruction, the other related to shortest paths and visibility.

6.2 Elementary polyhedrization algorithm

Let X be a finite subset of Z<. Let Vor (X) be its Voronoi diagram: it is the
cellular complex made of convex cells, where each maximal d-cell 0, p € X,
is the open region of the space that gathers all points of the space closer to p
than any other point of X; its low dimensional cells are defined naturally as
their boundaries with incidence relations. Then the Delaunay complex of X,
denoted by Del (X), is the cellular complex dual to Vor (X) (combinatorially
and orthogonally). It is well known that the vertices of every d-cell of Del (X)
form hyper-cospherical subsets of X. Note that, when X are points in general
position, the Delaunay complex is a simplicial complex called the Delaunay
triangulation. We prefer to use Delaunay complexes here since the elements of
digital sets are usually not in general position, with many cosphericities.

Definition 5 The tangent Delaunay complex Dely (X) to X is the complex
made of the cells T of the Delaunay complex Del (X), such that the vertices of
T are tangent to X.

The boundary of a tangent Delaunay complex is a piecewise linear reconstruc-
tion of voxel shapes, and it is the boundary of the convex hull for fully convex
shapes:

Lemma 15 If X is fully convez, then Delt (X) = Del (X). Hence the bound-
ary of Delr (X) is the boundary of the convex hull of X, i.e. ¢ |Delr (X)| =
ocvxh (X).

Proof Let 7 € Del (X). Let A X be the vertices of cell 7 (i.e. 7 = cvxh (A4)).
Since X is fully convex, Lemma [14] implies that A is tangent to X, hence T €
Delr (X). So Delr (X) = Del (X). It follows that @ |[Delr (X)| = @ ||Del (X)| =
dcvxh (X), since the boundary of the Delaunay complex of a set of points is
the boundary of its convex hull. |

From Theorem [8] the tangent Delaunay complex of an arithmetic plane is the
boundary of its convex hull, hence its facets have exactly the same normal
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Input digital shape X Our reconstruction Delp (X) Bad simplices of Del (X)

Fig. 6 The tangent Delaunay complex Delr (X) (middle) is a piecewise linear reconstruc-
tion of the input digital surface X (left). On (right), we display in red simplices of Del (X)
which avoid lattice points of Z3\X but are not tangent to X. Tangency thus eliminates
the “sliver” simplices of Del (X) that are not geometrically informative. (# (X) = 6013,
Del (X) has 36361 tetrahedra, Delr (X) has 25745 tetrahedra, computing Del (X) takes
70ms, computing Delr (X) takes 773ms.)

as the arithmetic plane. Furthermore, since the tangent Delaunay complex is
built with local geometric considerations, it is able to capture the geometry
of local pieces of planes on digital objects, and nicely reconstructs convex and
concave parts (see Figure@. We prove now that it is also a tight and reversible
reconstruction of X:

Theorem 10 The Hausdorff Ly -distance between the set X and the body of
Delr (X) is at most 1. Furthermore Delr (X) is a reversible polyhedrization,
i.e. |Delt (X)|| n 24 = X.

Proof First the distance of any point of X to |Delr (X)]| is zero, since any
point of X is tangent to X and is also a 0-cell of Del (X). Second, any point
y of |Delr (X)| belongs to a simplex 7 € Delr (X). Let A be the vertices of
7. By definition, 7 is tangent to X, so by Lemma [13] 7 is at Ly -distance at
most 1 to X. This proves the first assertion of the theorem. Finally, for the
reversibility property, by tangency, |Delr (X)|| € €[X], so |Delr (X)|nZ*
€U X] n7Z% = X. The statement X < |Dely (X)| n Z? is obvious. O

Although very simple to define and compute, our approach improves the
existing greedy reversible polyhedrization methods of [25/47].

6.3 Shortest paths onto digital sets

The concept of tangency to a digital shape X allows us to define unambigu-
ously shortest paths between pairs of points of X, such that the path stays
“in” X. Our approach is similar to the visibility method of [15]. However our
method does not assume a particular model of digital straight lines, and is
valid in arbitrary dimension. For instance, if you pick any two points along
a digital straight line or plane, their shortest path is indeed the Euclidean
straight line joining them.
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Definition 6 (path) Let v = (z;)i=0,..n, 7 = 0, be a sequence of points in

some digital set X. The sequence 7y is a path from point a to point b in X,

if and only if, xg = a, x, = b, and every two consecutive points of v are

co-tangent in X. The embedding of + into R"™ is the embedding of the straight
L . . . = n—1

segments joining consecutive points, i.e. 5 :=J;_, cvxh ({;, zi41}). When a

sequence (;)i=o,...n s a path, we will denote it by [xo,...,x,] or [[xi]}izow’n.

It is straightforward to check that any d-connected sequence of points in X
is a path in X. Therefore there is at least one path between a and b in X if
and only if @ and b are d-connected in X. The set of all paths between a and
b in X is denoted by Px(a,b) (which is empty when a and b are not in the
same d-connected component of X). The set of every path between a and b in
X such that its points are pairwise distinct is denoted by &% (a,b), and their
elements are called simple paths from a to b.
Any path in the digital set X stays in the vicinity of X:

Lemma 16 If v is a path in X, then 5 < |¢[F]| < |¢¢[X]|. Hence the
Ly -distance of any point of §¥ to X is at most 1.

Proof Since any consecutive points x;, x;;1 of 7y are co-tangent in X,
then €¢[cvxh ({z;,7,41})] < €E[X] for all 0 < k < d. It follows that
n— d  di= d & 5 .
Ui:Ol cvxh ({zi, zi11}) © Upoo A1 © Ureo 41X = [€9[X]|. Finally,
Lemma [13] concludes for the distance by tangency of consecutive points. [

Definition 7 (path length; shortest path) The length of v s
length(y) := 22:01 |zix1 — mil|. The path v from a to b is a shortest
path from a to b if there exists no other path from a to b with a smaller
length. The set of shortest paths from a to b is denoted by I'x (a,b).

A first observation is that, if [2;],_, _, is a shortest path from a to b, then
[xn—iﬂi=0,...,n is a shortest path from b to a. Then we can speak of a shortest
path between a and b. A second observation is that if a and b are cotangent
in X, then the path [a,b] is a shortest path between a and b. This is because
the triangle inequality holds for the Euclidean distance. Last, the length of ~

is the same as the Euclidean length of 7.
Definition 8 (digital distance) The digital distance dyx in X < Z? is

+o0 if Px(x,y)is empty,

o,y € X, dx(2,y) = { inf e, (2.y) length(y) otherwise.

Lemma 17 If X is d-connected then Ya,b € X, I'x(a,b) is non empty and
finite, so the infimum above is a minimum, i.e. dx(a,b) = length(y) with v
any shortest path of I'x(a,b).

Proof Since X is d-connected, there exists a sequence P = (x;);—0,... », of points
in X, g = a, x, = b, such that x; and z;,1 are d-adjacent. Clearly x; and
;41 are co-tangent in X since they lie on the boundary of some cell. So P is
a path and Px(a,b) is not empty and let a := length(P). Since the length
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of a path is the sum of the lengths of its subsegments, any path of length no
greater than « is included in the Euclidean ball B of center a and radius a.
So every path from a to b in X of length no greater than « belong to B n X.
Hence it holds that
inf  length(v) = inf length(7y).
ealt, length(y) = inf = length(y)
But B n X has a finite number of elements since X < Z?. Furthermore if v =
[[yiﬂi=0,...,m € Ppnx(x,y) traverses a point several times, for instance y; = y;,
i < j, then the path ¥ = [y:];,_ also belongs to Zp~x(x,y) and

ijtl,..m
is shorter. It follows that
inf length(y). = inf length(y).
VEZBAx (2,Y) veP¥E _ (z,y)

But &Z%_ (x,y) is a finite set, so the infimum above is an element of
2%« (z,y), and I'x(a,b) is not empty. 0

Theorem 11 If X < Z? is d-connected and non-empty, then (X,dx) is a
metric space.

Proof Let x,y,z € X. First it is obvious that dx(z,z) = 0. If dx(z,y) = 0,
then there exists a path v € Zx(x,y) between x and y with a length 0. Since
v is a sequence [z;];_, ,, n = 0, its length is the sum of the length of
its straight subsegments, which is zero only if all its straight segments are of
length zero. This implies that z; = z;41, hence x = y. The symmetry of dx
comes from the fact that a shortest path from a to b is also a shortest path
from b to a.

Finally let us show the triangle inequality. Let v € I'x(x,y), 7' € I'x(y, 2),
v2 € I'x(x, z) be shortest paths (they exist since X is d-connected). Then if
a := length(y) + length(y’) < length(vy2), the path +” obtained by concate-
nating the paths v and 4/ has also a length « < length(v;). Hence 2 cannot
be a shortest path between x and y. So

length(y) + length(y) = length(y2) < dx(z,y) +dx(y,2) > dx(, 2),
since these paths are shortest paths. O

Consequently tangency induces a sound notion of distance and shortest
paths between elements of a digital set. Furthermore, shortest paths in fully
convex sets are the usual straight lines as shown below.

Theorem 12 If X s a non-empty fully convex set, then for any pair of points
xz,y € X, [x,y] is a shortest path between x and y and dx = |z —y|.

Proof By Theorem [2] the set X is d-connected. By Lemma the set of
shortest paths I'x(z,y) is non empty. Now x and y are co-tangent in X.
Indeed cvxh ({z,y}) = cvxh (X). So €%[cvxh ({z,y})] € €¢[cvxh (X)]. But X
being fully convex, €%[cvxh (X)] = €?[X]. We have just shown that z and y
are co-tangent in X, so [z, y] is a valid path in X. Tts length is exactly |y — x|,
which is the length of the Euclidean shortest path between z and y. So no
path can be shorter and [, y] € I'x (x,y). O
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We thus recover the fact that shortest paths on any arithmetic plane are
straight segments, and their distance is simply the Euclidean distance.

Algorithm [2 computes all the shortest paths to a given point @ € X (and
hence all the distances dx (a,-)). It is a Dijkstra shortest path algorithm [19],
where neighbors are computed on the fly, with a few specific optimizations.

Theorem 13 Let X < Z* such that X is d-connected. Then
SHORTESTPATHS(X, a, A, D) (Algorithm @) correctly computes all the
shortest paths from x € X to a (as the sequence [z, A[z], A[A[z]],...]), and
with distance D[z].

Proof First assume that COTANGENTPOINTS(X,b,V, D) computes all the
cotangent points to b in X (whatever V' and D). Then Algorithm 2| is a Di-
jkstra shortest path algorithm [19], where the weighted graph has vertices X,
edges that are all the cotangent pairs of points in X, and edge weights that are
the Euclidean distance between cotangent points. The slight differences with
a classical shortest path algorithm at line [I| and line [2] are just optimizations
related to the priority queue: since the binary heap underneath authorizes du-
plicates, we only push into the queue routes that improve the distance (line
and popped routes are considered only if they correspond to the best route
(line [1)).

Now COTANGENTPOINTS(X, b, V, D) (Algorithm [3)) computes in general
only a subset of the cotangent points to b in X. Let us show that it returns
the ones that may improve the best route. First COTANGENTPOINTS finds
cotangent points to b by breadth-first traversal of the d-adjacency graph of
X. Lemma [18| below shows that any path (b,z) has a d-connected path in its
vicinity, so traversing the d-adjacency graph of X from b will indeed reach all
the possible cotangent points to b.

However the function does not visit all neighbors. Line [I| discards all neigh-
bors in the direction of the local start point b. This is legitimate since they
have already been visited. Line |2| discards the points that belong to V' and
that belong to M. Points belonging to M have already been visited by the
breadth-first traversal in COTANGENTPOINTS and are already in the output.
Points belonging to V have already been visited in Dijkstra’s shortest path
loop, so all shortest routes passing through them have already been consid-
ered and no new route may originate from them.

Last line [3| considers if the point g neighbor of p offers a better direct
route to a than the current point p could offer by going through point b. It is
equivalent to the expression:

(6] + llp = bl + I = p]

Dlg] +[r -4l
| < Dbl +[lp—b| (since Ir — gl <llp =gl + lIr = pl)-

D
<= Dlgl+|p—ql <D

NN

If this test is true, then a route going through b will always be longer so
the point may safely be discarded. This concludes for the correctness of the
algorithm. O



24 J.-O. Lachaud

Algorithm 2: SHORTESTPATHS: given a digital set X and a point
a € X, computes the shortest paths from any point of X to a.

Procedure SHORTESTPATHS( In X, In a, Out A, Out D );

In X : subset of Z¢ ; // any non-empty subset of Z%
In a : Point ; // source point in X
Out A : map<Point,Point> ; // ancestor in the shortest path
Out D : map<Point,Real> ; // distance to a
Type Node = tuple<Point,Point,Real>;
Var V : set<Point> ; // visited points
Var Q@ : priority_queue<Node> ; // top is smallest distance
begin
foreach p € X do D|p] <« +o0;
Q.push((a,a,0.0)) ; // starting point
while —Q.empty() do
(g,7,d) < Q.pop(); ; // pop top node (point, ancestor,distance)
1 if d > D[q] then continue; // Not best route for g
Alql <7 // set ancestor, distance is already updated
V.insert(q) ; // point is now visited

N «— COTANGENTPOINTS(X, ¢, V, D) ;
foreach p € N do
d < Dlg]+|p—dql;
2 if d' < D[p] then
Dlp] < d';
L Q.push((p,q,d')) ;

Figure [7] illustrates some results of geodesic computations. To give an idea
of computation times, geodesics onto bunny datasets (15028 points) takes
about 38s on a macbook pro (2.7 GHz, Intel Core i7, 16 Gb).

The algorithm is thus quite slow as it is written. This is because it computes
almost for each point all its cotangent points. It could certainly be optimized.
For instance, the test at line[3]in Algorithm [3]is very conservative. Replacing
the expression D[b] + |p — b| > D[q¢] + |p — ¢| by the expression D[b] + |p —
b| > D[q] + K, where K is a user-chosen constant less than v/d considerably
improves the speed of the algorithm, with almost no change in the output. Note
that choosing K = +/d guarantees the correct output (since |p—gq|| < v/d), but
smaller values speed up the algorithm (up to a factor 86) with almost the same
result, as shown by computations summed up in Table [} which computes the
shortest paths onto a 3D sphere of radius 1, digitized at gridstep h.

To conclude the section, we give below the lemma and corollary that tells us
that any path can be approximated by a digital d-connected path, properties
that are used for establishing the correctness of our shortest path algorithm.

Lemma 18 If [a,b] is a path in X, then there exists a d-connected path of
pizels P = [yil;_o. m i X, Yo = a, Ym = b, such that it stays close to the
straight segment [a,b], i.e. P < C1(|€[cvxh ({a,b})]]).

Proof [a,b] being a path in X, a and b are thus cotangent in X, and
©[cvxh ({a,b})] € €9[X] (Definition [4). Now the straight segment [a,b] :=
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Algorithm 3: COTANGENTPOINTS: given a digital set X and a point
b e X, computes the cotangent point to x that are not in set V; uses
distance D to prune the traversal.

Function COTANGENTPOINTS( In X, In b, In V, In D ) : vector<Point>;

In X : subset of Z¢ ; // any non-empty subset of Z%
In b : Point ; // a point in X
In V : set<Point> ; // the set of points to discard
In D : map<Point,Real> ; // a map giving its distance to b
Var R : vector<Point> ; // the non-visited cotangent points to b
Var @ : queue<Point> ; // the queue for breadth-first traversal from b
Var M : set<Point> ; // the set of visited points or in the queue
begin
Q.push(b) ; M.insert(b) ; // starting point
while —Q.empty() do
p < Q.pop() ; // pop top of queue

if {b,p} are cotangent in X then
if b # p then R.push_back(p);
foreach q € X (p) do // for each neighbor of p
1 if (b —p) - (¢ —p) <0 then continue;
if g€V or g e M then continue;
i D[b] + |p— b > Dlg] + |p — g then
L continue ; // do not visit closest points

Q.push(q) ; M.insert(q) ; // add point to queue

Table 1 Computation times of shortest paths to a given source and maximal error onto
a 3D sphere digitized with gridstep h. The chosen K indicates the value used to replace
[p — q| in the expression D[b] + |p —b| > D[q] + |p —q|, at lineof Algorithm Choosing
K = |p—q| or K = +/3 guarantees the correctness of the output. However, decreasing K to
0 speeds up the algorithm, while the maximal relative error in the distance estimation stays
very low.

chosen K: time in s (error in %)
gridstep h | #(X) | [p—4| V3/4 \/3/16 0
0.25 296 013 0.05 (0.000%) _ 0.02 (0.000%) _0.01 (0.000%)
0.125 1184 1.08  0.33 (0.000%)  0.11 (0.000%) 0.04 (0.226%)
0.0625 4784 8.40 2.84 (0.000%)  0.74 (0.000%) 0.23 (0.538%)
0.03125 19256 69.67 28.83 (0.000%) 6.40 (0.005%)  1.27 (0.205%)
0.015625 | 77120 | 579.49 258.48 (0.000%) 52.82 (0.037%) 6.70 (0.292%)

cvxh ({a, b}) traverses in sequence m cells of €¢[cvxh ({a, b})], which are thus
also in ¥¢[X]. We denote these cells by (¢;)i—o.....m, and we have ¢y = a and
¢m = b. Each cell ¢; has at least an X-corner y; (Lemma , with yo = a and
Ym = b. Since each y; € Cl(c;), we have P < Cl(|¢?[cvxh ({a,b})]]). O

Corollary 3 If v is a path in X between a and b, then there erists a d-
connected path P of points in X between a and b such that P < Cl (H%dﬁ] H)
(it stays close to v), and P wisits the digital points of v in the same order.

Among all d-connected path that stays close to -, the shortest ones are said
to be d-approximating . It is straightforward to see that a d-approximating
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Fig. 7 Illustration of geodesics onto digital sets (source in deep blue).

path (y;) to a geodesic cannot have three consecutive points such that y;_1
is d-adjacent to y;4+1. This could be used to optimize slightly the preceding
algorithm, at the price of memorizing the direct ancestor.

7 Conclusion and perspectives

We have proposed an original definition for digital convexity in arbitrary di-
mension, called full convexity, which possesses topological and geometric prop-
erties that are more akin to continuous convexity. We exhibited an algorithm
to check full convexity, which relies on standard algorithms. We illustrated the
potential of full convexity for addressing classical discrete geometry problems
like building a tangential cover, analyzing the local shape geometry, recon-
structing a reversible first-order polygonal surface approximation, or comput-
ing geodesics on digital sets. We believe that full convexity opens the path
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to d-dimensional digital shape geometry analysis. Note that full convexity is
available in the open-source library DGTAL [49], module digital convexity.

This work opens many perspectives. On a fundamental level, we work on
a variant of full convexity that keeps the intersection property of continuous
convexity. Advances along this path would induce natural definitions of digital
convex hulls.

Another fundamental question is the number of cells intersected by dila-
tions ¢ of a polytope. Our morphological characterization implies that it is
a degree d polynomial in ¢ like the number of lattice points intersected by
dilations of a polytope (see Ehrhart theory [22]). We can wonder if fully con-
vex polytopes induce specific polynomials, and what are the relations between
polynomials for different cell dimensions.

On a more algorithmic level, we also wish to improve the convexity check
algorithm, especially in 3D, for instance when cvxh (X) has few facets. Dedi-
cated enumerating lattice points algorithms could also be explored.

We also wish to explore the properties of a tangential cover made of the
maximal fully convex tangent subsets that are included in some arithmetic
plane. In order to restrict their number, plane probing algorithms [37138.39,
44) could provide significant points (like local upper or lower leaning points).

Finally, tangency also opens up a theory of digital tangent vector fields
and shortest paths, being geodesics, might provide parallel transport of vector
fields. This would give another approach to defining covariant derivatives, and
perhaps a digital calculus.
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paper.

References

1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls.
ACM Trans. Math. Softw. 22(4), 469-483 (1996). DOI 10.1145/235815.235821. URL
https://doi.org/10.1145/235815.235821

2. Barvinok, A.I.: Computing the Ehrhart polynomial of a convex lattice polytope. Discrete
& Computational Geometry 12(1), 35-48 (1994)

3. Brimkov, V., Coeurjolly, D.,; Klette, R.: Digital planarity—a review. Discrete Applied
Mathematics 155(4), 468—-495 (2007)

4. Brimkov, V.E., Barneva, R.: Applications of digital geometry to surface reconstruction.
Int. J. Comput. Vis. Biomech 1(2), 163-172 (2016)

5. Brlek, S., Lachaud, J.O., Provengal, X.: Combinatorial view of digital convexity. In: In-
ternational Conference on Discrete Geometry for Computer Imagery, pp. 57-68. Springer
(2008)

6. Brlek, S., Lachaud, J.O., Provencal, X., Reutenauer, C.: Lyndon + christoffel = digi-
tally convex. Pattern Recognition 42(10), 2239 — 2246 (2009). DOI https://doi.org/10.
1016/j.patcog.2008.11.010. URL http://www.sciencedirect.com/science/article/
pii/S0031320308004706

7. Buzer, L.: A linear incremental algorithm for naive and standard digital lines and planes
recognition. Graphical Models 65(1-3), 61-76 (2003). DOI 10.1016/S1524-0703(03)
00008-0. URL http://linkinghub.elsevier.com/retrieve/pii/S1524070303000080


https://doi.org/10.1145/235815.235821
http://www.sciencedirect.com/science/article/pii/S0031320308004706
http://www.sciencedirect.com/science/article/pii/S0031320308004706
http://linkinghub.elsevier.com/retrieve/pii/S1524070303000080

28

J.-O. Lachaud

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimen-

sions. Discrete & Computational Geometry 16(4), 361-368 (1996)

. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital

plane recognition. In: Discrete Geometry for Computer Imagery (DGCI’2008), LNCS,
vol. 4992, pp. 346-357. Springer (2008)

Charrier, E., Lachaud, J.O.: Maximal planes and multiscale tangential cover of 3d digital
objects. In: Proc. Int. Workshop Combinatorial Image Analysis (IWCIA’2011), Lecture
Notes in Computer Science, vol. 6636, pp. 132-143. Springer Berlin / Heidelberg (2011)
Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete &
Computational Geometry 10(4), 377-409 (1993)

Chica, A., Williams, J., Andujar, C., Brunet, P., Navazo, 1., Rossignac, J., Vinacua,
A Pressing: Smooth isosurfaces with flats from binary grids. In: Computer Graphics
Forum, vol. 27, pp. 36-46. Wiley Online Library (2008)

Coeurjolly, D., Guillaume, A., Sivignon, I.: Reversible discrete volume polyhedrization
using marching cubes simplification. In: Vision Geometry XII, vol. 5300, pp. 1-11.
International Society for Optics and Photonics (2004)

Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle
estimation. In: International Workshop on Visual Form, pp. 303-312. Springer (2001)
Coeurjolly, D., Miguet, S., Tougne, L.: 2d and 3d visibility in discrete geometry: an
application to discrete geodesic paths. Pattern Recognition Letters 25(5), 561-570
(2004)

Crombez, L., da Fonseca, G.D., Gérard, Y.: Efficient algorithms to test digital convexity.
In: International Conference on Discrete Geometry for Computer Imagery, pp. 409—419.
Springer (2019)

Crombez, L., da Fonseca, G.D., Gérard, Y.: Efficiently testing digital convexity and
recognizing digital convex polygons. Journal of Mathematical Imaging and Vision 62,
693-703 (2020)

Debled-Rennesson, 1., Reveilles, J.: An incremental algorithm for digital plane recogni-
tion. In: Proc. Discrete Geometry for Computer Imagery, pp. 194-205 (1994)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1(1), 269-271 (1959). DOI 10.1007/BF01386390. URL https://doi.org/10.
1007/BF01386390

Dorksen-Reiter, H., Debled-Rennesson, I.: A linear algorithm for polygonal representa-
tions of digital sets. In: International Workshop on Combinatorial Image Analysis, pp.
307-319. Springer (2006)

Eckhardt, U.: Digital lines and digital convexity. In: Digital and image geometry, pp.
209-228. Springer (2001)

Ehrhart, E.: Sur les polyédres rationnels homothétiques & n dimensions. C.R. Acad.
Sci. 254, 616-618 (1962)

Fernique, T.: Generation and recognition of digital planes using multi-dimensional con-
tinued fractions. Pattern Recognition 42(10), 2229-2238 (2009)

Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve:
Application to the curvature. In: International Conference on Discrete Geometry for
Computer Imagery, pp. 31-40. Springer (1999)

Frangon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In: Interna-
tional Conference on Discrete Geometry for Computer Imagery, pp. 425-434. Springer
(1999

Gérar)d, Y., Debled-Rennesson, 1., Zimmermann, P.: An elementary digital plane recog-
nition algorithm. Discrete Applied Mathematics 151(1), 169-183 (2005)

Hiibler, A., Klette, R., Voss, K.: Determination of the convex hull of a finite set of
planar points within linear time. Elektron. Informationsverarb. Kybern. 17(2-3), 121—
139 (1981)

Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by
approximate global optimization. Pattern Recognition 42(10), 2265-2278 (2009)
Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for
unsupervised local noise estimation. IEEE transactions on pattern analysis and machine
intelligence 34(12), 2379-2392 (2012)

Kim, C.E., Rosenfeld, A.: Convex digital solids. IEEE Trans. Pattern Anal. Machine
Intel. 6, 612-618 (1982)


https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390

An alternative definition for digital convexity 29

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions. IEEE
Trans. Pattern Anal. Machine Intel. 2, 149-153 (1982)

Kiselman, C.O.: Characterizing digital straightness and digital convexity by means of
difference operators. Mathematika 57(2), 355-380 (2011)

Klette, G.: Digital convexity and cavity trees. In: Pacific-Rim Symposium on Image
and Video Technology, pp. 59-70. Springer (2013)

Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area
estimation. In: Proc. Visual form 2001, LNCS, vol. 2059, pp. 356-366. Springer (2001)
Lachaud, J.O.: An alternative definition for digital convexity. In: J. Lindblad, F. Malm-
berg, N. Sladoje (eds.) Discrete Geometry and Mathematical Morphology, pp. 269-282.
Springer International Publishing, Cham (2021)

Lachaud, J.O., Meyron, J., Roussillon, T.: An Optimized Framework for Plane-Probing
Algorithms. Journal of Mathematical Imaging and Vision 62(5), 718-736 (2020). DOI
10.1007/s10851-020-00965-6. URL https://hal.archives-ouvertes.fr/hal-02879784
Lachaud, J.O., Provengal, X., Roussillon, T.: An output-sensitive algorithm to com-
pute the normal vector of a digital plane. Journal of Theoretical Computer Sci-
ence (TCS) 624, 73-88 (2016). DOI 10.1016/j.tcs.2015.11.021. URL https://hal.
archives-ouvertes.fr/hal-01294966

Lachaud, J.O., Provencgal, X., Roussillon, T.: Computation of the normal vector to a
digital plane by sampling signicant points. In: 19th TAPR International Conference
on Discrete Geometry for Computer Imagery. Nantes, France (2016). URL https:
//hal.archives-ouvertes.fr/hal-01621492

Lachaud, J.O., Provengal, X., Roussillon, T.: Two Plane-Probing Algorithms for the
Computation of the Normal Vector to a Digital Plane. Journal of Mathematical Imaging
and Vision 59(1), 23 — 39 (2017). DOI 10.1007/s10851-017-0704-x. URL https://hal.
archives-ouvertes.fr/hal-01621516

Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent
estimation on digital contours. Image and Vision Computing 25(10), 1572-1587 (2007)
Mesmoudi, M.M.: A Simplified Recognition Algorithm of Digital Planes Pieces. In:
Proc. Discrete Geometry for Computer Imagery, pp. 404-416 (2002)

Provot, L., Debled-Rennesson, I.: 3d noisy discrete objects: Segmentation and applica-
tion to smoothing. Pattern Recognition 42(8), 1626-1636 (2009)

Ronse, C.: A bibliography on digital and computational convexity (1961-1988). IEEE
Trans. Pattern Anal. Machine Intel. 11(2), 181-190 (1989)

Roussillon, T., Lachaud, J.O.: Digital Plane Recognition with Fewer Probes. In: 21st
TAPR International Conference on Discrete Geometry for Computer Imagery, Lecture
Notes in Computer Science, vol. 11414, pp. 380-393. Couprie M. and Cousty J. and
Kenmochi Y. and Mustafa N., Springer, Cham, Marne-la-Vallée, France (2019). DOI 10.
1007/978-3-030-14085-4\-30. URL https://hal.archives-ouvertes.fr/hal-02087529
Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave
parts of a digital curve. Pattern Recognition 44(10-11), 2693-2700 (2011)

Sivignon, I., Coeurjolly, D.: Minimum decomposition of a digital surface into digital
plane segments is np-hard. Discrete Applied Mathematics 157(3), 558-570 (2009)
Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a three-dimensional discrete
object surface into discrete plane pieces. Algorithmica 38(1), 25-43 (2004)

Soille, P.: Morphological image analysis: principles and applications, 2nd edn. Springer
(2004). DOI https://doi.org/10.1007/978-3-662-05088-0

The DGtal Project: DGtal (2010). URL https://dgtal.org

Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Transactions on
Pattern Analysis and Machine Intelligence 16(6), 647-652 (1994)

Veelaert, P.: Fast Combinatorial Algorithm for Tightly Separating Hyperplanes. In:
Proc. Int. Workshop Combinatorial Image Analysis (IWCIA’2012), pp. 31-44 (2012)


https://hal.archives-ouvertes.fr/hal-02879784
https://hal.archives-ouvertes.fr/hal-01294966
https://hal.archives-ouvertes.fr/hal-01294966
https://hal.archives-ouvertes.fr/hal-01621492
https://hal.archives-ouvertes.fr/hal-01621492
https://hal.archives-ouvertes.fr/hal-01621516
https://hal.archives-ouvertes.fr/hal-01621516
https://hal.archives-ouvertes.fr/hal-02087529
https://dgtal.org

	Introduction
	Full convexity
	Topological properties of fully convex digital sets
	Morphological properties and recognition algorithm
	Digital planarity and local shape analysis
	Tangent subsets to a digital shape
	Conclusion and perspectives

