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Abstract 27 

High population density should drive individuals to more frequently share space and interact, 28 
producing better-connected spatial and social networks. Despite this widely-held 29 
assumption, it remains unconfirmed how local density generally drives individuals’ positions 30 
within wild animal networks. We analysed 34 datasets of simultaneous spatial and social 31 
behaviour in >55,000 individual animals, spanning 28 species of fish, reptiles, birds, 32 
mammals, and insects. >80% of systems exhibited strongly positive relationships between 33 
local density and network centrality, providing broad empirical evidence that local density 34 
increases connectedness at the individual level. However, >75% of density-connectedness 35 
relationships were nonlinear, and density’s importance declined at higher values in >70% of 36 
systems, signifying saturating effects. Density’s effect was much stronger and less saturating 37 
for spatial than social networks, suggesting population density drives individuals to become 38 
disproportionately spatially connected rather than socially. These findings reveal 39 
fundamental trends underlying societal structuring, with widespread behavioural, ecological, 40 
and evolutionary implications. 41 
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Introduction 44 

The number of individuals occupying a given space – i.e., population density – is a central 45 
factor governing social systems. At higher densities, individuals are expected to more 46 
frequently share space, associate, and interact, producing more-connected spatial and 47 
social networks and thereby influencing downstream processes such as mating, learning, 48 
and competition. In particular, density-driven increases in network connectedness should 49 
provide more opportunities for parasites to spread between hosts [1–5]. Despite the 50 
fundamental nature of such density-dependent processes, evidence is relatively limited that 51 
individuals inhabiting higher-density areas have more spatial and social connections. 52 
Furthermore, density’s effects should differ for asynchronous space sharing (e.g. home 53 
range overlap) versus social associations (e.g. den sharing or grouping) or interactions (e.g. 54 
mating or fighting). While several studies have compared animal populations at different 55 
densities to demonstrate variation in social association rates among populations (e.g., [6,7]) 56 
or groups (e.g., [8–10]), attempts to identify such density effects within continuous 57 
populations of individuals are rarer (but see [11–14]), and their findings have never been 58 
synthesised or compared. We therefore have an incomplete understanding of how density, 59 
as a fundamental ecological parameter, determines socio-spatial dynamics within and 60 
across systems. This inhibits our ability to identify and predict how changes in density – e.g. 61 
through culling, natural mortality, dispersal, or population booms – influence downstream 62 
processes that depend on shared space and social interactions. 63 

The rate at which an individual interacts with conspecifics depends on its spatial and social 64 
behaviour within the context of the surrounding environment and population. Adding more 65 
individuals into the same space should cause them to more frequently spatially overlap and 66 
socially associate or interact (Figure 1). Often, individuals are modelled as randomly moving 67 
and interacting molecules (“mass action” or “mean field”). In this conceptualisation, direct 68 
contact between two molecules is analogous to a social interaction or association; rates of 69 
such interactions are often assumed to increase with density (“density-dependent”; e.g., 70 
[15]), and/or to be homogenous in space (e.g., [10]). In reality individuals are unlikely to 71 
behave and interact randomly in space, and instead will be influenced by spatially varying 72 
factors including local density [16]. Changes in density may cause individuals to alter their 73 
foraging behaviour [17–19], dispersal [20,21], social preference or avoidance [13,22], mating 74 
behaviour [23], or preferred group size [7]; in some cases, interaction rates may change to 75 
remain constant in the face of changing densities [24]. These and related processes might 76 
produce strong nonlinearities in density-interaction relationships, which can complicate the 77 
predictions of density dependence models of pathogen transmission, for example [2,4,5].  78 
Nevertheless, these nonlinearities are poorly understood and rarely considered. 79 

Several wild animal studies have suggested saturating nonlinear relationships between 80 
density and social association rates [8–10,13]. Such relationships imply that association 81 
rates do not increase passively with density, and that behavioural or demographic processes 82 
likely change as density increases, with the ultimate consequence of slowing association 83 
rates. However, these nonlinearities are difficult to examine between populations or between 84 
species because they introduce a range of confounders and have few replicates along the 85 
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density axis [2]. Characterising gradients of density across individuals within a population 86 
offers a workaround to this problem, and facilitates an appreciation of the fact that 87 
interactions occur between individuals rather than at the population level. Examining 88 
between-individual variation is one reason that social network analysis – which allows 89 
characterisation and analysis of individual-level social traits, amongst other things – has 90 
become so popular in animal ecology in recent years [25–29]. Additionally, recent years 91 
have seen a substantial growth in understanding of socio-spatial behaviours, including 92 
harmonising the concepts of spatial and social density [2,16,30]. Applying network analyses 93 
coupled with this socio-spatial understanding of density could provide an individual-level 94 
picture of density’s effects on spatial and social connectedness, offering far higher resolution 95 
and statistical power and greater ability to detect nonlinearities and between-system 96 
differences [2]. By providing new understanding of the correlates and emergent 97 
consequences of variation in density, this expansion could help to identify general rules 98 
underlying social structuring and network scaling in space. 99 

Critically, different types of interactions or associations should show different relationships 100 
with density: for example, the need to compete for food at higher densities could drive a 101 
disproportionate increase in aggression [31], but this is unlikely to be true of mating 102 
interactions. This rationale is well-understood in disease ecology, as differences in density-103 
contact relationships are thought to drive differences in density dependence of infection – 104 
where “contact” is defined as an interaction or association that could spread a pathogen 105 
(Figure 1). “Contacts” then form the basis of spatial and social networks used to investigate 106 
pathogen transmission dynamics, which should likewise diverge with density just as contacts 107 
do. For example, density should drive greater transmission of respiratory pathogens but not 108 
sexually transmitted pathogens [1,32]. Establishing these density-contact relationships is 109 
integral to understanding disease dynamics and developing control measures [1,33], but we 110 
still have a poor understanding of how different interactions (and therefore contact events for 111 
different pathogens) are driven by density. This direct/indirect interaction dichotomy is most 112 
fundamental to disease ecology [30], but given building interest in the spatial-social interface 113 
and relationships between spatial and social networks in behavioural ecology [16], the 114 
framework is readily related to other fields. Established density-interaction relationships are 115 
diverse and include feral dog bites [11], ant antennations [34] and trophallaxis [24], ungulate 116 
group memberships [12,17], rodent co-trapping [8,35], and agamid association patterns 117 
[13,14], but no study has yet synthesised how the rates of multiple interaction types relate to 118 
density, within or across systems. 119 

Identifying the general rules underlying density dependence requires quantifying density’s 120 
relationship with proxies of interaction rates at fine scales across a diversity of systems, then 121 
identifying the factors determining their slope and shape. To this end, we collate a meta-122 
dataset of over 55,000 individual animals across 34 wildlife systems globally to ask how 123 
within-population variation in density determines between-individual interaction rates based 124 
on connectedness in spatial and social networks. We fit multiple linear and nonlinear 125 
relationships to identify the slope and shape of density effects within each system, and we 126 
use meta-analyses to investigate general rules determining their slope and shape across 127 
systems. In particular, we focus on comparing space sharing with social interactions and 128 
associations as a cross-system case study. Ultimately, we present a de novo cross-system 129 
analysis of individuals’ social and spatial behaviour that traverses fields of behavioural, 130 
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population, and disease ecology, which could help to inform general rules governing the 131 
structure of social systems. 132 

 133 

Figure 1: Schematic detailing the rationale underlying this study, outlining how population density 134 
drives the formation of spatial and social networks. This depiction uses the Wytham Wood great tits 135 

as an example. Ultimately, we aim to ask whether spatial or social connections generally show a 136 
stronger relationship with density, partly functioning as a proxy for indirect and direct contact events 137 
with the potential to transmit pathogens. This framework moves between concepts of network and 138 
contact formation traversing behavioural ecology, spatial and social network ecology, and disease 139 

ecology. 140 

 141 
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 142 

 143 

Figure 2: The phylogenetic (A) and geographic (B) distribution of our 34 examined datasets of spatial 144 
and social behaviour, with (C) schematic depicting the methodology for deriving local density values, 145 

using the Isle of Rum red deer data as an example. The X and Y axes are bivariate spatial 146 
coordinates. The panels within (C) show raw observations of individuals in space that we then 147 

average at the individual level to make centroids; we use the centroids to generate annual density 148 
distributions, which are then assigned to individuals in the form of local density measures. Animal 149 

silhouettes are from phylopic.org; a list of attributions is in the supplement. NB the Potomac dolphins 150 
are now defined as Tursiops erebennus; they are currently incorporated in Panel A as T. truncatus, 151 

following the Open Tree of Life nomenclature. 152 

Methods 153 

Data standardisation and behavioural pipeline 154 

Data were manipulated and analysed using R version 4.2.3 [36], and all R code is available 155 
at https://github.com/gfalbery/DensityMetaAnalysis. Our 34 datasets each involved at least 156 
one continuous uninterrupted spatial distribution of observations in a single population; some 157 
datasets comprised multiple such populations. These datasets covered 28 different host 158 
species, including sharks, carnivores, cetaceans, ungulates, rodents, elephants, birds, 159 
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reptiles, and one insect (Figure 2). In one case (The Firth of Tay and Moray Dolphins) we 160 
used two distinct replicates despite being composed of overlapping groups of individuals, 161 
because of their distinct spatial distributions, which made it difficult to fit a coherent density 162 
distribution. 163 

To standardise the timescale across studies, all systems were analysed as annual replicates 164 
– i.e., social and spatial networks were summarised within each year. Our analyses used 60 165 
system-behaviour replicates, listed in Supplementary Table 1, and totalled 151,507 unique 166 
system-individual-year-behaviour data points. 167 

All spatial coordinates were converted to the scale of kilometres or metres to allow 168 
comparison across systems. To provide an approximation of local density, following prior 169 
methodology [12,37], we took each individual’s average location across the year (their 170 
centroid) and created a spatial density kernel using the `adehabitathr` package [38], which 171 
provides a probabilistic distribution of population density across each study system based on 172 
the local frequencies of observed individuals. Each individual was assigned an annual 173 
estimate of local density based on their centroid’s location within this spatial density 174 
distribution. We made these density distributions as comparable as possible between 175 
systems by incorporating the density raster using metre squares; however, there were large 176 
differences in density across populations that were difficult to resolve and put on the same 177 
scale (e.g. interactions per individual/km2 unit of density). Consequently, we scaled and 178 
centred density to have a mean of zero and a standard deviation of one within each 179 
population, which allowed us to focus on differences in relative slope and shape across 180 
systems. 181 

To provide a measure of asynchronous space sharing, we constructed home range overlap 182 
(HRO) networks based on proportional overlap of two individuals’ minimum convex polygon 183 
(MCP; i.e., the bounding polygon around all observations of each individual in a given year). 184 
These HRO networks were restricted to only individuals with five or more observations in a 185 
given year to allow us to create convex polygons effectively; 10/34 (29%) systems did not 186 
have sufficient sampling for this analysis. We also repeated our analyses with a series of 187 
higher sampling requirements for observation numbers to ensure that our findings were 188 
robust to this assumption. The MCP approach is relatively low-resolution, and assumes 189 
uniform space use across an individual’s home range; however, this approach is less data 190 
intensive – and less sensitive to assumptions – than density kernel-based approaches that 191 
would estimate variation in space use across the home range, allowing us to apply the 192 
models across more systems, more generalisably, and more conservatively.  193 

To provide a measure of social connectedness, we built social networks using various 194 
approaches as defined by the original studies: direct observations of dyadic interactions (e.g. 195 
fighting or mating); gambit of the group (GoG; i.e. membership of the same group) [39]; co-196 
trapping (i.e. trapped together or in adjacent traps within a given number of trapping 197 
sessions); or direct contact measured by proximity sensors (defined by a certain distance-198 
based detection threshold). Notably some analyses use indirect interactions – i.e., spatial 199 
overlap – to approximate direct interactions, which requires spatiotemporal coincidence, 200 
which we caution against particularly when modelling pathogen transmission [30,40]. While 201 
the two do often correlate, here we are not using HRO to approximate direct interaction 202 
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rates, but rather as a measure of indirect interactions (e.g., indicative of transmission of 203 
environmental parasites). 204 

For each social network, we scaled connection strength relative to the number of 205 
observations of each individual in a dyad (i.e., simple ratio index [41]). Our response variable 206 
therefore took the form of strength centrality, scaled to between 0-1 for each dyad, for each 207 
social and spatial network. We focus on comparing density effects on social interactions and 208 
associations with density’s effects on space sharing. 209 

Density-connectedness models: what forms do density effects 210 

take? 211 

We developed a novel workflow to allow us to derive and compare density’s effects on 212 
connectedness – and their drivers – in a standardised way across our wild animal systems. 213 
These took three forms: linear models fitted to the whole dataset, nonlinear models fitted to 214 
the whole dataset, and linear models fitted separately to low- and high-density subsets of 215 
each dataset.  216 

Linear models: For each system-behaviour replicate, we first fitted a linear model using the 217 
`lm` function in R, fitting scaled density as an explanatory variable to estimate linear density 218 
effect slopes.  219 

Generalised additive models (GAMs): We fitted GAMs in the `mgcv` package [42] to 220 
identify whether each density effect was better described by a linear or nonlinear 221 
relationship, and to identify the shape of these nonlinear relationships. For each model, we 222 
fitted a default thin plate spline with k=4 knots. This knot number was selected to reduce 223 
overfitting in our models, which formed several fits to the data that were difficult to reconcile 224 
with functional formats. To assess whether nonlinear models fit better than linear models, we 225 
used Akaike Information Criterion (AIC), with a contrast of 2ΔAIC designated to distinguish 226 
between models. See Supplementary Figure 1 for a schematic depicting our analytical 227 
workflow.  228 

Saturation models: To quantify whether density effects were generally saturating (i.e., that 229 
density had steeper relationships with individuals’ connectedness at lower density values), 230 
we split the data into two portions: all values below the median density value, and all values 231 
above the median. We then re-ran linear models examining the relationship between density 232 
and strength in each portion. We attempted to investigate nonlinear patterns (especially 233 
saturating effects) across all our systems using a range of other methods (e.g., comparing 234 
specific functional relationships with nonlinear least squares), but found that they were 235 
generally incapable of fitting well to the data in a standardised way across the many datasets 236 
(i.e., non-convergence of nonlinear least squares using semi-automated starting estimates 237 
across systems). As such, this approach represented a tradeoff between tractable, 238 
generalisable model fitting, interpretability, and accurate representation of the relationship’s 239 
shape. All else being equal, we posit that investigating the relative slopes of two otherwise-240 
identical portions of the data is a conservative and informative method of identifying 241 
saturation, which was our main hypothesis for the expected shape of density effects. 242 
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Meta-analysis: what factors determine the slope of density- 243 

connectedness relationships? 244 

To characterise the typical relative slope of density effects across systems and identify the 245 
factors influencing their variation, we fitted hierarchical meta-analytical models using the 246 
`metafor` package in R. The response variable was the standardised slope of the linear 247 
density effect; because both individual network strength and density were scaled to have 248 
mean of zero and standard deviation of one in the linear regression, this is equivalent to the 249 
correlation coefficient (r) [43]. We converted all correlation coefficients into Fisher’s Z (Zr) 250 
and computed associated sampling variance. We then used an initial model that nested 251 
observations within a system-level random effect to account for within- and between-system 252 
heterogeneity [44], as 24/34 systems had more than one density effect. We used a random 253 
effect for species to account for repeat observations per animal species.  254 

We then added a separate random effect for animal phylogeny [45]. This used a 255 
phylogenetic correlation matrix of our 28 animal species derived from the Open Tree of Life 256 
via the `rotl` package [46], with the `ape` package used to resolve multichotomies and 257 
provide branch lengths [47]. We fitted the model using the `rma.mv()` function with restricted 258 
maximum likelihood (REML), weighted by inverse sampling variance, and used variance 259 
components to quantify I2, the contribution of true heterogeneity to the total variance in effect 260 
size. 261 

We next fitted models with the same random effects structure that included explanatory 262 
variables. To detect whether some animals were more likely to experience density effects, 263 
we fitted Animal group as a factor with six categories, representing a combination of 264 
species’ taxonomy and general ecology: aquatic (fish and dolphins), birds, large herbivores 265 
(elephants and ungulates), small mammals (rodents and hyraxes), carnivores, and 266 
ectotherms (insects and reptiles). We also fitted several explanatory variables indicative of 267 
greater statistical power that might increase the strength of density effects: Geographic 268 
area (km2, log10-transformed), Number of years of study, and Number of individuals, all of 269 
which we fitted as continuous covariates. Broadly, the animal group model was highly 270 
uninformative and competed with the other effects, and we expected that the phylogeny 271 
would be more informative, so we report the results of the model without the host group 272 
effect fitted. 273 

We ran several different versions of these meta-analyses: first, we fitted meta-analytical 274 
models to the overall linear models of spatial and social interaction types separately, and 275 
then together, to investigate differences between the spatial and social networks in terms of 276 
their mean density slope. Next, we fitted duplicated versions of these models, but with the 277 
saturation models. These models were identical, but each system replicate had two linear 278 
estimates: one taken from the first 50% of the data (up to the median), and one to the latter 279 
50%. By fitting a binary fixed effect of “data portion” to the meta-analytical models, this 280 
model would tell us whether the slopes were generally higher in the first portion of the data 281 
than the last (and therefore showed generally saturating shapes). We were unable to fit 282 
meta-analytical models to our GAMMs, as methods capable of meta-analysing nonlinear 283 
estimates are not yet well defined. 284 
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 285 

Figure 3: Meta-analysis revealed drivers of variation in linear density effects on individual network 286 
connectedness across systems. A) Our fitted linear model estimates of density effects on network 287 

strength. Each point represents the mean estimate from a given system; the error bars denote 95% 288 
confidence intervals. Opaque error bars were significant (i.e., do not overlap with 0); transparent ones 289 
were not. The estimates are in units of standard deviations for both density and network strength. The 290 
colour of the point denotes whether the network being examined was defined using spatial or social 291 
connections. B) Meta-analyses revealed that centrality in spatial networks (i.e., home range overlap; 292 
red points) had a significantly steeper relationship with density than social networks (blue points). C) 293 
When linear models were fitted separately to two portions of the data (values below and above the 294 
median), the slopes for the latter portion (pink points) were generally less positive than the former 295 

portion (purple points), implying a general saturation shape. In panels B) and C), each coloured point 296 
represents a study replicate fitted to the strength estimate; points are sized according to sample size, 297 

and jittered slightly on the x axis to reduce overplotting. The large black points represent the mean 298 
slope estimated from the meta-analysis, and the error bars represent 95% confidence intervals. 299 
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 300 

Figure 4: Relationships between density and network connectedness varied substantially across 301 
animal systems. Density in individuals per area is on the x axis; network connectedness (strength 302 

centrality) is on the y axis. Both values have been standardised to have a mean of zero and a 303 
standard deviation of 1 within each system; the axis ticks are in units of 1 standard deviation. Each 304 

point represents an individual-year-behaviour replicate; the lines portray the model fit from our GAMs. 305 
Red lengths of the smooth=significantly positive; grey=not significantly different from zero; 306 

blue=significantly negative. Points are semi-transparent to enhance visibility. Panels are arranged 307 
phylogenetically following the tree displayed in Figure 2A; GOG=gambit of the group; HRO=home 308 

range overlap. Supplementary Figure 2 shows a version of this plot with variable smoothing 309 
parameters to show variation in the possible shape of the curves. Animal silhouettes are from 310 

phylopic.org; a set of links and attributions are in the Supplement. 311 
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Results and Discussion 312 

We compiled an unprecedented comparative meta-dataset of over ten million observations 313 
of individual animals’ spatial and social behaviour, across an expansive range of ecological 314 
systems. We then ran a standardised pipeline to align their spatial and social observations, 315 
identifying strong and predictable relationships between local density and network 316 
connectedness at the individual level.  317 

We observed strong positive relationships between individuals’ local population density and 318 
their connectedness in spatial and social networks across a wide range of wild animals: of 319 
our 60 replicates, 48 (80%) were significantly positive when analysed using linear models 320 
(Figure 3A; Supplementary Table 1). Meta-analyses identified a highly significant positive 321 
mean correlation between density and connectedness, both for social networks (Estimate 322 
0.22; 95% CI 0.16, 0.27) and spatial networks (0.45; 0.36, 0.53; Figure 3B). Our study 323 
therefore provides fundamental evidence that high local population density broadly drives 324 
greater connectedness within ecological systems, at the individual level. Slopes were highly 325 
variable across systems for both spatial and social networks (Figure 3A; Q-test of 326 
heterogeneity across systems: Q35 = 5744.83 and Q23 = 1559.08, both P<0.0001), indicating 327 
that quantifying these slopes within and between multiple systems and comparing them is 328 
important for understanding animal socio-spatial structure. That is, relationships between 329 
density and individual connectedness differ substantially between populations, and the 330 
biological mechanisms underlying these divergent trends are likely important. As well as 331 
adding resolution and allowing comparisons of density effects across systems, our 332 
methodology facilitated fitting of nonlinear relationships. This approach has only rarely been 333 
applied before, and then at much coarser resolution (see [8,9,11]). As such, this study fills an 334 
important empirical gap by providing insights into the slope and shape of density-335 
connectedness relationships for a variety of animal groups and their social and spatial 336 
behaviours (Figure 4). Nevertheless, we were able to identify several further general trends 337 
in our data. 338 

Remarkably, density’s effect more than doubled in size for spatial compared to social 339 
networks (Figure 3B; r=0.45 versus 0.22); there was a difference of 0.28 (CI 0.17, 0.38, 340 
P<0.0001) for this effect when we meta-analysed the two contact types together. This finding 341 
indicates that as density increases, wild animals are more likely to share space with each 342 
other, but that social connections increase at a much slower rate. Similarly, we discovered 343 
that saturating shapes were extremely common: as density increased, its effect on 344 
connectedness decreased, such that 44/60 systems (73%) had a steeper slope at low 345 
density values than at high ones. This effect was strong for social networks (effect on r= -346 
0.11; CI -0.20, -0.03; P=0.01) and similar in size but marginally insignificant for spatial 347 
networks (-0.14; -0.29, 0.01; P=0.058); due to the greater overall effect for space sharing, 348 
the latter half of the density-spatial connections effect was still higher than the first half of the 349 
density-social connections effect (Figure 3C). In fact, the second half of the social effect 350 
overlapped with zero (Figure 3C; lower CI=-0.0119): that is, considering only the upper half 351 
of density values would not have uncovered a significant effect of density on individuals’ 352 
connectedness in social networks. Together, these observations suggest that density-353 
dependent processes act to limit the increase in social connectedness with density, but 354 
without limiting spatial overlaps to the same extent. Consequently, higher-density areas are 355 
characterised disproportionately by individuals asynchronously sharing space rather than 356 
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socially associating, while in lower-density areas individuals are disproportionately more 357 
socially connected proportional to their shared space. 358 

There are many possible social reasons for saturating nonlinearity in density-dependent 359 
network structuring: for example, individuals in higher density areas may begin to avoid each 360 
other, seeking to avoid competition or aggression [31] or exposure to infectious disease [48]. 361 
Eastern water dragons (Intellagama lesueurii) show greater avoidance at higher densities 362 
[13], supporting this mechanism. Alternatively, in species with high social cognition or stable 363 
bonds, saturation could reflect lower social effort or ability to keep track of social affiliates at 364 
higher densities [49]. In general, individuals likely have a preferred social interaction rate or 365 
group size – a preference that they may increasingly exert at higher densities [7]. It remains 366 
to be seen how this preference varies among individuals, and whether individuals vary in 367 
their preferred social network position given a certain density. Given that individuals vary in 368 
their movement and spatial phenotypes [50–52], and social phenotypes [52–54] in ways that 369 
should manifest for density-dependent behaviours specifically [16], it seems likely that these 370 
slopes could vary between individuals as they do between populations. Future analyses 371 
might fit variable density-connectedness slopes between individuals to identify socio-spatial 372 
syndromes across systems, as has been done previously in single systems including caribou 373 
(Rangifer tarandus) [55] and red squirrels (Tamiasciurus hudsonicus) [56]. 374 

We considered spatial behaviours might explain these trends: for example, density could 375 
create greater competition over resources and therefore reduce energy to roam (and contact 376 
others). Individuals may partition their niches [57], or reduce their territory or home range 377 
sizes [56,58,59], potentially driven by years of plentiful resources supporting higher densities 378 
alongside smaller home ranges which could drive lower association rates. However, our 379 
findings do not seem to support explanations related to small home ranges, because such 380 
explanations should produce an equivalent or stronger reduction in (relative) spatial 381 
connectedness. In contrast, we observed that density drove individuals to become spatially 382 
connected faster than socially, such that the underlying mechanisms likely involve 383 
behaviours and demographic processes that specifically affect social collocation in space 384 
and time. Testing the precise underlying mechanism might require finer-scale behavioural 385 
observations, as described below. Regardless of mechanism, these saturating density-386 
connectedness relationships strongly support the idea that examining density effects at the 387 
individual level – rather than between populations – is highly informative. For many systems, 388 
“mean field” expectations of homogenous interactions under increasing density likely 389 
produce an inaccurate (i.e., inflated) picture of density’s effects.  390 

The fact that spatial networks show stronger and more linear density dependence than 391 
social networks is likely to have important implications for the ecology of wild animal 392 
systems. For example, indirectly transmitted (i.e., environmentally latent) parasites may 393 
exhibit greater density dependence than directly transmitted ones, given that individuals 394 
likely experience disproportionately more indirect contact at higher densities. This 395 
observation contrasts with orthodoxy that contagious parasites are most likely to be density 396 
dependent [60], and supports the value of investigating nonlinear changes in socio-spatial 397 
behaviour and grouping patterns in response to density when considering density 398 
dependence. Saturating density-connectedness functions further have implications for 399 
disease modelling and control. Rather than assuming constant behavioural mixing at higher 400 
densities, epidemiological models could benefit from incorporating density-dependent shifts 401 
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in behaviours and demography that influence direct and indirect interaction frequencies, as 402 
previously suggested empirically and by epidemiological theory [15]. These relationships 403 
could influence our targets for culling or vaccination coverage [61]. Given that animals at 404 
high density seem likely to have a relatively shallow relationship between density and 405 
contact rates, reducing population density – for example via culling – might not be effective 406 
at reducing pathogen transmission initially, particularly when considering socially transmitted 407 
pathogens, where contact rates are particularly likely to have saturated (Figure 3C). Similar 408 
problems with culling have already been acknowledged in specific systems – e.g. in canine 409 
rabies [33,62,63]  – but our study implies that shallow nonlinear density-contact trends could 410 
be more general than previously thought and could be driven by flexible density-dependent 411 
changes in behaviour and demographic processes. 412 

Operationally, the common nature of saturating density effects will impact researchers’ ability 413 
to detect density dependence: that is, density dependence could be harder to observe in 414 
higher-density areas given the shallower slopes we observed. Most of the systems in this 415 
study are relatively long-term studies of known individuals; these populations tend to be in 416 
carefully selected, high-density areas that make it convenient to study the focal animal with 417 
relatively low operational costs. For example, it has previously been noted that the badgers 418 
of Wytham Wood, the red deer of the Isle of Rum, and the Soay sheep of St Kilda are all at 419 
high densities for their respective species [64–66]. As such, we may be inherently 420 
investigating the upper end of density-connectedness relationships in the wild, and it could 421 
be difficult and costly to investigate the effects of low density so widely. 422 

Beyond these general trends, our GAMs revealed that 46/60 density effects on network 423 
connectedness (77%) were significantly nonlinear (ΔAIC>2); these relationships took a wide 424 
variety of shapes, representing a range of nonlinear functions that are hard to generalise 425 
(Figure 4; Supplementary Table 2). Notably, while many GAM smooths were eventually 426 
significantly negative (Figure 4), the vast majority of linear models fitted to the second half of 427 
the data were positive (Figure 3C); this result is likely an artefact of restricted model fitting, 428 
rather than true downturns in connectedness with density. Nonlinearity did not cluster 429 
according to connection type definitions, or according to host group. These observations 430 
were largely corroborated by our meta-analytical models, which found no factors influencing 431 
the slope and shape of density effects (P>0.05). This observation speaks to the complexity 432 
of these relationships within and across systems, while accentuating that simple functional 433 
relationships are often likely to be complicated by contravening ecological factors like habitat 434 
selection [67,68], parasite avoidance [69], and demographic structuring [70]. While we were 435 
unable to identify specific between-system predictors of nonlinearity of density-436 
connectedness relationships, the finding that most such relationships are strongly nonlinear 437 
is an important consideration for future work.  438 

We acknowledge several limitations of our study, which we nevertheless believe could be 439 
remedied in the future. First, many of our social networks were formed of general 440 
spatiotemporal associations, and relatively few from specific social interactions – particularly 441 
those involving direct physical contact. Our current dataset could therefore benefit from 442 
supplementation with a broader range of direct interactions, particularly involving antagonism 443 
or bonding. For example, datasets concerning aggression or dominance interactions (e.g. 444 
[71]) or grooming alongside spatial behaviour could inform how density dependence affects 445 
the transmission of certain parasites such as mycobacteria [72] or tattoo skin disease [73]. 446 
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The meta-dataset was also unevenly distributed across animal taxa (Figure 1): there were 447 
no primates or bony fishes and only one invertebrate, while rodents and ungulates were 448 
over-represented. These biases likely emerge through differences in data collection 449 
approaches: for example, although primate social behaviour is often studied with 450 
observations of direct interactions that could augment our data as described above (e.g. 451 
[74]), the spatial data required to build density distributions are rarely collected in these 452 
systems. This is linked to their social structures: our workflow was best suited to studies of 453 
fission-fusion societies or relatively asocial animals, rather than those with wide-ranging 454 
fixed social groups that are more common in primate systems. Finally, given that our data 455 
were observational, we could not account for (or estimate) bidirectional causality between 456 
density and social relationships (point 4 in Figure 1): that is, as well as encountering more 457 
conspecifics in areas of high density, individuals may be drawn to conspecifics, creating 458 
areas of high density [16]. To do so might require creating in-depth, high-resolution models 459 
of animal movement and group formation (e.g. [75]), potentially making use of telemetry 460 
approaches and drawing from large-scale open movement repositories like Movebank [76].  461 

Aside from incorporating more specific interaction types, there exist a range of potential 462 
extensions to our analysis. For example, density dependence often varies between age or 463 
sex classes (e.g. [77,78]), and age effects on infection are common and ecologically 464 
important [79,80], as are sex differences [81]. We chose not to analyse how individual 465 
animals’ traits alter the shape or slope of density’s effects for brevity and simplicity; however, 466 
given that many of the systems nevertheless include these data, future analyses could make 467 
use of this meta-dataset to investigate how density affects connectedness of different 468 
classes of hosts. Further, researchers could investigate other behavioural questions such as 469 
the role of observation biases; the factors influencing the correlation between spatial and 470 
social networks; and the role of environmental drivers and spatial autocorrelation in driving 471 
observed patterns of connectivity [12,16]. Finally, as our analysis approximated density-472 
contact relationships and not host-parasite interactions specifically, important future work 473 
could investigate whether contact rates (as approximated by network connectedness) 474 
ultimately translate to greater infection risk or parasite burden. Although some previous 475 
investigations have linked density-related metrics to aspects of infection [82,83], density 476 
covaries with a range of other factors including nutrition, cooperation, and competition, all of 477 
which could complicate density-driven increases in exposure [2]. For example, in the case of 478 
ectoparasite transmission, although contact rates in general would likely increase with 479 
density, so too might grooming behaviours that remove parasites; in cases such as these, 480 
density’s overall effect on ectoparasite infection may be neutral. In the future, verifying that 481 
within- and between-population variation in density-contact relationships translate to 482 
variation in infection – and whether these trends might be influenced by flexible avoidance 483 
behaviours [37] – will be a vital part of understanding and predicting density-dependent 484 
disease dynamics. 485 

Density is a universal factor underlying the dynamics of animal populations, and its linear 486 
and nonlinear effects on spatial and social network structure are likely to impact myriad 487 
processes in behaviour, ecology, and evolution. Similar to other studies that have reported 488 
general scaling patterns in network analysis [84] and in food web ecology [85], the patterns 489 
we report strongly suggest that animal systems generally become better connected spatially 490 
than socially under increasing density. These might extrapolate to human networks, given 491 
that other scaling patterns in animal networks do [84]. As these patterns seemingly manifest 492 
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regardless of animal group and interaction type, they may reflect a generalisable rule 493 
governing the socio-spatial structure of ecological systems. Further refining and 494 
implementing these models could facilitate prediction of network structure in novel systems. 495 
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